Oliver Heaviside: Difference between revisions

From ETHW
No edit summary
No edit summary
 
(17 intermediate revisions by 5 users not shown)
Line 1: Line 1:
== Oliver Heaviside: Biography<br>  ==
{{Biography
|Image=Heaviside.jpg
|Birthdate=1850/05/18
|Birthplace=Camden Town, London, UK
|Death date=1925/01/03
|Fields of study=Electromagnetics; Telegraphy
}}
[[Image:Portrait of Heaviside 0295.jpg|thumb|right]]


Born: 18 May 1850<br>Died: 03 February 1925
'''Honorary Member 1918'''
 
[[Image:Heaviside.jpg|thumb]]


Oliver Heaviside was born in 1850 in Camden Town, a notoriously crime-ridden, lower class area of London. Young Oliver had a challenging and troubled youth. Life in the slums was difficult enough, but a childhood bout with scarlet fever, which left him nearly deaf, added to his troubles. Heaviside’s mother ran a school for girls, which he attended rather than attending the neighborhood school. This offered some protection from the influence of the local ruffians. However, Heaviside’s hearing impairment made making friends difficult. Despite being bright and a good student, by age 16 the socially awkward Heaviside had had enough of formal education and left school.  
Oliver Heaviside was born in 1850 in Camden Town, a notoriously crime-ridden, lower class area of London. Young Oliver had a challenging and troubled youth. Life in the slums was difficult enough, but a childhood bout with scarlet fever, which left him nearly deaf, added to his troubles. Heaviside’s mother ran a school for girls, which he attended rather than attending the neighborhood school. This offered some protection from the influence of the local ruffians. However, Heaviside’s hearing impairment made making friends difficult. Despite being bright and a good student, by age 16 the socially awkward Heaviside had had enough of formal education and left school.  


Leaving school, however, did not mean abandoning learning. With the guidance of his uncle, Sir Charles Wheatstone, an inventor of an early telegraph and a well-known musical instrument maker, Heaviside studied languages (German and Danish), music, and learned telegraphy.  
Leaving school, however, did not mean abandoning learning. With the guidance of his uncle, [[Charles Wheatstone|Sir Charles Wheatstone]], an inventor of an early telegraph and a well-known musical instrument maker, Heaviside studied languages (German and Danish), music, and learned [[Telegraph|telegraphy]].  


With his knowledge of telegraphy and Danish, and probably with some help from his famous uncle, Heaviside got a job as a telegraph operator in Denmark. While working there, Heaviside noticed that signals from England to Denmark could be sent faster than those sent from Denmark to England. Those in the telegraph industry thought this was due to some strange and unknown property of the 347-nautical mile undersea cable carrying the messages. Heaviside wasn’t so sure and was able to show mathematically that if everything is identical on both ends of the cable, the maximum rate must be the same in both directions. He then showed, again mathematically, that any difference must be due to different resistance at each end. Simply put, the equipment in England had lower electrical resistance and could push more current faster into the capacitance of the cable, and thus could send at a higher rate.  
With his knowledge of telegraphy and Danish, and probably with some help from his famous uncle, Heaviside got a job as a telegraph operator in Denmark. While working there, Heaviside noticed that signals from England to Denmark could be sent faster than those sent from Denmark to England. Those in the telegraph industry thought this was due to some strange and unknown property of the 347-nautical mile undersea cable carrying the messages. Heaviside wasn’t so sure and was able to show mathematically that if everything is identical on both ends of the cable, the maximum rate must be the same in both directions. He then showed, again mathematically, that any difference must be due to different resistance at each end. Simply put, the equipment in England had lower electrical resistance and could push more current faster into the capacitance of the cable, and thus could send at a higher rate.  
Line 15: Line 20:
“I browsed through it and I was astonished! I read the preface and the last chapter, and several bits here and there; I saw that it was great, greater and greatest...I was determined to master the book and set to work.”  
“I browsed through it and I was astonished! I read the preface and the last chapter, and several bits here and there; I saw that it was great, greater and greatest...I was determined to master the book and set to work.”  


Maxwell’s theory provided Heaviside with his life’s work.  
Maxwell's theory provided Heaviside with his life’s work.  


Maxwell’s theory predicts “electromagnetic waves” that travel with the speed of light. Heaviside reasoned that electromagnetic waves could travel on a telegraph cable too. At the time, it was believed that the electric telegraphic pulses diffused, or “soaked” in the telegraph cable. Although the mathematical cables that arose from diffusion theory worked for short cables, they failed for longer cables. Heaviside’s equations, based on Maxwell’s electromagnetic waves, worked for cables of all lengths.  
Maxwell's theory predicts “electromagnetic waves” that travel with the speed of light. Heaviside reasoned that electromagnetic waves could travel on a telegraph cable too. At the time, it was believed that the electric telegraphic pulses diffused, or “soaked” in the telegraph cable. Although the mathematical cables that arose from diffusion theory worked for short cables, they failed for longer cables. Heaviside’s equations, based on Maxwell's electromagnetic waves, worked for cables of all lengths.  


[[Image:Portrait of Heaviside 0295.jpg|thumb|left]]This finding had practical applications for telegraph communications. For example, Heaviside actually solved one of the biggest problems affecting long distance telegraph and telephone communication in 1887 —distortion. It was known that different frequencies travel with different speeds on a long cable. For example, the low bass frequencies in a voice signal travel faster than the high treble frequencies. When the cable is long enough, the frequencies smear, and both voice and telegraph signals become garbled noise. Heaviside used his equations to show that if inductances (i.e., a small coil of wire) were added along the length of the cable, the distortion could be reduced.  
This finding had practical applications for telegraph communications. For example, Heaviside actually solved one of the biggest problems affecting long distance telegraph and telephone communication in 1887 —distortion. It was known that different frequencies travel with different speeds on a long cable. For example, the low bass frequencies in a voice signal travel faster than the high treble frequencies. When the cable is long enough, the frequencies smear, and both voice and telegraph signals become garbled noise. Heaviside used his equations to show that if inductances (i.e., a small coil of wire) were added along the length of the cable, the distortion could be reduced.  


Heaviside and his theory ran into problems. His papers were difficult to read and most people did not understand him. Heaviside was not one to suffer fools. His sharp remarks and lack of diplomacy created enemies in the scientific community who suppressed and ridiculed his work. As a result it took 20 years and a rediscovery of the inductance idea by Silvanus Thompson before long distance telephone calls could become a reality.  
Heaviside and his theory ran into problems. His papers were difficult to read and most people did not understand him. Heaviside was not one to suffer fools. His sharp remarks and lack of diplomacy created enemies in the scientific community who suppressed and ridiculed his work. As a result it took 20 years and a rediscovery of the inductance idea by [[Archives:Papers of Silvanus P. Thompson|Silvanus Thompson]] before long distance telephone calls could become a reality.  


Heaviside’s most important work involving Maxwell’s theories was what he did with Maxwell’s equations. Maxwell’s equations are the laws that electric and magnetic fields must follow. However, Maxwell never wrote the four simple-looking equations we use today. Rather, in 1873 Maxwell published a set of 20 equations in 20 different variables. These were difficult to understand, which made Maxwell’s theory slow to be accepted. By 1884, however, Heaviside was not only able to understand them, but to simplify them as well. For example, using “vector notation,” he combined sets of three equations into one. Heaviside also recognized that Maxwell’s equations did not require the use of “potentials.” These potentials that Maxwell used extensively could just be treated as mathematical quantities derived from the electric and magnetic fields. Today, we call them “Maxwell’s equations,” but Maxwell himself never saw them in this form.  
Heaviside’s most important work involving Maxwell's theories was what he did with [[Maxwell's Equations|Maxwell’s equations]]. Maxwell’s equations are the laws that electric and magnetic fields must follow. However, Maxwell never wrote the four simple-looking equations we use today. Rather, in 1873 Maxwell published a set of 20 equations in 20 different variables. These were difficult to understand, which made Maxwell's theory slow to be accepted. By 1884, however, Heaviside was not only able to understand them, but to simplify them as well. For example, using “vector notation,” he combined sets of three equations into one. Heaviside also recognized that Maxwell’s equations did not require the use of “potentials.” These potentials that Maxwell used extensively could just be treated as mathematical quantities derived from the electric and magnetic fields. Today, we call them “Maxwell’s equations,” but Maxwell himself never saw them in this form.  


Heaviside continued working with Maxwell’s equations for the remainder of his life. Among other things, he developed the concept of “operators,” which reduced complicated differential equations to simple algebraic equations, a technique every electrical engineer today knows as “Laplace Transform Theory.” He also introduced the concept of reactance, i.e., the “resistance” of an [[Inductor|inductor]] or capacitor. In spite of all of Heaviside’s discoveries, his name lives on today only as one of the first (along with Arthur E. Kennelly) to propose the existence of the ionosphere.&nbsp;Heaviside predicted a conducting layer in the atmosphere in 1902. The E layer of the ionosphere is sometimes known as the [[Kennelly-Heaviside Layer|Heaviside-Kennelly Layer]].  
Heaviside continued working with Maxwell’s equations for the remainder of his life. Among other things, he developed the concept of “operators,” which reduced complicated differential equations to simple algebraic equations, a technique every electrical engineer today knows as “Laplace Transform Theory.” He also introduced the concept of reactance, i.e., the “resistance” of an [[Inductor|inductor]] or capacitor. In spite of all of Heaviside’s discoveries, his name lives on today only as one of the first (along with [[Arthur E. Kennelly|Arthur E. Kennelly]]) to propose the existence of the ionosphere. Heaviside predicted a conducting layer in the atmosphere in 1902. The E layer of the ionosphere is sometimes known as the [[Kennelly-Heaviside Layer|Heaviside-Kennelly Layer]].  


As on old man, Heaviside spent his final years comfortably, although his mental powers diminished. “I have become as stupid as an owl,” he once bluntly stated. Heaviside died at the age of 74.  
As on old man, Heaviside spent his final years comfortably, although his mental powers diminished. “I have become as stupid as an owl,” he once bluntly stated. Heaviside died at the age of 74.  


The IEE (UK) established a Heaviside Prize for contributions to Maxwell, electroistatics etc.  
[[The IEE|The IEE (UK)]] established a Heaviside Prize for contributions to Maxwell, electroistatics etc.  
 
== Additional Information and Professional Honors  ==
 
Heaviside, who has been recognized as one of the most eminent exponents of electrical science, particularly for his development of the electromagnetic theory, was elected to honorary membership in the Institute on February 14, 1918. Mr. Heaviside was born in England in 1848, and lived there until his death in 1925. His retiring character and desire to avoid society, partly due to almost complete deafness since childhood, has resulted in his name being unknown to the general public, but those who have come in contact with his work regard him as an illustrious successor to Wheatstone, Maxwell, and Kelvin. He lived alone in a cottage at Lower Warberry, Torquay, England, in poverty, a pension of £200 a year having practically been forced upon him. While he wrote papers of great value for the Philosophical Magazine of the Royal Society of London and for the London Electrician, for which he received but scant remuneration, these papers were difficult to read and little known. Few of his admirers ever met him. His writings, however, had considerable practical value, particularly his mathematical theory of the value of distributed self-induction in long distance telephony, a theory which was later used for practical application and to telephony, establishing a new epoch in this field. The Royal Society, of England, had elected him to fellowship.
 
== Further Reading  ==
 
[http://www.aim25.ac.uk/cgi-bin/vcdf/detail?coll_id=11412&inst_id=110&nv1=search&nv2= Heaviside, Oliver, Collection of]
 
[[Archives:Papers of Oliver Heaviside|Heaviside, Oliver, IEEE Papers of]]
 
[[Archives:Papers of Oliver Heaviside|Papers of Oliver Heaviside]]
 
[http://archive.org/search.php?query=creator%3A%22Heaviside%2C+Oliver%2C+1850-1925%22 Heaviside, Oliver, Internet Archive Publications of]
 
Mahon, Basil.&nbsp;''Oliver Heaviside: Maverick Mastermind of Electricity''. London: Institution of Engineering and Technology, 2009.
 
Nahin, Paul J. ''Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age''. Baltimore: Johns Hopkins University Press, 2002.<br>
 
 
[[Category:Scientists]]
[[Category:Fields,_waves_&_electromagnetics]]
[[Category:Electromagnetics]]
[[Category:Electromagnetic_fields]]
[[Category:Computing and electronics]]
[[Category:Instrumentation]]
[[Category:Electric_variables]] 
[[Category:Telegraphy]]


See also: [[Papers of Oliver Heaviside|Papers of Oliver Heaviside]]
{{DEFAULTSORT:Heaviside}}


[[Category:People_and_organizations]] [[Category:Scientists]] [[Category:Fields,_waves_&_electromagnetics|Category:Fields,_waves_&amp;_electromagnetics]] [[Category:Electromagnetics]] [[Category:Electromagnetic_fields]] [[Category:Components,_circuits,_devices_&_systems|Category:Components,_circuits,_devices_&amp;_systems]] [[Category:Instrumentation]] [[Category:Electric_variables]] [[Category:Communications]] [[Category:Telegraphy]]
[[Category:Prominent_members]]

Latest revision as of 15:28, 11 February 2016

Oliver Heaviside
Oliver Heaviside
Birthdate
1850/05/18
Birthplace
Camden Town, London, UK
Death date
1925/01/03
Fields of study
Electromagnetics, Telegraphy

Biography

Portrait of Heaviside 0295.jpg

Honorary Member 1918

Oliver Heaviside was born in 1850 in Camden Town, a notoriously crime-ridden, lower class area of London. Young Oliver had a challenging and troubled youth. Life in the slums was difficult enough, but a childhood bout with scarlet fever, which left him nearly deaf, added to his troubles. Heaviside’s mother ran a school for girls, which he attended rather than attending the neighborhood school. This offered some protection from the influence of the local ruffians. However, Heaviside’s hearing impairment made making friends difficult. Despite being bright and a good student, by age 16 the socially awkward Heaviside had had enough of formal education and left school.

Leaving school, however, did not mean abandoning learning. With the guidance of his uncle, Sir Charles Wheatstone, an inventor of an early telegraph and a well-known musical instrument maker, Heaviside studied languages (German and Danish), music, and learned telegraphy.

With his knowledge of telegraphy and Danish, and probably with some help from his famous uncle, Heaviside got a job as a telegraph operator in Denmark. While working there, Heaviside noticed that signals from England to Denmark could be sent faster than those sent from Denmark to England. Those in the telegraph industry thought this was due to some strange and unknown property of the 347-nautical mile undersea cable carrying the messages. Heaviside wasn’t so sure and was able to show mathematically that if everything is identical on both ends of the cable, the maximum rate must be the same in both directions. He then showed, again mathematically, that any difference must be due to different resistance at each end. Simply put, the equipment in England had lower electrical resistance and could push more current faster into the capacitance of the cable, and thus could send at a higher rate.

During this time, Heaviside began an independent study of advanced topics such as calculus and James Clerk Maxwell’s new theory of electromagnetics. Heaviside found the latter especially compelling:

“I browsed through it and I was astonished! I read the preface and the last chapter, and several bits here and there; I saw that it was great, greater and greatest...I was determined to master the book and set to work.”

Maxwell's theory provided Heaviside with his life’s work.

Maxwell's theory predicts “electromagnetic waves” that travel with the speed of light. Heaviside reasoned that electromagnetic waves could travel on a telegraph cable too. At the time, it was believed that the electric telegraphic pulses diffused, or “soaked” in the telegraph cable. Although the mathematical cables that arose from diffusion theory worked for short cables, they failed for longer cables. Heaviside’s equations, based on Maxwell's electromagnetic waves, worked for cables of all lengths.

This finding had practical applications for telegraph communications. For example, Heaviside actually solved one of the biggest problems affecting long distance telegraph and telephone communication in 1887 —distortion. It was known that different frequencies travel with different speeds on a long cable. For example, the low bass frequencies in a voice signal travel faster than the high treble frequencies. When the cable is long enough, the frequencies smear, and both voice and telegraph signals become garbled noise. Heaviside used his equations to show that if inductances (i.e., a small coil of wire) were added along the length of the cable, the distortion could be reduced.

Heaviside and his theory ran into problems. His papers were difficult to read and most people did not understand him. Heaviside was not one to suffer fools. His sharp remarks and lack of diplomacy created enemies in the scientific community who suppressed and ridiculed his work. As a result it took 20 years and a rediscovery of the inductance idea by Silvanus Thompson before long distance telephone calls could become a reality.

Heaviside’s most important work involving Maxwell's theories was what he did with Maxwell’s equations. Maxwell’s equations are the laws that electric and magnetic fields must follow. However, Maxwell never wrote the four simple-looking equations we use today. Rather, in 1873 Maxwell published a set of 20 equations in 20 different variables. These were difficult to understand, which made Maxwell's theory slow to be accepted. By 1884, however, Heaviside was not only able to understand them, but to simplify them as well. For example, using “vector notation,” he combined sets of three equations into one. Heaviside also recognized that Maxwell’s equations did not require the use of “potentials.” These potentials that Maxwell used extensively could just be treated as mathematical quantities derived from the electric and magnetic fields. Today, we call them “Maxwell’s equations,” but Maxwell himself never saw them in this form.

Heaviside continued working with Maxwell’s equations for the remainder of his life. Among other things, he developed the concept of “operators,” which reduced complicated differential equations to simple algebraic equations, a technique every electrical engineer today knows as “Laplace Transform Theory.” He also introduced the concept of reactance, i.e., the “resistance” of an inductor or capacitor. In spite of all of Heaviside’s discoveries, his name lives on today only as one of the first (along with Arthur E. Kennelly) to propose the existence of the ionosphere. Heaviside predicted a conducting layer in the atmosphere in 1902. The E layer of the ionosphere is sometimes known as the Heaviside-Kennelly Layer.

As on old man, Heaviside spent his final years comfortably, although his mental powers diminished. “I have become as stupid as an owl,” he once bluntly stated. Heaviside died at the age of 74.

The IEE (UK) established a Heaviside Prize for contributions to Maxwell, electroistatics etc.

Additional Information and Professional Honors

Heaviside, who has been recognized as one of the most eminent exponents of electrical science, particularly for his development of the electromagnetic theory, was elected to honorary membership in the Institute on February 14, 1918. Mr. Heaviside was born in England in 1848, and lived there until his death in 1925. His retiring character and desire to avoid society, partly due to almost complete deafness since childhood, has resulted in his name being unknown to the general public, but those who have come in contact with his work regard him as an illustrious successor to Wheatstone, Maxwell, and Kelvin. He lived alone in a cottage at Lower Warberry, Torquay, England, in poverty, a pension of £200 a year having practically been forced upon him. While he wrote papers of great value for the Philosophical Magazine of the Royal Society of London and for the London Electrician, for which he received but scant remuneration, these papers were difficult to read and little known. Few of his admirers ever met him. His writings, however, had considerable practical value, particularly his mathematical theory of the value of distributed self-induction in long distance telephony, a theory which was later used for practical application and to telephony, establishing a new epoch in this field. The Royal Society, of England, had elected him to fellowship.

Further Reading

Heaviside, Oliver, Collection of

Heaviside, Oliver, IEEE Papers of

Papers of Oliver Heaviside

Heaviside, Oliver, Internet Archive Publications of

Mahon, Basil. Oliver Heaviside: Maverick Mastermind of Electricity. London: Institution of Engineering and Technology, 2009.

Nahin, Paul J. Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. Baltimore: Johns Hopkins University Press, 2002.