Oral-History:Leon Robinson and Oral-History:Ralph Veatch: Difference between pages

From ETHW
(Difference between pages)
No edit summary
 
No edit summary
 
Line 1: Line 1:
==About Interviewee==
==About Interviewee==


Leon Robinson enjoyed a 39 year career at Exxon and made contributions in many technology areas such as: mud cleaners, explosive drilling, drilling data telemetry, subsurface rock mechanics, and drilling and hydraulic optimization techniques, tertiary oil recovery, on-site drilling workshops, world-wide drilling fluid seminars and rig site consultation.  He has received 34 US patents and 23 International patents pertaining to these areas. Currently, he is a consultant, Chairman of the IADC Technical Publications Committee writing the encyclopedia of drilling, Chairman of an API task group involved with API RP 13C, member of API task groups addressing issues with drilling fluids and hydraulics, and on the AADE Conference planning committee.
Ralph W Veatch Jr. is president of Software Enterprises Inc., an engineering consulting firm.  Dr. Veatch worked in the Research Department of Amoco Production Company for twenty-three years.  Retiring in 1993 as supervisor of the Hydraulic Fracturing and Well Completions and Production Operations groups, he has authored or coauthored 25 technical papers and 12 books, and holds several patents. During his career he served on numerous advisory committees for the American Petroleum Institute, Completion Engineering Association, Gas Research Institute, Los Alamos National Laboratory, National Petroleum Council, and U.S. Department Of Energy.


==About the Interview==
==About the Interview==


Leon Robinson: An interview conducted by Fritz Kerr for the Society of Petroleum Engineers, October 1, 2013.
Ralph Veatch: An interview conducted by Fritz Kerr for the Society of Petroleum Engineers, October 1, 2013.


Interview SPEOH000113 at the Society of Petroleum Engineers History Archive.
Interview SPEOH000114 at the Society of Petroleum Engineers History Archive.


==Copyright Statement==
==Copyright Statement==
Line 25: Line 25:
==Interview Video==
==Interview Video==


{{#widget:YouTube16x9|id=l2uLPhAzGJQ}}
{{#widget:YouTube16x9|id=TvKpaDuejFI}}


==Interview==
==Interview==


INTERVIEWEE: Leon Robinson<br>
INTERVIEWEE: Ralph Veatch<br>
INTERVIEWER: Fritz Kerr<br>
INTERVIEWER: Fritz Kerr<br>
OTHERS PRESENT: Amy Esdorn, Mark Flick<br>
OTHERS PRESENT: Amy Esdorn, Mark Flick<br>
DATE: October 1, 2013<br>
DATE: October 1, 2013<br>
PLACE: New Orleans, Louisiana<br>
PLACE: New Orleans, Louisiana<br>


'''KERR:'''
'''KERR:'''


Why did you decided to get involved in the petroleum engineering industry and how did you get involved?
Ralph, why did you decide to work in the Petroleum Engineering Industry and how did you get involved to begin with?


'''ROBINSON:'''
'''VEATCH:'''


I got into the petroleum industry by accident. I was working on my PhD at North Carolina State in engineering physics, and about a year or six months before I was ready to get my degree, I started interviewing companies. I interviewed a company in Newport News shipyard designing large diameter impellers. And then I interviewed another company, Radiations, Incorporated in Florida, at Cape Canaveral.  They were getting ready to sell some research to the government for some type of government research project, or big project that was going to—and I didn’t think much of that one; I didn’t think it was going to grow.
My decision for working in the petroleum industry was more situational than a conscious decision. It started that my dad was a professor of Mathematics, Head of the Mathematics Department at the University of Tulsa, and had been for some years. I graduated from high school in 1954 so going to college was to go to the University of Tulsa. The University of Tulsa had an extremely good Petroleum Engineering Department. It was one of the best departments in the school and that was an area that I thought might be a good area to go into. It turned out that it was a good area to go into because in the summer time petroleum engineering students got very good jobs working in the oil fields for major oil companies which could almost pay your entire tuition for the following year. That started me in to the oil business.  


Henry Ratchford--Dr. Henry Ratchford--from Humble came by the campus and I interviewed him—or he interviewed me, and was discussing something about the drilling research—or the production research for Humble.  It sounded intriguing, so I visited the other two, and then came to Houston and visited with them.  The planes then were propeller planes—I met him in Atlanta, and we flew to New Orleans, and back on to Houston.  All the way, he was quizzing me about basic science, fundamental stuff in physics and chemistry and engineering, and stuff.  It was almost like an oral exam.
Prior to that my father and I had a kind of talked about a career, and I was 18 years old and at the peak of my knowledge. You’re always at the peak of your knowledge in the 18, 19, 20 year range and it’s downhill from there, but we’re kind of talking about what I was going to do as a profession and work so I said that what I want to do is I want to work in an area that I am doing things I like to do. My dad was pretty understanding and he said, “Well those kind of situations are somewhat few and far between. If you don’t want to be unhappy what you need to do is find out what you can do and do fairly well, do well enough to make a decent living at, and then learn to like to do it.


And then I went by the laboratory, which was in downtown Houston, in the old Humble building.  He took me around to various labs, and I thought I had blown that at the end of the day because they were talking about such strange phenomena that didn’t fit with my background, which was science, and so, I’d argue with most of the people in the room.  And then I got back home—back to the hotel that night, and I thought, ‘Gee, I blew this one,’ but apparently, that’s what they wanted.  They wanted someone to question the science and develop new stuff.  And it was just so interesting that I didn’t bother to go interview other oil companies or operating companies or anything else. I just…”Wow!  This is going to be fun!” So, I signed up. 
That has served me well in my life but that’s how I got started in the industry and going through college, [I] worked in summer jobs, stayed in petroleum engineering, had some excellent professors at the University of Tulsa, found out I was very well trained to go in to that field and I liked it as I went through college. My graduation year I went on and got a Master’s Degree in Petroleum Engineering and then I went to work in the industry.  
 
I had never been west of the Mississippi, seen an oil well. I had no idea what the petroleum industry was, what engineering was.  All I knew was the science was fantastic, and here’s an opportunity to not only apply stuff, but to develop new things.  It was exciting.  So, I joined Humble in ’53, and then in ’54 we moved out to our new research center on Buffalo Speedway, and I’ve stayed there ever since.


'''KERR:'''
'''KERR:'''


What discipline within the industry did you work in, and what drew you to that particular discipline?
Which discipline within the industry did you work and what drew you to that discipline?
My discipline in engineering physics covered a lot of background of material, like quantum mechanics and tensor calculus and everything.  And material—research—going on at Humble fit, generally, into that discipline and that category, but it was an extension; a totally different set of technology.  And so, from that, then, to select what I wanted to work on was kind of like a smorgasbord of just about anything I wanted to do. 


So my career just kind of tumbled along.  It took a little bit of this, and a little bit of that, and so forth.  I started off in well log interpretation.  That was back when we were running micro logs and had to have resistivity of filter cakes.  So, I developed a method of measuring the resistivity of filter cakes.  These were things that didn’t exist, but fit with the electrical background I had from physics.  My degree was in engineering physics.  I took engineering courses as electives.  I didn’t take any of the philosophy and the music, art, and this type of stuff.  I took civil engineering, electrical engineering, mechanical engineering, and civil engineering; all the different engineering courses I could take as electives.  So it gave me something of a good background to start. 
'''VEATCH:'''


I ended up, as a discipline, basically in drilling.  It was the thing that excited me the most because there’s so much technology involved with it, and I spent a lot of time—well, I spent five years working on a method of drilling with explosives.  I worked on optimization of weight on bit, the rotary speed type of thing.  I did make one of my supervisors angry with me with explosive drilling, so I got banished from drilling for five years and got put in oil recovery. I learned a lot there, but after five years, I went up and begged, “Please get me back into drilling,” and so I stayed in drilling, then, the rest of my career and developed a lot of technology and hydraulics, bit optimization, worked in well control type of situations.
The discipline that I worked in the industry was--started out, as with many Petroleum Engineers--with major companies, and I went to work for company at that time called Amoco Production Company, a major company. You went to work as a Petroleum Engineer and you were generally assigned to some operating office in the field as doing engineering work there. You really didn’t have a whole lot of say in what you did. You were assigned to the work that was needed to be done.  


So basically, my love was drilling.  It came from contacts with people in the field. [I] worked for five years with telemetry. [I] got involved with the IADC [International Association of Drilling Contractors].  It formed a committee on MWD [Measurement While Drilling], and it became the International MWD SocietyI got involved with that, too, soI had somewhat of a wide background, but still, my basic love was drilling, drilling optimization.  
In my case I started out in Monroe, Louisiana and worked in the--what was called the Mid-Continent division, which covered Louisiana, Arkansas, Alabama, Oklahoma, Kansas and whatever. At that time we went through a period--a training period--as a kind of training engineer. What we primarily did [was] everything that needed to be done from drilling a well to getting it completed, to getting it on production and to look at the reservoir engineering behavior and the production operationsSo it wasn’t in a specific given areaIt was more of a geographical region.  


'''KERR:'''
Then I worked for about seven years in the Producing Department and went up through various stages from Junior Engineer to Intermediate Engineer to Petroleum Engineer to Senior Petroleum Engineer, to Staff Engineer and then I got an opportunity to go to the research center of Amoco Research in Tulsa. During all that interval, I had moved from Monroe, Louisiana.  After about a year, [I was] transferred to Jackson, Mississippi doing the same type of work, just different places, and worked there for about three years, and then transferred to Tyler, Texas. When I was in Tyler, Texas one day my boss came in and he said, “The Amoco Research Center has started a new program.” It was called Pan America at that time and I referred to as Amoco because that’s what it soon changed its name to, and was that way until I retired from there. 


Discuss your work in drilling and completions.
Anyway, he said, “They started a program and they’re going to bring engineers in from the producing department offices to the research center for short term tours of a year to two years so that they could maybe could get a better idea what goes on at the research center and then go back out to the producing department operations. Maybe have a better communication between the research center and the producing department.” He said to me would I like to consider having my name submitted to that program and I said yes, I think that might be an interesting thing. [A] couple of months later, he came back and said, “Well, you’ve been selected to go to the research center.” It was to be about six or eight months before I would be transferred to the research center, and so that was a kind of thing to look forward to. Well, my boss came to me and said, “The people at the research center might like for you to stay and you might like to stay.  If that’s going to be possible situation,” he says, “and I think it is, because of the work you’ve done here at the office,” he said, “I think they’ll like you. I think they’ll want to keep you there.” He says, “If that happens, and you’re going to be there for the rest of your career, which you probably would, you need to get a PhD, and at your age you need to get your PhD now.” 


'''ROBINSON:'''
[He] asked me if that was acceptable to me and I thought it over and said it was, so then I had to choose where to get a PhD, and to get accepted [into] a PhD program. It ended up that I was able to go to the University of Tulsa, which was having a PhD program in Petroleum Engineering. I was in that program for three years. That was a very interesting part of my life because I got in to a lot of areas of technology that I enjoyed, and I also found again that they trained me very well at the University of Tulsa to go in and work with colleagues of similar education in the industry.


My work in drilling was like, joy. As you spend a lot of time drilling, you find out that there are a lot of old wives tales, that there are—people have developed rules that really don’t apply. Sometimes, they even invent new science to make it fit. For example, not only—when I was working with research, it soon became clear that we couldn’t go to a rig and just live in our car, so I had a trailer built so that when we went to…the field, I’d take my trailer out there, and take lab equipment. So we could not only work on the project that we were assigned, but we could work on peripheral stuff, too.
I started back at Tulsa in 1967. I went to the research center in 1970, and from there I was offered a job in the drilling and well completions and production operations section which was not what I had gotten my PhD in, which happened to be reservoir modeling. However, the guy that was a supervisor of the drilling and production and completions, and production operations section really gave me an enticement to come and work in his section, which I did. That was a fortunate thing that I enjoyed that work there a lot. This fellow that I worked for was named Robert Fast. He was one of the inventors of [the] hydraulic fracturing process. Although I didn’t start out working in hydraulic fracturing, I eventually ended up in a specific area of hydraulic fracturing, and actually finished my career in that area. There’s a lot in between that goes on that got me into where I was, but it was mostly situational, and not that I had a whole lot of control other than just learning to like to do what I had to do and it was easy to learn to like to do it.  


And we did a lot of science to try to prove or disprove—for example, there’s still this theory that annular velocity erodes wellbores.  That if you float too fast, the wellbore falls in, and that didn’t make sense to us, so we started looking at other variables.  When you slow the pumps down, the wellbore comes back to gauge, pump fast, and it opens—it enlarges.  Therefore, the natural tendency was to, “OK, the annular velocity is washing out.”  Well, the annular velocity, you change it by ten percent, you change the fluid rate through the nozzles by forty percent, and we’re blaming the ten percent on what the major changes are, but they didn’t think at it that way. 
'''KERR:'''


So, I had an engineer from [an] Exxon affiliate from Canada come down, and he spent about five years with me.  And when he went back, he was put in charge of drilling in the field in Canada.  They wanted to drill five wells; two with oil, and three with water base, and he said, “This is a perfect chance to develop this.”  By this time, we had pretty well decided the nozzle velocity is above a hundred thousand reciprocal seconds.  It was washing the hole out.  But we had no data, no comparison with the—so.  He then set up these five wells with all the same rigs--same rig fluids, same—water based, same drilling fluid; oil based, same drilling fluid.  We were drilling them with insert 537 bit, which was a medium hard rock.  So, the rock was not soft.  You couldn’t wash it out.  The jets would not make a hole, in other words.  It was not hard rock.  And we did prove that if the nozzle velocity exceeded, I mean, the nozzle hydraulic impact exceeded 2,000 Newtons or hydraulic power of over two hundred kilowatts or the reciprocal seconds of one hundred thousand, either one of those, it would wash the hole out.  And we validated that with data from the field.
Discuss your experience in the areas of hydraulic fracturing, well stimulation, and completion technologies.


We kept the annular velocity about twice as high as you would normally have in the field.  It would wash the hole out, if it was one [inaudible].  But, the hole diameter varied according to what was happening with the nozzleSo these were some of the peripheral things that we were dealing with, in addition to working with the assigned projects— [that] needed to be done with research. It was great to have my own laboratory in the field.
'''VEATCH:'''
I also got into the well stimulation fracturing world in a more of a focused work because one day, my boss, [whose] name was Bob Huggins, called me into the office--and I wasn’t doing just fracturing work. I was doing a variety of things involved with well completion, production operation, well stimulation, perforating, fracturing and such. He calls me in and says, “The company has leased a large tract of property that runs through Colorado, Wyoming, and Utah from the Union Pacific RailroadA lot of properties.” He said that the producing formations are extremely low permeability. They have permeability on the order of the sidewalk that we walk on, and they’re not having very good success with their fracturing treatments.  They’re not paying out.  And our reservoir people here at the research center had said to make those wells produce economically, you need to get a fracture that goes out at least 1,500 to 2,000 feet. He said, “Your job is to design a fracturing treatment which goes out at least 1,500 to 2,000 feet.


When we developed the mud cleaner, we invented it in Spring of one year, and by keeping it in the field, and working with it in the field, it went commercial within a year, from the time we filed a patent, which is pretty extensive, but we lived with that thing for two months.  Well, I lived with it for two months. My current team lived with it four months, taking measurements every two hours, and developing technology to make the things operate correctly.  But that’s because we had our own laboratory out there, and we could do all kinds of experiments with the drilling fluid, and it’s just an exciting place—there’s so much technology involved with drilling.  It’s basic, fundamental science—it’s interesting.
At that time their fracturing jobs were running around 30,000 to 60,000 gallons of fracturing fluid with about two to five pounds per gallon, so I started trying to figure out what size of a fracturing treatment we needed to get out 1,500 feet from the wellbore, [to] penetrate from the wellbore. Studies indicated that it would take about 150,000 to 200,000 gallons instead of 30 to 50, and that was a big challenge at the time. This was in the late 1970’s. Also, that it would take a lot of propping agent to prop open a fracture of that size, so I put together a design with the tools that I had, the technical tools--whatever models we had available--and I did come up with a treatment design, a pumping schedule, a size, and it was somewhere around, I think, 200,000 gallons of fracturing fluid and about fourteen to fifteen box car loads of propping agent, which is sand.  


'''KERR:'''
So came the day of the fracturing treatment: I was there on location in Colorado where this first well was, and we did pump the job away successfully. That was a really kind of a big event. Wells started to produce fairly well, and we started in a program of what’s called massive hydraulic fracturing, where we kept on doing these additional fracturing treatments and they kept getting bigger and bigger.  We’d done eight or nine of them, and so it came time to see what the results were. Well, when you put the results up against the 30,000 to 50,000 gallon treatments, the obvious thing was, that what was bigger was better, and bigger allowed them to take that acreage and develop it economically so that they could make money on that.


What are some of your most memorable projects that you worked on?
Well, [it] wasn’t maybe five or six months after that first well that the research department went through a total (along with the rest of the company) organizational restructuring, and so at the time, I--because of being successful in these fracturing treatments--was appointed to supervise a fracturing group which had three people in it, other than myself. I did serve and was involved with a number of industry committees, all of which I thought were very beneficial to the petroleum industry. These varied through the many SPE committees, sub committees, section officer, terms and a lot of cooperative work with the SPE headquarters office. Also with a number of non-petroleum engineering societ[ies], associated committees they were all involved with addressing issues that were important in well stimulation hydraulic fracturing area.
At the time that this got started, we had, as I said, we had had some success with these massive hydraulic fracturing treatments up in Colorado, and this process of massive hydraulic fracturing low permeability formations kind of spread throughout the industry and grew and grew, much like the massive shale plays that we’re seeing happening today. Also, at the same time, the people that were in the group that I supervise grew to a large number and some extremely competent people who made a lot of contributions to the industry, working on fracturing technology. 


'''RONBINSON:'''
But these committees, one of them I think is really a very interesting saga and it is the role of the National Laboratories. Amoco had kind of gotten a reputation for being experienced in massive fracturing treatment, but our basic knowledge needed quite a bit of development. We were finding as we moved from Colorado into Wyoming, into Utah, down to East Texas and West Texas, in those areas, that you could not unplug the technology from one place and plug it in to the other place and have it work as well as you wanted it to. So we kind of moved from the attitude that “bigger is better,” which it proved to be until we got very, very big to “smarter is better”. We started working from that, and improved the economic returns from these massive fracturing treatments.


Projects that I had that were fascinating were, well, I guess the explosive drilling was the most fascinating. It started off with the idea—and since I was demolition sergeant with the 288th Engineer Combat Battalion, I was familiar with explosivesIn about 1957-8, somewhere along in there, [it was] decided that we could take some drill pipe and just pump some shape charge down, and perhaps drill a hole with just explosives.   
During this process there was a lot of interest across the nation, and the Department of Energy got involved and decided that they would support some research to enhance the knowledge base. This brings in the National Laboratories of Sandia National Labs and Los Alamos, primarily.  There were other national labs that were involved, but Sandia and Los Alamos were taking the lead in this. One of the interesting things was that they had come to us (us being Amoco) because they had a prospective repository for nuclear waste in Nevada and this involved whether or not an underground explosion would create a hydraulic fracture that vented to the atmosphereSo they came to Amoco and said “Hey, we need some help here and we want to do some work on hydraulic fracturing.” Well this evolved into their effort, or direction for fracture stimulation of the tight gas formations, and they became involved in a big way.   


To prove that, then, [we] took some shape charges that were commercially available for perforating, down to our research lab at Pierce Junction, where we were testing perforators, and fired these jets into a Berea sandstone core with no steel. Normally, we would shoot through the steel, through the cement, and into the rock to get perforationsWell, I turned it around, simply hit the shape charge into the coreAnd fascinatingly enough, we found that the pressure in the chamber increased the volume in the hole that we got by a factor of three, and so, downhole, it would be wonderful.   
And that had a major project called the “Multi Well Experience” in Rifle, Colorado where this was something that was really unusual because, prior to that, not many of the major oil companies would get involved with government activities. They did not want the government to have much interaction with their so-called financial situations and it was not encouraged to do this. So it was kind of a new thing, but it was not encouragedBut it wasn’t also totally discouraged and at least in the 1980’s there was not an absolute “No, we’re not getting involved with any government issues. It was, “Well, okay, go ahead, but be careful” type of attitude.   


This was a puzzle to us because just before that, I had finished project on rock mechanics. And since we’re drilling rocks under pressure, we looked to see how they failed, and we found that shales and limestones both fail brittley on the surface, but downhole, they will fail malleably or plastically. But you have to have a pressure differential, but when we found this enlargement with a jet perforator, under pressure, it didn’t make sense.
What we found was the industry had access to a lot of really high powered technical people--scientists and engineers. Typically when you start to mutually discuss problems with them they would say “well, that’s easy to solve.” Then they would get into the details and they’d find out well, maybe it’s not as easy as it might seem at first, but eventually they would come around and make some really good contributions. Well, the industries--actually the laboratories--pushed this research on massive gas in Rifle, Colorado, and they formed this multi well experiment situation [where] government put a tremendous amount of money into a lot of experiments that a major company, by itself, wouldn’t be able to afford to do. But with the government in there, and other small contributions like personnel…. I was fortunate enough to be closely involved with that experiment in getting the designs and the experimental program, and helping out with that but the government laboratories did most of the work.  


So we took it to Stanford Research in California, and they set up some tests.  They said that reason we were getting such a big hole was because the shock wave was moving out, hitting the outside chamber of the steel, reflecting back in as a tensile wave, and collapsing the wellbore. And they would prove to us that that is what was happening, so we went to them, and they set up some four by four by four foot cubes of rock, put some sheath around them that had the same acoustical impedance in the sheath as the rockSo the shock wave would move through, then when it [would] bounce back, that sheath of cement would separate off, so there would be no reflection pulse back in. And they validated what we [had] found, which was not necessarily the reflection of pulse, but it was strictly because of the pressure impulse and the crushing of the grains in there.  They wanted to immediately start the project, and we didn’t want them to do it, so we got into another problem.
At that time, I had a very good group of people working in fracturing and they made some contributions to the fracturing world that have totally redirected some of the efforts that we do and have brought about a lot of knowledge. This was because of the back and forth, the mutual work, the information that was available from a lot of these government agencies that helped in the overall growth of our knowledge, based on understanding of the fracturing process. That was, to me, a really a significant time in the development of the massive hydraulic fracturing world and it’s continuedAs time goes on, people continued expanding their efforts in this and the massive hydraulic fracturing took the industry. Again, if we’re seeing a repeat of the same type of behavior in the massive shale place where we start out trying a few things and seeing that they work well and soon it spreads across to be a major, major contribution to the energy of the country.


'''KERR:'''
'''KERR:'''
So, you decided not to have Stanford continue this project?


'''ROBINSON:'''
During your time on the committees with Sandia, Los Alamos, et cetera, you’d indicated that there was some experimentation. Can you please describe that experimentation in a little more detail, and also describe the new knowledge that was attained because of that experimentation.


We decided we needed to do our own research.  The trouble was, at that time, my supervisor had been changed from a driller to someone who was from reservoir engineering, and of course, reservoir engineers want to model everything.  So, he said, “We don’t need to do it full scale; we’re going to model,” and I said, “No, we’re not.”  And so, we got in a big, big problem—that’s when I got banned from drilling because to do model work, 1. You’ve got to be able to write the equations for the situation.  We had no idea why pressure made such a big hole.  Two (which is even scarier), is that if you are going to model explosives, you’re going to use primary explosives, like mercury fulminate or lead azide, which is the sensitive part of the blasting cap, which is a very sensitive thing, because a little bit of too much impact, and [makes a noise], it blows up.  And I was not going to eliminate my fingers simply to model [or] study, when we didn’t understand the phenomena in the first place.  And so, he said, “Well, if you’re not going to do that, then we don’t need you here.” 
'''VEATCH:'''


So they shipped me over to oil recovery where I started working with—it was a fascinating project—it was a—if you inject a caustic saline solution into an acid oil, it forms a micro-emulsion, which gives you a good sweep efficiency, and so [I] spent some time doing that.  Packing sand models, and doing some water flooding, and learned a lot about surface chemistry that I never knew before. I only had one course in chemistry, and that was many, many years before that, so I learned a lot of organic chemistry, a lot of physical chemistry, a lot of surface chemistry.  It was more of an educational process.  I spent five years doing that.  
The work that the National Laboratories did provided a very, very important enhancement to our understanding of what controlled these massive hydraulic fracturing treatments and gave us a basis for enhancing the economic returns of our fracturing treatment designs. One of the really important things that came out of it was we got a good picture of how the subsurface stress profiles could vary with different formations as you went down through an entire set of intervals of formations.
Prior to that time, it was pretty much industry thinking that it was a uniform profile in some sense--more or less uniform from the surface.  As depth increase[d], stresses would increase. What we found, with some really detailed, expensive and precise tests, was that you could go down through a series of formations and the stress would start increasing some. Then you might observe a change that it started to decrease. It might wiggle around as you go deeper and change from large to small to large to small, back and forth. This was kind of a new revelation to a lot of people in the industry because they kind of [had] been used to the idea that stress profiles were a little bit like temperature profiles which did not vary a lot, but just gradually increase with depth.  


Finally, we noticed that after you flood these cores like that, most of the oil drains to the top. So the question became one of, well, these reservoirs we have been producing like big sandstones, we normally think of 35% of residual oil. That’s what we were getting with the cores that had been cleaned up. And what we ultimately found out was that most of the cores had dual wettability. There was wettability for water and there was wettability for oil. Flood out all the oil you could and put it in oil and it would imbibe oil. Flood out all the water you could, put it in water and it imbibe water. And so we set up some, built some ovens and bailed some sand in from South Bowling, brought it in, set up five foot columns, flooded residual through it and left it for a month and came back and at the bottom was some nice, beautiful, clean, white sand and oil, it migrated up.  
Well, this had a major impact on fracture treatment design because if you came to a situation where you knew what these stress profiles were, you could take advantage of how they would affect vertical fracture growth. Vertical fracture growth affected the quantity of fluid that it took to create a certain penetrating depth. That was a really major factor in increasing the knowledge base, which made us then say, “Well, it’s important to run surveys that determine what these stress profiles are,” and to then decide our treatments accordingly.
This was not the only issue. We found out that fractures would go in directions that were dependent on what the directional stress as mutual directional stress orientation was. This made us look at this aspect in other areas outside the experimental sites that we were planning. That is just a few of the things that were discovered for this fracturing work.  


So that was also kind of intriguing but still wasn’t drilling so I went back to my drilling manager and pleaded, (it changed managers by the end and supervisors) “Please take me back. I’ll work on anything except explosive drilling.” And he said, “Why?” And I said, “Well, I’m not going to do primary explosives.” And he said, “Well, what would you do?” And I said, “Well, I want to test in a well and pump some explosives full-scale and get a company to build these cylinders to pump the things.” He said, “Ok, why don’t you do that?” I said, “Well, you don’t want me to…” “No, do… what...” So for five years I tried to pump explosives and drill.  
As a result of some of the information that was uncovered in the multi well experiment of the Department of Energy another experimental project, which Steve Holditch may have discussed, was the stage field experiments of the Gas Research Institute, which were done down in Texas and it was the same thing. It was a considerable sum of money, covering some extensive research that enhanced the knowledge based of how fractures grow, what causes them to grow, what tells you which way they might go and what their configuration is.  


Our test well finally got to where I could drill a foot per charge. And so to test it then, I went to East Texas looking—there was a formation called Travis Peak. It was taking 80 bits to drill and my economics--the reason I’m doing it full-scale is I could get a good economic fixer of how much it cost to make the carrier, the full-size chargers. I had good economics and I needed 2 ½ inches to drill per shot to make it economical of what they were doing then. Missed it that much [indicates with his fingers]. I got 1 ½ inches… the best I could do. We went back and redesigned shape chargers. We built about fifteen new shapes, new type of things that took a lot of advantage of, had part charges that would actually make holes larger in diameter than the cylinder, made some hemispherical shapes with cylinders on it to increase the velocity.  Anyway, a lot of design work with shape chargers, but the best we could do was still an inch and a half.  
I was called on giving--after we’d gotten a lot of experience under our belt--I was on a Society of Petroleum Engineers Distinguished Lecture tour, giving a talk about massive hydraulic fracturing that was fairly early on [in] the stage of massive fracturing. I made a statement which has followed me through for a long time and still follows me. Today there’s still some basis for it, and the statement was (at the time) that hydraulic fracturing had been developed and patented in the late 1940’s. Between the late 1940’s and the early 1980’s, the industry had spent a tremendous amount of money on research in all the aspects of hydraulic fracturing; from the rock mechanics to the fracturing fluids to the propping agents to the pumping equipment, and after we had spent all that time, effort, and money we were at the stage that we knew everything about hydraulic fracture propagation except how far they went vertically, how far they penetrated laterally, how wide they were, what they look like, which way they grew. But except for those things, we knew everything about hydraulic fracturing. I have been credited with that statement many, many times. As time went on, and to this current day, there’s still quite a bit of that, that’s true, but it’s a lot less now than it was back when I first made that statement. But that was a kind of an interesting thing.  


I was so wrapped up with that when I called my kids after that last field test and told them, they all cried because they couldn’t--they knew how much I’d invested of my life into that project. And so they were very unhappy.  We had to say now that’s one--another one down the tube. Which kind of brings up another point. We think of drilling as being a very, very crude process, even in those days. And yet it had evolved so much that it’s extremely difficult to compete with. In our research group, we tried arcs and sparks. We tried high-pressure drilling. We tried to jet 15,000 psi against the bottom. We tried pellet impact drilling, shape charges, and it’s just difficult to compete with the rotary drilling process so, but we took a chance… or part of it. The explosives we were using were super safe. To test that, on the test rig I was using, we took our sensitive part of our explosives, set it on a steel plate, moved a piece of casing over and went up and dropped a large diameter chunk of steel down and crushed it to see if it would detonate and if it was safe.  So, we were--no electronics in it so we didn’t have to worry about not shooting it in thunderstorms and stuff. We spent a lot of time on safety, to make sure we were handling it safe.
Another committee that I worked on that was a real interesting committee and a lot of fun, but a lot of work, was a National Petroleum Council Committee to try to discern the resource potential for gas in the low permeability type formations. This was a committee that was formed by probably about--consisted of about fifty companies. There were several of us from Amoco Research that were on that committee. One in the area of Geology, and I was in the area of reserves. The committee was headed by a guy named Ovid Baker from Mobil. He was the chairman of their finance department.  


'''KERR:'''
I was fortunate enough to be able to head up the engineering aspects of the well stimulation and fracturing aspect of the committee. It was about a two year effort in which our goal was to try to assess the potential of the low permeability gas resource through the year 2010. This was in like 1980 when we started this work. This brought a lot of the industry into the tight gas picture. It was kind of interesting. This is a two year project, and we ended up getting two books about that thick [indicates with his fingers] on the whole resource for the US.  And as it turned out, we estimated that the price of gas would be about five to ten dollars an Mcf [unit of measurement of gas equaling one thousand cubic feet] by the 2010 area. Fortunately enough, we kind of hit the target fairly closely. Considering it was 25 years out. That was enjoyable and interesting aspect of my career. 


What are some of the most memorable projects that you’ve worked on?
[I] served on API [American Petroleum Institute] committees which had to do with procedures and practices, and this is a lot of people from the research area, were involved in those. I got involved in the Completion Engineering Association. [It] was early on in getting groups together to address certain specific aspects that companies were interested in. And [I] was, early on, one of the officers of the Completion Engineering Association. Basically, what came out of that were what are called the Industry Consortiums.  And this is where people gather and they say, “We have a problem,” and other people are there, and they say “Okay, let me work on that problem, but it’ll cost you this much.” What has come out of it were these consortiums that address specific areas that companies are interested in and learning about and they paid memberships and then the researchers or whoever do the work and the members of that particular consortium get the results, and a lot of areas of fracturing are included in those. This is also kind of spread across the Drilling Engineering Association, et cetera, and the Production Operations Association.  So it kind of got a thing going throughout other disciplines of the industry. That was kind of an interesting thing to get things going there.


'''ROBINSON:'''
I think one of my highlights on the National Petroleum Council Tour was when we finished our big final report and the fellow that was the head of the committee, Ovid Baker, and about three or four of us had to go to Washington for about a week at a time for about three weeks to finish drafting the report. So we get to the last bit of the drafting and the National Petroleum Council had set up a big celebration banquet to celebrate the completion of the great report.  And the whole week that we were there finishing our editing stuff, the big buzz was that there were going to be two senators at the meeting, and that was a big deal, see? Okay. 


Probably one of the more memorable projects that I had was a project I set up after I’d had quite a few years’ experience working with people in the field. We developed techniques of optimization for the rig floor. And so we set up a camp at our drilling rig and had a galley [and] hired a cook. We moved in sleeping quarters and [a] trailer for lectures. And we would bring in drilling superintendents that had at least ten years’ experience; bring in engineers out of the office; and then put a team together with a researcher too (that way the researcher stands to get some practical experience).  But [it was] primarily focused on the drilling superintendent on the rig.
We finished the report, and by then there’s a dozen of us in Washington going to this big banquet to celebrate the completion of the report. So we arrived and here’s this huge dining hall with all these round tables of about 8 or 10 people each. They don’t sit the committee together. We each go to a separate table where we don’t know anyone else on these things. So here I was at this table with these guys and the whole conversation was one-upsmanship. “I like Mozart.” “I think Beethoven is better.” The theater, the literature, it was all one-upsmanship in that area, and then it was one-upsmanship in who I worked for, who people worked for. I work for Senator So-and-so. Well, I’m at So-and-so’s office. Pretty soon, I got a little bit irritated with the whole conversation, so I turned to this guy next to me and say, “Hey do any of you guys around here ever hang spoons?” And this guy turned to me and said “I have no idea of what you’re talking about.” I said, “You don’t know how to hang a spoon?” “No, I have no idea.” “Did you graduate from college?” “Well. I got a set of pedigrees that were really something.” And I said, “You know with all those degrees, you need to learn how to hang a spoon and here’s how you do it.” So I picked up this spoon--by then this guy had the knife turned in already, and he was a little bit wondering how this was going on--so I pick up this spoon and I hang it off my nose. I’m sitting there looking intelligent with a spoon hanging down from my nose, and I thought these guys were going to crawl under the table. Here was this bumpkin from Oklahoma who was doing this thing that was really strange when it so happened, about two tables away, one of the senators happened to see that. He picked up a spoon and he put it on his nose, and he hung it.  When that happened, spoon hanging spread throughout the entire banquet hall. There were guys up walking around with spoons hanging on their nose. It was a great ice breaker, but those guys at my table still kind of kept an eye on me. And that, to me, was one of the best uses of spoon hanging technology.
 
We’d bring them in on a Friday night about 7 o’clock at night and we would then have a class—orientation--and then from then until the following Friday from 7:30 in the morning ‘til 11 or 10 o’clock at night, we’d give them projects to do. We’d discuss the technology and then they would go do it. Discuss the technology and then they would go do it. And that was probably the most-- not only the most memorable--one of my more memorable ones, but probably the most contribution I made to the company at all.
 
So we did this several places that we’d set up a camp and we had permission from the division to shut the rig--quit drilling--and let them go do tests. And there’s no better way to teach than to have somebody immediately apply what you just talked about.  Or, more significantly, there are a lot of times when they would say, “Oh, we know that subject. Ok, we’ll do this.” Well, then they’d come back after about an hour. “Would you like to have some discussion?“Yeah, let’s talk about it.” So then we’d go back into the technology and the company men really loved that because it was one of the few schools they had that was really practical, it was on-site, and they thoroughly enjoyed that. That was one of my more memorable ones. The problem is it was not even a research project. It was not assigned to me. It was one I was doing peripherally on the side because we needed it. That was one of the better projects I think we had.  
Another project I had was running drill-off tests to find the optimum weight-on-bit rotary speed. If you put too much weight on the bit for the hydraulics you have, you leave cuttings on the bottom. Otherwise liquid doesn’t get it off bottom and so the teeth, instead of grinding new rock, grind old rock before they get the new rock. This was something that was found actually by Grant Bingham when he was with Shell as a drilling engineer, and then it was published by Reuben Feenstra and Van Luyven from Shell and The Hague, published a procedure of how to do it.  
 
Unfortunately most people ignored it, but it turns out, as far as I’m concerned to be one of the most important graphs that a driller could understand.  That is, when does the bit flounder, when does it founder? As you put weight on the bit, the rate of penetration goes up as a square of the function of the weight on the bit until it gets to the point where it starts--can’t cut new rock. That’s called a flounder point. Frequently less than about half the weight that the direct bit companies recommend that you put on the bit. And consequently, when you do put their weight on the bit, the drilling rate is diminished to half or a third of what it should be, if you’d back off.
 
We installed that and, for example, in the Carthage field, we had over 2,000 wells drill in that field. The drillers thought they knew everything about the field. Matter of fact, we would call that Xerox drilling engineering because last drilling program, they’d just go Xerox and send it to the new one and wonder whether they were going to come out within a hundred dollars of the total value. They just repeated the same thing over and over. And we found out that they had to be taught the more weight you put on the bit, the faster you drill. Sounds logical, but the hydraulics they had did not allow them to do that. And consequently, they were wearing the bits out about three times faster than they should’ve been, and they were drilling at half the speed they did, so we backed them off. The bits lasted three times longer, saved two bit trips, bits drilled twice as fast and we saved thirty percent of the AFE (that’s the Approved For Expenditure), that’s the money that they’d asked for the well. We saved thirty percent of that, which is a pretty, well-established number. So this procedure made a big impact then on drilling operations with things. But this was the kind of stuff I enjoyed doing in the later part of my career where I talked to enough company people then and so forth. I knew most of them, so.
 
But I guess one of the more valuable experiences I had was [I] had an opportunity with the Houston Drilling Division. They promoted a fellow to Drilling Operations Supervisor in charge of the rigs--half the rigs—and [he] had no drilling experience. And he called and asked me--he had been in research--he called and asked me if I’d like to assist, and I said yeah. And so [I] went and talked to the drilling manager out there and I said, “I’d like to help, but I need right now permission to go to the rig without any further authorization if I see a problem.” He said, “You got it. And so for eighteen months, I’d read the morning reports and I can call the guy, “Hey, Bob. Yeah, we fixed that.” Ok. Another one. “Cliff?” “Yeah this problem such and such.” “Could I help?” “Come on down.” So I’d go to the rig. We went eighteen months without having a stuck pipe in the division by watching the drilling mud properties and by just applying good, sensible engineering to the field. And that was probably one of the more satisfying projects, almost as good as the one where I was teaching in schools. I don’t think I could teach that anymore. You go from 7:30 at night ‘til 10 o’clock at night for a week. That’s a lot of physical activity, but most of the people out there really enjoy it.


'''KERR:'''
'''KERR:'''


Discuss your work as an advisor to the Sandia National Laboratories Diagnostics While Drilling Project.
What were some of the important technological milestones in your discipline?


'''ROBINSON:'''
'''VEATCH:'''


Wow. I had an opportunity to work with Sandia Corporation--the Sandia National Laboratory--on telemetry. We invented a process of trying to store wire in the drill pipe. And about the same time, Dennis Early over at Shell was doing the same project. He had it mounted on the drill pipe and we were trying to store it in a loop. This was back in the beginning of telemetryBack when the only way we knew where we were at the bottom of the hole was to drop an instrument, let it measure angle and direction, and fish it back out. And it took forever to drill a directional well.  
Okay, within my discipline and during my career, there have been a large number of what I would say are important technological milestones and developments that pertained to well simulation, particularly to hydraulic fracturing. As I said earlier, I made a statement--or reiterated a statement--that I made early on is that we knew everything about hydraulic fractures except how high they went vertically, how deep they penetrated, how wide they were, what their shapes were, and which way they went and what they looked like.  And I think, during my career, there was an awful lot of enhancement of the knowledge, or knowledge base, that pertain to fracture propagation geometry that pertained to obtaining fracture--better fracture conductivity, which enhanced the production rates, the propping agents that we use today.  
There’s been a large number of new products that have come on the market to enhance the total results from hydraulic fracture. Fluid! Hydraulic fracturing fluids have been developed. And understandings of the basic issues that you need to know to make money by hydraulic fracturing. This has now expanded into the area of developing gas from the massive shales and it’s the same issue as it was when I was working in the tight gas formations. We’re just repeating the growth of understanding and technology that applies to massive shalesWe’re not there yet, but we’re making enough headway that people are starting to improve their results, their successes, economically, in the shales.  


People were working on MWD (Measurement While Drilling), and we were interested in getting high frequency data from the rig. The Sandia National Laboratory was trying a different method of transmission of data. We had tried circulating and pressure pulses and so forth. We tried sending sound waves up the drill pipe and it didn’t work. And they were trying a different method. Unfortunately, they didn’t have any more success than we had, but they were trying a method.  
I worked for Amoco. I started 1960, ‘67 I went back to school. In 1970 I went to the research department. I worked there until 1993 and retired from Amoco, and started doing consulting work, primarily in well stimulation and hydraulic fracturing, so I was not involved with a major company when the massive shale plays got started, but there weren’t many companies that were involved in these massive shale plays when I left Amoco, and this is a kind of an interesting phenomenon.  
There was one fellow, I wish I could recall his name right now, I can’t recall, George someone [George Mitchell] in Colorado, and this man persisted in trying to develop massive shales with large fracturing treatments. He finally started getting some successes and, as with everything else in the well stimulation world, if you got something that works really well or starts to work really well, someplace somebody’s going to try it somewhere else and pretty soon is going to spread like it has spread from the last ten or fifteen years to totally across the North American continent. Which has resulted in a tremendous increase in our resource base for gas energy, and oil also. I feel like I was fortunate to be in the window of time and to be a part of it.  


Right now we send signals up the pulses and you have about a 50 psi pulse that lasts for a short period of time. Send up a binary code so while we’re drilling we can measure the angle--stop the pipe--measure the angle, measure the direction, go back to drilling and then send that up as a pressure pulse. Well, obviously you can’t get high frequency data. So the goal was to get high frequency data. This goes back to one of the earlier projects we had that, matter of fact, the group at Amoco Research found bit whirl, the group at Jersey Production Research, which was a subsidiary of Standard Oil… Jersey by the time we were… they bought Humble too. They did the first magnetic tape recording. Kirt Boatright took a magnetic tape recorder and put it--and had the electronics in a drill collar sub--and they recorded three 16-second intervals: weight on the bit, rotary speed, and vibration. They were looking at lateral, vertical, and so forth. They brought the strips back in. They ran it in for analysis and they found frequencies they couldn’t explain.  
I, myself, was a pretty minor part in any of this. The people that really accomplished it were the people that actually did the technology work, themselves, and developed their own specific contributions that in total combined to help us sustain and improve our energy resources. I think SPE is a very big contributor to this and I think that without an organization like SPE, where there was the communication across the industry, that we wouldn’t be where we are today. In not only the area  that I was interested in, which was well stimulation, but in all areas, because I think that practices for people to hold things to their private areas that are potential money makers, SPE is an entity that encourages the dissemination and distribution of common technology.  


They asked us to come up from Humble Research and we went up. And we couldn’t find exactly where those vibrations were coming from. So from a telemetry point of view, we need the high frequency data. We can’t get it with the pressure pulses. So this was the quest we had and National Laboratory was trying to do the same thing. We were trying to do it on our line. They were trying to do it on their drill pipe, but unfortunately, it was not a successful project. They had to drop it.
Now it’s kind of like saying, well we’ve got freedom, freedom to discuss our successes and our failures. We tend to discuss our successes a lot more than we discuss our failures, but that’s okay because discussing your successes brings other people into developing ideas, developing creativity, and carrying on with things that address problems that once solved, enhance the potential gas and oil  for our next ship. SPE has another aspect of it and, that is the camaraderie of the membership. The important thing to me is I come to the meetings, and I see people that I’ve known for a long time, that I respect, and hold a lot of feeling for just because of our association with the society and there’s a lot to that. It’s not something you can quantify, but it certainly is something that you can appreciate after you seen the result. The problem is it takes a long time to see the results or for me to become aware of… My goodness, it’s been a few years, but look, here we are again and I go to these meetings. I meet these people. They’re all great people. They’re good friends, people I care about, people I have a lot of respect for, and people who have made some real contributions to the industry, and SPE is an entity that really helps to keep this interaction going.


'''KERR:'''
'''KERR:'''


So during your career, and since your retirement, you’ve dedicated a large portion of your time to teaching onsite drilling workshops and conducting international drilling fluid seminars. Discuss this aspect of your work and why you do it.
What were some of the technological challenges that you’ve faced during your career?


'''ROBINSON:'''
'''VEATCH:'''


One of the things that really makes you feel like you’re contributing to the industry is to be able to pass on knowledge that has been gained frequently by lots of other people, by teaching. And so I had the opportunity at Exxon Research to start teaching at the drilling engineering school. I taught Drilling Fluid, I taught Sluice Control, and I taught courses in Hydraulics and [unintelligible] Circulation, and a variety of things in the drilling engineering school. And then they decided that we probably needed a drilling fluid course to be taught around the world.  
Well, as to technological challenges, it seems that a petroleum engineer’s life is a life of challenges, of new problems, and new situation. That’s the way it was with my situation as a petroleum engineer working at production department and particularly as a research engineer and a research supervisor for Amoco Research that I worked for. And this is primarily because we didn’t get involved in things unless they were problems, and we responded to our producing department to their problems and their needs. I don’t know how you--if I try to give you a list of what types of problems, it would take forever, but the problem that I first mentioned about here the company had leased all of this property--thousands and thousands of acres of property across three or four states—they didn’t know what to do with it. And so they said, “You guys at research, solve this problem.


We put together then a travelling school that we taught, out of research, through all Exxon affiliates around the world. And we spent a lot of time travelling. We’d get there a weekend before and talk to the people that ran the office, get their reports, and try to make the course practical for them. And so I spent a lot of time travelling the world, teaching classes everywhere. We had a drilling operation in Tokyo one time, and Indonesia and Malaysia, Venezuela, Colombia, Saudi, North Sea, Aberdeen, London, Norway--just all over the world.  
Well it seems like my experience with Amoco has just been a repeat and repeat and repeat of the same type of things of we’ve got a prob- and these are challenges and new problems about going from we don’t know what we’re doing to kind of working around, “Well we’ve got an idea now because we have a little more information, and we worked out the processes for getting this information to the point where we feel like we’ve kind of got things under control. So, it would really be hard for me to pinpoint one single major challenge because my experience have been I’ve had a whole series of major challenges and that’s kind of made life interesting. Just to go through, and to be fortunate enough to have the people that I’ve worked for, people that I’ve worked with, people who reported to me, to have them of the caliber to be able to address some of these big problems of finding out what we didn’t know, what we needed to know, how to go about finding out what we needed to know, and addressing those needs. This is back to where I say SPE was a big part of those solutions and addressing those challenges because of the network of being able to communicate with people across the industry who were facing the same challenges as we were in our companies.


We had great response because, again, drilling fluids is a mystical thing. We need to separate it into functions that it needs to do and there’s a lot of misunderstanding about what the numbers mean and how they do it. And specifically, it’s a goldmine of a place for a super-salesman to sell stuff because he can--for example, one time, at [unintelligible] in [unintelligible], they had turned their fluid program over completely to the mud company and we taught a school there and brought in half the company men. We taught that week and then they went back to the rig and the other half came in and we were teaching them and by Wednesday of the second week, the ones that had gone back had cut out enough non-essential additives to pay for the whole two-week course that we were giving, in just those three to four days since they’d been on the rig. It did not make the mud company very happy because they were adding additives that had no major purpose. So this was a kind of a nice feeling, to be able to help drilling fluid people.
'''KERR:'''


Then after I retired, I was ready to hang up everything because I was enjoying the honey-do’s, getting out--I mean, I’d been travelling so much overseas. Well, one time I had to get a new passport because I‘d not only filled up it, but I’d filled up all the pages, the extensions. I didn’t have any room to even put an extension in the book.  I had to get a whole new passport.  So I was happy to stay at home. [I’d] been there about a month [or] two months, and got this call from Alan Roberts from Tulsa.  Alan and Tommy Allen had been working for Jersey Production Research and they were our nemesis when Standard of Jersey owned both Jersey Production Research and Humble Production Research. We were fighting for the same research dollars and it was an in-house fight--two siblings--I mean, it got really nasty, and so we had a problem. 
Was there a particular technological challenge or two other than operational challenges but technical challenges that you’ve face that you might highlight for us?
Alan then called me and said, “Would you like to teach for us?” So I made a decision. Yes, I would, but that also had a problem so.  Alan and I knocked heads so much that when he called “This is Alan Roberts from Tulsa.” “Well, yeah.” “Would you like to teach for us?” “No! Absolutely not! I mean I’d just retired.” He said, “Well, we need someone to teach drilling.” And I said, “Well, not me”. “Well, would you talk to us about it?” “No.” “If I sent somebody down to talk to you, would you let him in the door?” “Well, I won’t be rude to him.” [chuckles]  And so he sent Ford Brett down. He was the vice-president of the company, and Ford came in, sat down, and explained to me how they operated and what they did and hey, that doesn’t sound bad at all.


And so I agreed to teach for PetroSkills then. I’ve been doing that now for twenty-one years and enjoying it every minute, but it was kind of a shock because he said here’s the text and I looked at it and it was totally obsolete so I said, “Well, I got to rewrite this.” So I rewrote it and I called Alan up and said, “Ok, I’ve got it rewritten. Who do I send it to for approval?” He said, “Do what?” I said, “Approval… you know… after working with Exxon you have to go through six levels of supervision and four different lawyers.” He’s saying, “No, no, no. If you wrote it, that’s the way it’s going to be.” “Uh-oh, let me go back and rewrite some of this to make sure…” I thought it’d be edited, but it wasn’t. 
'''VEATCH:'''


But, so then I developed the manual, and he asked then about other courses and I said, “You know, one course that would really be great would be to take that course I was teaching in the field onsite. I can’t teach it onsite, but I can do all the optimization processes, and we can put together a class that covers that. We’ll call it Practical Drilling Skills.” It’s really an optimization process, so you take the readings from the rig and make the rig work to the maximum efficiency it possibly can--any rig, doesn’t matter. You can’t make this rig drill as fast as that one because it doesn’t have the capability, but you can make that one drill to the maximum limit it possibly can. And so we set up a course like that and that’s been very effective for the class. 
Most of the challenges that I’ve faced, working for the producing department, were operational challenges of how you do something or where do you get equipment that properly does what you want it to do, how you get people to do what they should be doing. When I got into the research area, it was a little bit of the same, but more of the “What is the technology needed to take care of the various problems that we faced?” From a research standpoint where I work, it was, I would say, more technical, some operational but more technical.  
 
And also, since I had the patent on mud cleaners and developed that process, I’d gotten involved with sluice controls, so I teach a sluice control class for them also.  But this has been fun.  Last week I just finished a class--I had about, I don’t know, seven different countries in the class.  They fly over from--well, like two came over from France for just that one week course. I had one come in from Indonesia, flew in just for that course so it’s really been fun teaching.
And my philosophy of teaching is that if you’re entertained, you’re probably going to learn more. If you’re happy, you’re probably going to learn more. If you’re relaxed, you’re probably going to learn more. And so I try to do things in the class that keep them entertained. I don’t interrupt the lectures with jokes but in between lectures, we have a great, roaring laughter time so.  But it’s been a great, great experience teaching for Petroskills. I’ve loved every minute of it.


'''KERR:'''
'''KERR:'''


What were some of the important, technological milestones during your career within your field?
Were there any technical challenges that you like to share with us, some of the specific technological challenge?


'''ROBINSON:'''
'''VEATCH:'''


Ooh boy. When I think about my career, in terms of contributions, I guess, the biggest one was the mud cleaner invention, which we developed in the 70s. It was designed to remove drill solids between the size of the shaker openings they had at the time, which were 80 mesh. The smallest we could get: 100 cms of a micron and the top of the barite size, which is the same as 5 microns or 200 mesh. Drill solids in that size range would build up. They would make the filter cake gritty. It would be like pulling pipe on sandpaper. You wouldn’t be able to move the casing for cementing.  
Specific technological challenges I have been through, faced, so many of those in the area of well stimulation and hydraulic fracturing, but they’re all interconnected and basically is how do you get or how do you create a fracture, hydraulic fracture, how do you create the penetration and achieve the fracture conductivity for that fracture and a particular type of formation that has a particular permeability, how do you go about doing that at the optimum range of what you spend versus what you get back. You get back the maximum for what you spend.  


And so, to get those drill solids out, we invented a way where we’d put the hydrocyclones above a shaker screen and the first commercial test we had, they were able to reciprocate the production string for the first time in the field because the hole was slick. The first well we drilled with it was through some sands that were drawn down--depleted sands--between 11,000 and 16, 000 feet where a whole series of miocene sands had been produced. Some pore pressures down to 2.3. The top sands, eleven pounds pore pressure had never been produced, so we had to have an eleven pound mud in the hole. And we were in some places two-, three-, and six thousand p.s. overbalanced. We never had a stuck pipe and we never lost circulation because we had the filter cake [that] was thin, slick and compressible. It was clean. That was probably the best contribution I think I’ve had to the industry.  
That’s what the entire industry faces in whatever discipline they are, it’s an optimization of when you’re trying to get a well to produce something more than it would produce naturally, how much money do you spend, and what’s the limit of expenditure before your returns start diminishing. That, sometimes, is one of the biggest problems.  


The sequel to that story was that when linear motion shakers came out, they were able to put a 200 mesh or API of 200 or 74 micron screen on the shakers, and so the sales on those things went down to practically nothing. But slowly, they came back up because people started turning them on and finding out all the drilling fluid had not gone through the main shaker. It’d gone round it, behind it, holes in it and so forth. The operational mud cleaner now is just as viable--as important as it was when it was first invented, and that’s making a big difference in the ability [to] one, avoid trouble and stuck pipe, lost circulation and also in cementing because you absolutely must move the casing to get a good cement job. And if you have a very thick filter cake, you can’t move the casing.  It’s very hard. And so once the driller gets it on bottom, the driller’s not going to pick it up one inch and lose that hole because it may not go back down to the bottom. And consequently, it’s necessary that he put it on bottom. That way he doesn’t really get a good cement job and we find lots of wells that have been completed on land without any pressure because they got a bad cement job. But by making the filter cake thin so you can get a good seal, a good barrier of cement in the hole, probably makes the major contribution--one of the major contributions to—(from my point of view) to the industry itself.  
And sometimes a bigger problem is the apathy of people not to address that, but just to take something that works. Whether it makes the most money or not is not as big of issue as whether it works because in fracturing, you don’t want things not to work. You want to go like you’re supposed to go. And it gets back to the old saw that sometimes it’s difficult to remember that your objective is to drain the swamp when you’re up to your ears in alligators.  


I think the teaching and probably impacting so many people with the technology is probably secondary--but maybe my second most valuable contribution to the industry--to develop the techniques for hydraulic optimization. We did that. Right now, if you pump through pipe, the pressure drop and the turbulent flow is proportional to velocity squared. The [unintelligible] flow is proportional to the velocity, and at every tool joint in a drill pipe you have a turbulent generator. How far that turbulence goes depends upon the liquid itself. If it’s real thick, it won’t go far. Real thin, like water, it goes a long distance, so therefore the pressure drop in the whole drill string is very difficult, if not impossible, to really predict. We developed a method so you can use the rig data and let it tell you what it is.  Use the rig like a rheometer. This is the rig optimization process. That’s probably the second or third on my priority list of things I think I’ve helped with in my career.
If I was to say, if I was to be able to specify a given challenge, I would say getting people to economically optimize or develop things that would economically optimize the monetary returns for what they do. That’s a big challenge. It’s not specifically a technical challenge, but it is getting people to use the technology that’s available to do that.


'''KERR:'''
'''KERR:'''


So further discussing your contributions, discuss your contributions in the area of drilling and hydraulic optimization techniques.
Tell us again, one of these technological challenges, as you say, that you’ve made progress on.
 
'''ROBINSON:'''


Well, to continue on a little about the drilling hydraulic optimization procedures. Most computer programs, they go to the rig, predict the nozzle sizes that you need for what would be the maximum hydraulic impact or maximum hydraulic horsepower. Unfortunately, they’re not able to predict the pressure drop in the drill stream, and it makes a tremendous difference in the energy of the fluid hitting the bottom of a hole.
'''VEATCH:'''
We said that the bit floundering depends upon how you remove the cuttings. And so we have two methods of optimizing. We either have the fluid hit the hole with the most force possible, or we can expend the most power at the bottom. Both of them require you predict the pressure drop in the drill string itself. This is kind of what’s confusing to the drilling people on the rig. They think they can get more power by pumping faster, which sounds logical. The more you pump, then the faster it’s going to be, but on the other hand, the more you pump, the more turbulence fluid gets in the drill pipe therefore the more fluid loss pressure  you’ve got, and you don’t have any leftover for the bit. So even though you’re pumping faster and faster, you’re using it all up in parasitic pressure loss and nothing across the bit.


So there is an optimum flow rate, one that you need to be able to determine. And so I developed a method, then, for taking the rig data--well, when we get ready to strip the bit out of the hole, you normally will circulate bottoms-up to make sure that Mother Nature doesn’t leave you a surprise in that last six inches of hole. So you will normally pump the bottoms up, get all the mud out of the hole and see what’s in that last six inches and then you strip the bit. Well, during that pump time, if you pump at four different stroke rates, you have four different flow rates. I can read the stand pipe pressure. I can calculate pressure drop through the bit, and so I can subtract it and determine what the pressure drop is through this drill string.  
I mentioned that one of the things that we had learned about hydraulic fracturing, we’d learn everything there was except how high they grow vertically, how deep they penetrate, how high they are, their geometry, which way they go, and what their configurations are. That scenario where we have made a tremendous amount of progress and when I say we, I talk about industry, and all of my comments really pertain to industry as opposed to me, personally.  


And we can derive equations, then, which tell you what the pressure drop should be to be optimum.  You get the flow rate, the optimum flow rate you need, and so all that comes out of the pressure measurements on the rig. You cannot predict that ahead of time with a computer program. You have no idea how much the flow is turbulent and how much is laminar and all that depends on the ingredients in the drilling fluid in the first place.  
In the area of fracture propagation geometry, there has been an extreme, I think, advancement in our understanding of what this is by the virtue of the development of fracture mapping processes that will give people an inference of how deep fractures go, what they’re shaped like, which directions they go, and some degree of their magnitude. That didn’t exist in the 1970s. It started with a lot of work. We’ve supported work and we conducted work in that area. A lot of that was in the multi well experiments that I mentioned earlier, and I think if there’s anything that we have--I can’t say that we’ve made a tremendous amount of progress in--it is in the basic perception of what is happening during a hydraulic fracture treatment. We don’t have it to the point that we feel [it] is the ultimate understanding or ability to measure this, but our progress at this point has been very, very, very large.  


So this was one of the tremendous impacts we had then on drillability and drilling and hunting for increase, like I talked about, the Carthage field. The problem there was they also weren’t using the hydraulics they had and so we backed off on weight on the bit, but then we increased the hydraulics and allowed them to put more weight on the bit and drill faster and still remove the cuttings and so.  This was one of the major points that we do in our schools around the world. It makes a big difference on drilling rates.  
I don’t know that I know of another area or I can think of another area at this time where we’ve made as much progress over the time frame as we have in fracture mapping processes. Doesn’t say we’ve solved the problem. There’s still a tremendous amount of discussion about the reliability and accuracy of these processes, but they have certainly added to our ability to follow what happens when someone creates a fracture in a horizontal wellbore, and what’s going on during that process.


'''KERR:'''
'''KERR:'''


Discuss the work that you are doing now, writing the Encyclopedia of Drilling.
Can you describe for us what you consider to be the most important contributions that you have made in the industry during your career and why?


'''ROBINSON:'''
'''VEATCH:'''


One of the interesting things that occurred to us is we had a committee that we formed in 1971, the IADC [International Association of Drilling Contractors]. We wrote the mud equipment manual. Jim Lummus called and said we need a study group on that. We said ok, we have a study group, but we need a product at the end of that because we’ve seen study groups last and they don’t leave anything. So we decided to write a manual. We started out with a committee of eight people and by the time we wrote it, we had it edited in session, it lasted for about eight years before we finally finished that document. When we finished it, the committee said it had grown to about forty people because the editing process was very educational. People that would be on the committee would be editing someone else’s work, something that perhaps they didn’t know themselves. And so everybody that was on it, if they tried to changed companies, they wanted you to stay on it. Well, the company didn’t want to lose their positions, so they put somebody new on it. So the committee just grew.
Address the issue of contributions that I have made, personally. It is really a difficult thing to address, and the reason is if [I] was to think, “What have I done in all of this?” it’s really hard to attribute anything specific to me, specifically. I don’t feel people are an island. I feel that people contribute because of their association with others who are addressing a common problem, and whatever is achieved is sometimes due to an individual, but no one could achieve those things without help from other people or some kind of assistance from other people and so I’m really hesitant to…


After we finished that, the committee said “Well, we’re going to stay together,” so we developed six committees with the IADC, and with those six committees, we had one with Witts Development, which was transmission of information from the rig to shore, one on safety, one of rig floor optimization, one on telemetry. And about that time then the IADC decided they wanted to be a lobbying organization and so they withdrew from the MWD group of that then became the IMS, the International MWD Society. The group that was working on solids control was wanting to write another book on shakers because they’d become obsolete. The new linear motion had been introduced and so the book that was there was obsolete.
'''KERR:'''


So we approached the AADE [American Association of Drilling Engineers]. They started supporting the writing of the new shaker book, so got that published, and the committee grew some more. And then they said, “We aren’t going to support this anymore.” So the ASME, the American Society of Mechanical Engineers said, “We’ll support you. You can be one of our committees.” We wrote them the Drilling Fluids Processing Handbook for them, which was great.
Why don’t you go into something that you and your team, maybe when you were a team leader or something of that nature that you and your team contributed to the industry?


About that time, the API was getting ready to change 13C into an ISO document (International Standards document). And so we looked at it and said no, there’s some changes we’ve got to make in that if it ever becomes international standards, we’ll never be able to change it.  So then we formed an API [American Petroleum Institute] committee to change 13C, which we did. It took more years than we thought--took about five to do that.
'''VEATCH:'''


So I gave a dinner at one of the restaurants here in Houston as a book signing so that the authors that were on the ASME book, everybody had a different chapter to write and nobody was taking royalties. But we had a book signing so that everybody on the committee would have a book signed by all the authors. Towards the end of the evening then, some of the wives called me over to side. About six or seven of them surrounded me [and] said, “You will form another committee, won’t you?” And I said, “Well, I hadn’t planned to.They said, “No. You will form another committee, won’t you?” And I said, “Well, yeah I guess so. Why?” “Well, we want to go back to South Padre Island,” because every year in September we have a two-day session in South Padre. It’s an editing session. They enjoyed that very much and they said, “You’re going to form another committee.” “Well, ok, what kind of committee are we going to form?” So got together and talking to people and what was needed in the industry then.  
Well, I had a premiere team of research people, and I handled some people who were very well technically trained and qualified. They were extremely bright, creative, innovative, and these people, also working with people from the producing department, and working with technologists that did the laboratory testing and the conducting of experiments. With all of that synergy, these people, they would come up with an idea and they would carry through with this.  


The thing that’s needed in the industry is an encyclopedia that covers all the subjects of drilling. So we’re writing twenty books on drilling and that came out of the same committee… forty or fifty years ago. And many of those people are still on the committee. These books that we’re writing, they really are fulfilling a need because for example, we published three books already. One’s Casing Design. One’s Underbalanced Drilling and the other is Managed Pressure Drilling. Those three have been published. The Underbalanced Drilling and the Managed Pressure, these were the first two books ever published on that subject. Casing design is an extremely complex subject, requires basically a tensor analysis, but the guy that wrote it, explains how to do it in simple terms and so even though it’s a complex subject, it’s understandable by anyone that’s adept at algebra.  
One of the things that’s become an industry standard is the shut-in pressure decline analysis for fluid loss in a formation. Another one is the net pressure versus time behavior that allows you to get an inference of fracture propagation geometry. These are things that came out new. These are things that the industry picked up on, and these are things that have caused the revolutions in different thinking. The people that worked for me, like I say, they are the ones that did it. But they developed understandings of fluid behavior, rheology that we had not had before in the industry and in fracture computer reservoir or computer hydraulic fracturing simulators, developments of those.  


We’re writing another book on oil muds, called Non-Aqueous Drilling Fluid because oil muds are not just oil anymore, it’s synthetic fluids. We have polyalphaolefins, esters and ethers and we have oil muds. Most drilling fluid books are written for water-based muds and currently oil muds or NADF [Non-Aqueous Drilling Fluid] is beginning to become much, much more popular because if you combine an NADF with a PDC bit in a hole, you drill so much faster now. Non-aqueous fluids have gone through several evolutions.  
These were people that worked in my group and I may have made some contributions by saying, “I want you to work on this and here are some problems” and focusing them on the problems. That’s about all I can say that I personally did in this. And giving them the “Here’s what we need” type thing and “here’s what we need to know” and “here are the integral aspects of what’s important” and maybe being able to evaluate what they might have come up with and say, “Well, this may be a better idea than this, and let’s focus on that.
A very major factor in design of hydraulic fracturing treatments is fluid loss of the fracturing fluid to the formation and how to control fluid loss to the formation because if fluids going out of the fracture into the formation, it’s not creating fluid volume, which is what you need for fracture propagation. Well, one of the things that the fracturing group and one or two individuals specifically came up with was a method for measuring or gaining an inference of the potential fluid loss that will occur during a fracturing treatment and this was called the shut-in pressure decline analysis approach.
What this did, was this took the industry from using pinpoint laboratory core data of fluid loss tests in the laboratory to an individual well covering the entire vertical extent of a particular well. You got a broad picture of fluid loss behavior and with that, it improved your design. It gave you a basis for designing fluids which would mitigate that behavior.  


One, when we first started using an oil mud, it was in California. We were using crude oil. You pump it down the well bore and it was one problem with that is it still had a lot of gas in it and when it come out sometimes it would catch on fire on the tanks. And that was not very happy. And so to solve that problem, they started putting in 40% water. And when gas caught on fire, the water would evaporate and put the fire out. They called it a snuffer fluid. Anyway but from that we evolved into a lot more technology involved with how you create the--so there is no book currently being written available for only NADF. We’ve got about twenty people working on that committee, writing various chapters of it.  
Another thing was what is the general propagation behavior of a fracture?  And that is, during injection as a fracture propagates, is it being confined so that you get a lot of propagation per unit injection because it’s not going vertically or that it is whether or not it’s doing that or whether it’s going vertically and thus not penetrating that gives you the production operation. Some of the folks in the group came up with the process called the Nolte Smith Net Pressure Versus Time Behavior.


We’ve got a book on rheology and hydraulics, which will be written by two experts. We’ve had several books proposed to us and the authors did not write well and we rejected them. We’ve got a cement book, which should come out through the IADC this year, written by Ron Sweatman, who was on the new API’s committee. One of the things people have finally begun to realize is that we were teaching that as cement sets, it loses hydrostatic gradient. That is, it’s still permeable, though instead of a nineteen pound per gallon fluid, you have a water base, a water column, which means it’s a possibility that you’ll have an influx because you’ll lose your overbalance pressure. And so they put a team together at API that wrote a rate document, API Standards 65 Part 2, that describes how to make the cement set after the gel structure gets high enough to keep gas from bubbling up through it. Anyway, all that’s incorporated in the new book on cementing so there’s a lot of technology that’s brand new.  
And what they found out, or what they proposed, was that the pressure behavior--during a certain pressure behavior defined a certain fracture propagation behavior and it correlated whether your fracture was being confined vertically, whether it was growing vertically, whether it has stopped growing and was ballooning. The things that these people came up with have spread as being now standard industry practice in trying to understand what fracture propagation is during the time injection. And all this stuff is now the service company fracturing-side computers, and has become a standard part of fracture treatment design.  


This course that I taught onsite, it has a lot of optimization processes in it, so we’ll publish again. The former, world-wide drilling manager for ExxonMobil, Juan Garcia, just retired about three years ago and he’s contributing to the same book. We’re putting in a chapter on well architecture, how you design it, and he goes through the process of predicting where you ought to set the casing, pressures and so forth so you design the casing and you design the well. We’re also talking about load stability analysis for the casing, and then he’s writing one on well control training--not well control by itself, but how you train people on the rig to handle their kick. We recommend you pump a nitrogen bubble in the wellbore, after you cement it and everything’s secured. They get to use their own equipment then to pump the kick out instead of using a simulator.  
But I think, really, our understanding with fracture behavior and fracture models and what they can do to help you, if they’re used properly, has been a real benefit to the industry. Fracture propagation behavior as studied with computer models is somewhat a bit of a questionable thing because we have many different models and many different types and which one is right is always the question. Well it’s more, which model fits the propagation behavior of the fracture and the formation as the way it will occur, which model is built to fit that? It is more of the issue as to which model is right because if you apply a model which has a certain type of fracture growth algorithms in it to a fracture that doesn’t, if you apply that model to try to predict fracture behavior of a fracture that doesn’t adhere to those algorithms then you get mispredictions.  


We’ve collaborated on a chapter on cementing, but all of these other optimization processes are going to be in that book. We only have one on casing drilling. We[‘re going] to have one on drill bits--just about every drill bit company is contributing a component to this. We formed a group under Bob Radtke. And so all of the subjects that relate to drilling operations technology are being brought up-to-date with these books. It’s kind of an exciting project and it’s also extremely educational to go down and listen to the experts like Les Skinner is writing one on coil tubing. He has a wealth of information. He was at the beginning when they first started running coil tube. Matter of fact, fresh coil tubing job was on June the 7th, 1944 when they unreeled coil tubing under the ship channel to power all of the tanks and trucks they had hauled into Normandy, for the invasion of Normandy. That’s the first coil tubing job in the world. He’s got this kind of stuff in the book so it makes a good history plus the technology of how they do it and fatigue life and so forth. All these books, I think, are developing and going to be a good capture of history, as well as the latest, new technology.
The industry’s development of those models and having ones which maybe every model applies to this situation but maybe only a few models apply to this situation. And we’ve had a lot of model developments and there’s still a lot controversy about the use of models. My take on fracture models is that essentially the model tells you what you’ve told the model to tell you and I don’t get much disagreement among my colleagues on that statement and it’s pretty true.


'''KERR:'''
'''KERR:'''


What were some of the technological challenges that you faced during your career?
What do you consider to be the greatest challenges facing the industry as we move into the future?


'''ROBINSON:'''
'''VEATCH:'''


When I considered getting a physics degree, and coming into the petroleum industry, I started thinking about the challenges that I had from a technical point of view and the first that comes to mind is vocabulary. When you start talking about science and physics and so forth. Before I came to the petroleum industry, I’d never been across the Mississippi River. I’d never seen a drilling rig. I had no idea that oil was buried within rocks. I thought it was just a nice, big puddle down there, you struck a straw in. I never even worried about it. I mean, I didn’t even think about it. I came to work, then, they were talking about tortuosity and stuff and it was a whole new vocabulary. So from a technological point of view my quest then was to convert physics that I knew into the realm of petroleum industry.  
The greatest challenges that I see in the area that I work in in the future in the industry is that we be able to create hydraulic fractures which will basically drain the massive shales. We have systems of doing that where you have horizontal wells that have possibly transverse fractures or parallel fractures and right now we’ve learned a lot but we’re still at the stage where you pay your money and you take your chances and this has been the history of fracturing.  


My background is not engineering, in terms of a degree. I’ve taken many engineering courses but I still think basic physics has a great place within, so--even when I’m teaching the basic classes now, I go back and talk about the basic fundamentals of physics. What I’m finding is that even the engineers, you ask them, “What is the entity, energy per unit volume?” And they have all kinds of wild guesses. The answer is it’s pressure. It’s the fundamental definition of pressure. It’s the pressure from which we derive how we measure the pressure at the bottom of a wellbore: 0.052 times mud weight times depth. That derives from the equation to put potential energy. So from a basic drilling classes, I can go back to the basic fundamentals. You start off, if you’ve never had an engineering class or even if you have had a physics class. But it’s such basic, fundamental understanding once you do that, then things become very clear to people. So my quest, basically, has been to make the translation from various vocabularies into simple English, using Physics as a mode of translation or the language of translation.  
From the beginning in the conventional permeability formations, we started with you pay your money and you take your chances. As time goes on and the industry learns about how to better do this, it improves. We move to the tight gas formations, same thing. A low knowledge base with experience and the focusing of people who knew how to solve problems who were intelligent, focusing on that issue until we gain a better understanding and knowledge base and it proves our success.  


With the mud cleaner, we had a stainless steel drum out there with the sweet color provider. And we had a lot of trouble with the solids building up and so we wanted to change the design of it. For example, I drive in to New Orleans here, down at Bayou Sale in Louisiana. I met the representative from Sweco about ten o’clock went Saturday night one time and we spent about three [or] four hours redesigning the system we had. He flew back on the red eye express, back to Los Angeles and I drove back to the rig for the next morning then and so this is the way we solved a lot of the problems.
We’ve got the same thing with the massive shales. We’re in an embryo stage, not quite as embryo as we were five or six years ago, but still there. And, as we go on, I feel confident that the industry repeating what is has in the past, will continue to address this. I feel that the same thing applies to every aspect of the petroleum industry. We get new processes. We get new things and we develop them through a period until we understand them and it solves a problem, and it helps improve our energy resources. It’s not just fracturing, it has to do in drilling, it has to do in reservoir enhancement performance and in offshore operations and the entire gamut. The industry continually goes through--we face new things, we address the problems, and we start working on solutions and eventually, we improve the economic returns and the technical competence in addressing those problems. So my experience particularly mostly being in hydraulic fracturing, I think, is mirrored across the other technical disciplines of the petroleum industry.
 
The pressure measurement of mud weight under pressure is kind of a crucial thing because NADF (non-aqueous fluid), the density depends on pressure and temperature. A water-base[d] mud doesn’t change with pressure. NADF does. And so your problem is, we want to measure the hydrostatic head in the sandpipe, that is the pressure in a vertical piece of pipe but it’s going to have to have drilling fluid flowing through it so we don’t know how to calculate the pressure loss accurately of pipe—the drilling fluids flowing through the pipe. But currently we’re working on a design of a new rig, which means we’re going to take the two pieces of pipe that are identical, put one vertically in the sandpipe then we’re going to lay the other one down horizontally. We’re going to measure the pressure drop in the horizontal pipe, measure the pressure drop in the vertical pipe, subtract the horizontal from the vertical and you’ve got the pressure drop from the hydrostatic head of drilling fluid.
 
So finally got that problem solved after thirty years, but sometimes it’s just a matter of working a variety of different scenarios. One of the interesting things, I guess, from a solution of problems is when we had our telemetry system with a wire line, we were measuring a lot of things at the bottom of the hole. We never measured a number that agreed with our calculation when we first started measuring it. A hundred percent of the time was we’d always leave out a variable or we don’t know what number or we’re guessing a number or we have an observation that’s worked its way in to the design of the rig, the wells. But until we get better instrumentation at the bottom of the hole, we don’t know. For example, the pressure dropped through the nozzles. The coefficient that we were using was 0.97 was for old, old nozzles, not the new ones. And so when we measured the pressure in the annulus and down hole, we found the annular pressure was 300 psi higher than we thought it was but the pressure dropped through the nozzles was 300 psi less than we thought it was. So, if you just go by the sandpipe pressure, it came out right, but both of them were off by about the same amount, one way or the other. So making readings in one place and making the assumption that you have the sum doesn’t work.  
 
Most of the time, the problems on drilling rigs originate--drilling problems, in particular, originate from drill solids. This is, I guess, the lesson learned that impresses me the most in operations. That is when I’m working with the Houston Drilling Division, I read the plastic viscosity which tells you the size, shape and number of particles in liquid phase viscosity. It’s the indicator and most mud engineers don’t worry about it. They worry about the yield point, not the PV but PV’s just a number. But from a driller’s point of view, PV tells him about the solids in the mud. You want it to be as low as possible. The lower it is, the higher the velocity of fluid hitting the bottom of the hole and the better you can clean the bottom, the better--the higher--the flounder point. So you improve your drilling efficiencies. I guess the biggest change I can see that needs to be made in the field is the understanding of the devastation that drill solids can have on your drilling fluid. Matter of fact, in my drilling classes, I try to teach with simple concepts. Drill solids are evil. Now that transmits the concept pretty well into almost all language, except Chinese. They don’t have an equivalent word for evil. But just about everybody else understands that you don’t want drill solids in your drilling fluid. That’s a simple translation of concepts.  


'''KERR:'''
'''KERR:'''


What do you consider the most significant changes that have occurred in the industry over the course of your career?
What are some of your favorite memories working in the industry?
 
'''ROBINSON:'''
 
Oh the changes in the industry have been magnificent, startling and surprising. When I first entered drilling, we were drilling only with milled tooth bits. That Travis Peak I was talking about was doing drill with a W7R, which was a bit that had little, short teeth about this big, no seals in the bearings, sand in the mud would make the bearings fail quickly. We were happy if we got thirty feet an hour, twenty feet an hour. The bits didn’t last very long. Right now we’re drilling wells that would’ve been impossible even twenty years ago.
 
It’s amazing that the evolution of drilling over the years-- well, to get a perspective, in 1122 B.C., the Chinese were drilling wells for salt water, so we’ve been drilling a long time. At that time, they were drilling with chisels. They were dropping--cable tool drilling--dropping chisels, breaking the rock. They were drilling for water--salt water-- so they could store their meat and stuff. Even in about 600 B.C. in France they were drilling with chisels, again for salt water for preservation of meat. I guess we started drilling with, in this country, with chisels back in the late 1800’s. We’d take a big, heavy weight, put a sharp edge on it, pick it up and drop it and it would break the rock. Then you pull that out on a wire line and go in with a baler. A baler has teeth in it so the cuttings can come in but not fall back out. You bounce it up and down, dump it, go back in and chisel it. It takes a long time to drill, and obviously we can’t change the drilling fluid, so you can’t drill in an area where you have pressure. Because you have to have pressure in the wellbore to keep from having a blow-out.
 
So when I first got in the industry, we were still very confused about how you control the pressure. There were lots of old wives’ tales, which still had not captured that, so the image that people had in those days was that when you hit oil, you know it because you have a gusher. That image has probably been more damage to this industry than just about anything else. It should be banned completely because we don’t see that very often anymore. Right now we have probably 1700 rigs, 1760 rigs running in the United States and probably 100 of them already have a kick, not a blow-out, but a kick. They’ve had an influx.  They’re pumping it out. Nobody in the area knows about it. It’s all handled internally. There’s no blowout anymore. We seldom even have blowouts in what we’re drilling. Most of the well bores that blow out these days are things that happen either before or after you’ve finished drilling or when you’re in work over still. But our drill has been well-trained. But that’s been a great transition that occurred from the time I entered the industry until then.
 
I guess the next one is the drill bits, learning how to put seals in the bits, making tungsten carbide bits, and then in the 80s the PDC bits came out. Before, we were drilling with—scraping by drilling with diamonds. They were very expensive. They drove very slowly, but they stay on bottom and drill a long, long time. So the time that you would normally spend, pulling bits in and out of the hole, you didn’t have to do it with a diamond bit.  So you could afford to spend a lot of money on the bit and not have to trip it very often. The PDC bits entered the market and we had no idea really of how to orient those cutters so we could drill the best with them. So the evolution of PDC bits has been spectacular. Matter of fact, there’s been so much change in it that when they first came out the IADC had a bit code that we put together for milled tooth bits or for roller cone bits. But one they did for PDC bits is so obsolete nobody uses it because they’ve changed so much. They need to go back and redo that.


But going back to the chisel bit, before we had roller cones, first thing we decided to do was ok, let’s rotate that chisel on the bottom and have it scrape the bottom and circulate drilling fluid down and bring the cuttings out. But the problem with that was it would drill shales very, very fast and then it would hit the sandstone and take the edge off of the chisel and you’d have to pull it out and sharpen the chisel and go back in. It’s great so, the next step was then can we put some teeth down there that will roll on the bottom? So this was done in 1901 or so, 1902. Probably the first well was--one of the first wells was Spindle Top, over here, near Beaumont in Texas--which kind of brings up the evolution in drilling fluid that’s happened.  We’ve had a gigantic change in drilling fluids.  We were pumping water. 
'''VEATCH:'''


Well obviously, water has two problems.  One, you can’t get a lot of pressure at the bottom of the hole to keep from having a blow-out.  Two, water doesn’t have a very high viscosity to bring the cuttings out.  Well, over at Beaumont, they ran into that problem, they looked, and there was nothing coming out of the well.  It was circulating, but they weren’t getting the cuttings out.  So, one of the guys, a guy named Hammel, saw a mud puddle that the cattle had run through, so he rode the cattle back and forth through it some more, picked up that fluid that had mud in it, put in the tank, circulated it around—oh! He threw some hay in it, too, to give it some more viscosity.  He circulated that down, and it just brought up tons of cuttings, and that’s the reason we call the drilling fluid mud because that’s where it started from.  It was mud.  And now, it seems like almost a sacrilege to call drilling fluid mud because our drilling fluid sometimes costs us almost six, eight hundred dollars a barrel; twenty dollars a gallon.  It’s much more expensive than milk, and maybe like wine.  It’s expensive!  And it seems like a bad thing to call that stuff mud anymore, but we do. 
The membership in the SPE, which involves--you’re communicating and associating with other members of SPE--has really brought about a lot of favorite memories, and these become favorites from one time to another.
 
But the evolution in drilling fluid has made a huge change in our drilling process: the ability to get the cuttings at the bottom; we want the drilling fluid to hit the bottom of the hole with a very low viscosity; we want it to have a high viscosity coming to the surface.  So that’s the technology we’re doing.  We can transform the drilling fluid after it comes out of the bit, from a low viscosity to a high viscosity.  But the seals in the bits, the way the bits drill, our assemblies changes to get bigger and bigger.  We found that the drill collars have to be tapered by so much, and technology was developed there. 
 
But I guess the biggest transition was probably the—that allows us to drill right now was probably MWD, Measurement While Drilling, or the telemetry systems, so that we can tell where we are without running—dropping a tool down and changing it every thirty feet.  We could measure it as we drilled.  And these tools now—so that we can make all kinds of measurements at the bottom of the hole—have allowed us to drill wells that were totally impossible.  If you look at the record well that was drilled at Sakhalin—ExxonMobil, Parker Rig on the island--drilled 6,000 feet vertically, and a total length of the well of 43,700 feet--which is, most of it, horizontally.  Like laying the drill pipe on the road out here and drilling into a house eight miles down the road.  That’s spectacular in my mind. 
 
But these are the transitions—the evolutions that we’ve had.  One of the things that I also might mention is the fact that most of the changes are coming by evolution, not revolution.  That is, we don’t make gigantic steps, radically change everything.  We basically improve what we’re working on.  It’s an evolutionary process, and it’s been very, very effective in improving our ability—where we were happy to drill thirty feet an hour, now we’re drilling three hundred, six hundred feet an hour.  


'''KERR:'''
'''KERR:'''


What do you consider to be some of the greatest challenges facing the industry, looking into the future?
Go into some specifics for us.


'''ROBINSON:'''
'''VEATCH:'''


Continuing along the lines of what we’ve evolved, let’s look at what’s coming down the pipe.  One of the biggest changes we need to make is the industry—by the industry—is the public’s perception of what we do.  We still—you go to a computer, you call up an icon, and what do you see from the oil patch?  Oil gushing over the top of a crown block.  We don’t do that anymore.  We need some public relations that people talk—the only public relations that I see most of the major oil companies doing is talking to the people already in the industry.  We need to go to places where nobody has any idea what a drilling rig looks like and explain to them what is going on. 
There are times, some of them that you really can’t repeat because of the appropriateness, but there is one that I recall with the Midcontinent Section back in the early days of the Midcontinent Section, even prior to my deep involvement. The Midcontinent Section’s officers decided that they would have a membership drive and they were going to have a picnic barbecue in the backyard of one of the officers. Now these officers who were executives in major oil companies and engineering upper level echelon of management, and they have some pretty nice grounds for having a big picnic. This was during Prohibition in Oklahoma, so these people brought in many, many, many cartons of Kansas liquor that they had in their garage for the big party. They’ve put out a lot of invitations and they had the big barbecue and lots of people came to the barbecue. The next morning all the liquor was gone and the Midcontinent Section has tripled their membershipThis is kind of typical of a lot of things that you get with association in the society.
 
I went back to my college where I got my bachelor’s degree, at Clemson.  They have absolutely no concept of what the drilling industry is about.  They were fascinated by some of the technology, but it was way over their heads.  They still think we drill into this gigantic pool of oil down there and suck out whatever we want. The idea that oil was in bricks like around their building?  No, they didn’t believe that.  We don’t do a good job at all, and we’re suffering the consequences of it because people that are making decisions about our industry are not necessarily the people who are in the industry. 
 
And I guess that’s my biggest concern about our industry.  We’ve done fantastic engineering developments, technology developments [and] advanced in unbelievable ways, and yet, we’ve failed to transmit these concepts [of] the great engineering we have and the use of science into languages so that the general public can understand what we’re doing. I’ve often thought that the major oil companies should hire a fiction writer.  If you look at the past history, there were a lot of books written—fiction books—that made a gigantic impact on the awareness of the general public, and we need to have that type of awareness because the general public—the separation of fact from fiction is very difficult. And they’ll read fiction, and say, “Oh, yeah, that’s fiction, but there’s still a lot of facts in it.”  So, it makes a big impact. 
 
What thrills me right now is attending this Petrobowl up here that Petroskills puts on.  Watching the young engineers answer these complicated questions, and cheer on the members of their team.  Here is a bunch of young people that are really interested in knowledge and the transmission [of knowledge], and they’re absorbing it like sponges, and it makes a lot of fun to see that type of activity. 
 
But we still need to worry about the people outside of our industry because we’re getting unbearable rules and regulations applied.  So, I did see a gigantic change in safety in my career.  When I first got here, in my career, they were using spinning chains on rigs, people were getting hurt, but as a research [unintelligible], getting out on the rig, and having the rig crew watch out for me, indicated to me that they are getting through to the people on the rig about safety.  They’re taking it seriously now.  It’s not just words.  I was walking down this thing, and I was reaching for something, and I heard this voice from the back yell, “Don’t touch that!”  And there was a steam line I was getting ready to put my hand on, and they were watching for me, they were watching out for meThat’s a big change in culture.  And now, that’s embedded in almost all the rig crews that I meet.  They’re interested in safety. 
A lot of people seem to think that we deliberately pollute oil on the beaches.  I don’t like oil on the beaches any more than a hippie does, but still, I’m still concerned about how it gets there, and it’s a big effort, and I don’t think that we’re transmitting that concept of effort and safety to the general public like we should.  And I think that’s our biggest challenge right now.  


'''KERR:'''
'''KERR:'''


Do you see other challenges forthcoming that—you know, in the future of the industry?
What has made working in the petroleum engineering industry meaningful for you?


'''ROBINSON:'''
'''VEATCH:'''


That was the biggest challenge.  Right now, I’m lucky, I tell people I’ve got dessert on my career coming up because ExxonMobil called me and wanted to know if I would help them design the next rig for Sakhalin Island.  The reservoir is 48,000 feet away.  We’re going to drill, horizontally, that far, and then the other part of the reservoir is 60,000 feet, so we’re basically designing a rig to drill a world record well 48,000 feet on this side, and potentially go 60,000 feet on the other side.  I don’t see any limit to drilling.
The things that have made the petroleum engineering industry meaningful to me is that during my experience as both a production engineer, research scientist, a research engineer, and a research supervisor is the broad spectrum of technical disciplines that we were involved with in the many things that we addressed. In some industries, you get down and you focus on one particular discipline, such as possibly electrical engineering so to speak.  


The technology—the evolving—one of the things that we need to do is instrumentation and measurements.  Right now, we’re measuring a lot of things, but we’re not digesting it for the driller.  You can’t give him a chart of sixteen screens or twenty screens to look at and have him make decisions.  You need to take all that data and blend it into something that the driller can use, and blend it in.  And this is, I think, the next biggest challenge, in terms of taking all of the things that we can measure—and this is wonderful to be able to measure it, but just the numbers, themselves will be overwhelming to a driller that’s trying to watch so many dials and everything else.  We need an artificial driller, so to speak, to take that data and tell the driller, “Ok, this, this, or this may be happening. Now the driller can make the decision about which it is and what it is, but it will digest the information to him and transmit it.   
In petroleum engineering you cover the gamut. You’ve got to cover Geology, you’ve got to cover Geophysics, you’ve got to cover well logging and well evaluation, you’ve got to cover reservoir engineering, and you’ve got to cover production operations and stimulation, and you’ve got to deal with the environment.  And all of these, in some sense, bring you to having to involve many disciplines of science, radioactivity, electricity, physics, chemistry, chemical engineering, thermodynamics, and these make a very interesting stew that may or may not prevail in other engineering disciplines.   
 
But I think that in my experience as a petroleum engineer is that you’ve got to cover the waterfront and you’ve got to do it in a well back-grounded way. To me, that’s made petroleum engineering a fun thing to do.  So back to my dad, I did find a job working in something I like. Because I did learn to like it, but it was easy to learn.
So, I see this as a wonderful, marvelous opportunity for transmission of data. We’re now getting transmission of data using the new reamer that was just shown here at this show. A bypass on this new technology that these tollbooths have (as you drive by, it reads your number, and takes money out of your [account]).  Well, they can use that to open and close things at the bottom of the hole.  We’re sitting on the verge of some really good stuff.  It all hasn’t been done yet.  It’s still an exciting industry that’s—and we’re far from limited right now in operations.  


'''KERR:'''
'''KERR:'''


What has made working in the petroleum industry meaningful to you?
How has being a member of SPE affected your work and your career?
 
'''ROBINSON:'''
 
Continuing along the lines of future stuff, if I go back, and look at what was meaningful to me, and the thing that fascinated me was the application of almost all kinds of technology into the new developments.  When I was banished from drilling, and [was] in oil recovery, looking at micro-emulsions—I’d never heard of that.  Looking at surface tensions, I didn’t have any idea about that—a whole new era.  But there was so much application of different technologies from the basic science point of view. 
And that’s what’s been meaningful to me: to apply fundamental technology—fundamental science.  The pressure drop through a nozzle—how do you calculate that?  Well, (inaudible) energy per unit of volume, energy per unit of volume.  ½ mp squared, divided by volume, then you can derive the equation.  So, we’re applying in a very complex situation—we’re still applying basic, fundamental, simple science to it.  The chemistry involved with drilling is getting very complex.  The drilling fluids that we have now are not simple solutions.  They’re non-Newtonian. 
 
We’re looking at the next evolvement, I think, in drilling fluids is going to be the viscoelastic proponent of the [fluid].  The elastic G prime and the viscous proponent, modulous G double prime, which we don’t measure currently.  We’re measuring the viscosity of the fluid at several different shear rates.  About 5 to 1,022 reciprocal seconds, but we need to measure, for horizontal drilling, we need to be able to measure an elastic [inaudible] modulous so that we can transport these solids along without them settling.  Because even in like a 12 ¼ hole, solids don’t have to settle but about two inches to give us a problem.  And right now, on some of these older wells we are drilling, the total rig time used to back-ream out of the hole is as much as five drilling days.  If the rig costs $500,000 a day, we’re spending $2.5 million dollars because we can’t transport those cuttings.  We need the viscoelastic component.  We have, currently, an instrument company that’s built a device which is about the same size as the viscometer we normally use, to measure the viscoelastic component.  That’s being implemented now.  It’s beginning to get into the industry.  We need a good additive to put in our non-aqueous fluid to make the elastic constant.  So, these are the things that are coming down the pike that are going to be revolutionary. 
 
As I said, most of the time, it’s these small steps that we take.  We don’t make revolutionary steps.  We don’t take—totally change the system.  We improve it, improve it, improve it, and it’s still a long way to go, and I have no doubt that a lot of this stuff—and it’s application of basic, fundamental science that rheologically speaking, we treat our drilling fluid with the simplest model.  We use the Bingham plastic model, a two parameter model, which, for a rheologist is the simplest of the simple.  But it does a great job for us to treat drilling fluid.  We can keep—separate the plastic viscosity, which are the solids or the electrochemical behavior, which is the carrying capacity for the U point.  So we know what to treat when we get chemical contamination or we get solids, or the screen breaks—we know what to look for.  That doesn’t do a good job of calculating pressure drops because it doesn’t represent the total rheology of the system.  But as I said, we need also to change the concept of what we need for drilling fluid, and make it a viscoelastic material.  There’s a lot of activity in that field now, and so I would expect to see something very shortly.  A change in the way that we look at drilling fluid for horizontal drilling.  The bit changes that we’ve had have been spectacular.  We’ve got downhole motors now.  When we first started drilling horizontally, [to] change direction, they wouldn’t last one bit run.  Now we can do them through three bit runs.  So the lastimers that we’re putting in there last a lot longer.  So there’s been, over the years, lots of changes, but we still have a lot more to go, and lot more application of basic, fundamental science. 
 
'''KERR:'''
 
How has being an SPE member affected your career and your work?
 
'''ROBINSON:'''
 
One of the things I’ve always enjoyed with the Society of Petroleum Engineers is the fact that they try to stay on the leading edge of technology.  One of the things that I’ve enjoyed the most with SPE were the Forum Series.  They frequently have a forum on a subject for a week in Colorado.  Those were the most wonderful training experience you could have because the only people were accepted who were knowledgeable in the field, they would give papers.  You couldn’t record stuff that was said, and so it was off the record.  So, you could discuss problems from one company to another company (of the technical aspects—not the politics and all that).  You could actually get down and discuss the science and engineering involved in a particular subject.  You stay there for a week in a very pleasant atmosphere.  I loved those forums.  They were wonderful.  One: to get new ideas. Two: to solve old problems and to discuss where we were in certain subjects.  So SPE took a leading role in that. 
 
I’ve always enjoyed presenting papers at SPE; although I’ve seen a gigantic change in the society’s—most of the questions I see asked from the floor these days are very benign.  Years ago, they used to be rather vicious.  I mentioned the merger between Jersey Production Research and Humble Production Research.  We were fighting for the same dollars.  When Leon Rappaport with Jersey or Dr. Henry Ratchford with Humble gave a paper at SPE, the room filled up at the beginning of the session, and by the time either one of them spoke, there was not even standing room left; you could not even get into the room.  Nobody came to hear the paper, but everybody came to hear the questions that were asked afterwards.  It became vicious.  I think that’s why the merged the two companies together because those questions were vicious, and they were quite in-depth.  It was an interesting transition at the time, but people are a little more respectful [now]. 


I remember the first time I gave a paper.  I’d done some work in rock mechanics, looking at the transition of rock from plastic—brittle to plastic.  At that time, Ken Hubbard was known for his expertise in that field.  I had just graduated from college, and it was my first paper—professional thing.  I finished it, and asked if there were any questions, and he stands up, and I think my knees were shaking and he said, “That was a great paper.”  I almost collapsed. 
'''VEATCH:'''


But SPE has been a marvelous place to present new ideas and new technology, but the Forum Series they have are really well-planned and spectacular.  The depth of discussion of technology in the field—you have time to do that.  One of these meetings on a paper, you don’t have time to get into the details, but there, where you’re going to be there for a week, usually there’s a five minute presentation, and then a discussion for two hours.  Another thing I’ve noticed about drillers, though, and discussions: I go into an API [American Petroleum Institute] meeting or another meeting, [and] I go into a restaurant and the reservoir people are sitting there talking about politics and movies.  You go to any group of drillers, and they’re talking about drilling; anywhere around the world.  It’s amazing that they concentrate on drilling because it’s a fascinating subject.  I do, too.
When you think about how SPE is involved in your work and your career, there is just no question that without SPE, this industry wouldn’t be where it is because it offers the communication networking that people really need to get others to make some kind of contributions to problems that they’re trying to solve, the contribution to the solutions to problems. People write papers and from that you get some idea of how to solve a problem. You also have the meetings where people interact, this way or that way. Well, I think if people were left to their own resources with no other help from the outside, it would take them a tremendous amount of time to solve some of the problems that they have to solve. Through SPE and the networking, the associations, and the communications--this brings about a synergy that I think accelerates the application of technology and the addressing of the solution to problems that exist.


'''KERR:'''
'''KERR:'''
 
What are some of your most favorite memories about working in the industry?


'''ROBINSON:'''
Ralph, tell us a little bit about Software Enterprise Inc. or SEI and what you do.


Those Forum Series that we had were one of the most fascinating things that I ran into, working in the industry, as far as some of the favorite things that I had.  Those, I guess, I would list at the top.  Of course, the South Padre Island sessions that we have are excellent.  It’s amazing, when you get into—and it’s the same concept, I guess, with the Forum.  If you get into a relaxing atmosphere, the amount of work that you turn out is amazing.  It seems like it should be the reverse: that as you’re relaxed, then you quit working, but that’s not true.  It provides an impetus to the people who are working, and it’s relaxed.  We get a lot of work done. 
'''VEATCH:'''


I guess, my favorite –one of the best memories I have of working was actually visiting the rigs. I guess I miss that the most now that I’m retired because, as I said, after finally twenty, twenty-five years in the industry, and working on the rigs, I think I’m fairly competent in the drilling operations from a practical point of view.  And so, I enjoy visiting the company—the rigs—the company men from Exxon.  We worked together.  If they had a problem, we’d solve it together.  They’re extremely intelligent people.  They’re knowledgeable.  They generally have their own solutions.  Sometimes they invent new science to explain it, but still—the technical words they use, or the scientific words may not be right, but the concept, the approach and stuff [are].
SEI, or Software Enterprises Incorporated, grew out of a situation again of when I was working on my Ph.D. I had developed a research effort to look at reservoir history matching and I had developed an approach that my major professor was thinking would be a marketable situation and marketable process. When I finished my degree (my Ph.D. at the University of Tulsa), we formed the company and we took the computer model that I developed for my dissertation and we started a company of which he had half of the stock, I had half of the stock.  


For example, I had an opportunity a lot of times to select the rig I wanted to do a project on. There was one drilling superintendent named A.B. Lewis working for Exxon (or Humble--Exxon)He’d dropped out of high school at fourteen and work as a hall boy.  He worked his way up to Senior Drilling Superintendent.  As far as I was concerned, he had six PhDs in drilling. I mean, he didn’t have a [high school] diploma, but he understood drilling. I loved to take my projects to his rig and sit at his feet and absorb knowledge.  He understood drilling, he transmitted concepts and stuff that was extremely valuable to me. I don’t know how to transmit that to the next generation.
Well, I had a job to go back to Amoco which I felt was a lot more potentially lucrative to my survival than trying to go on with marketing this model but he-- my major professor--was also associated with the consulting outfit, and they were going to take this thing and run with it. Well, I couldn’t be actively involved in the marketing this while I was working for AmocoIt was a conflict of interest, so they took off with it. Eventually, my major professor and other people, they got in some kind of situation to where I didn’t want to have the model that I developed tied up by the associates that my major professor had connected with. So I said to him, “Look, let’s split up the model. You take and do with it whatever you want, and I’ll take it and do with it whatever I want.” We made that arrangement.  


This is the thing I like to tell my classes I teach: drilling is about 70-75% science and engineering and 25-30% art and experience. We still don’t understand everything that is going on at the bottom of the hole. We have a mountain to climb here.  It’s going to be an exciting next twenty to thirty years to measure these things because we can’t measure right now and to implement them into our technology, to get them into the equations that we are using, the calculations to get the coefficients that we need, but this is going to be an exciting period. The general industry is a marvelous place because they accept new ideas, implement them, exchange them, and improve them. And that’s been a joy to work with [in] my career.
So we went off, and each had our own piece of it. Well, I was working for Amoco, [so] I put it in moth balls. When I retired from Amoco, I just had a thing to pull out of moth balls there which was basically that model. But by that time, I was established in well stimulation and hydraulic fracturing and that’s what I like to do and that’s where the business was. I started doing consulting work, and I did that for jobs as they came in, and I also started teaching at industry school in hydraulic fracturing. This would be week-long schools at various places throughout the US and Canada and whatever. So, I just carried on, and consulted in well stimulation and hydraulic fracturing and other aspects (I wasn’t just limited to hydraulic fracturing). And I was teaching in industry schools and I have done that for most of the time since I retired from Amoco. And that’s been a really rewarding thing. And I’ve maintained my association with SPE, which is a very rewarding thing to do.






{{DEFAULTSORT:Robinson}}
{{DEFAULTSORT:Veatch}}


[[Category:Energy|{{PAGENAME}}]]
[[Category:Energy|{{PAGENAME}}]]

Revision as of 14:33, 6 January 2015

About Interviewee

Ralph W Veatch Jr. is president of Software Enterprises Inc., an engineering consulting firm. Dr. Veatch worked in the Research Department of Amoco Production Company for twenty-three years. Retiring in 1993 as supervisor of the Hydraulic Fracturing and Well Completions and Production Operations groups, he has authored or coauthored 25 technical papers and 12 books, and holds several patents. During his career he served on numerous advisory committees for the American Petroleum Institute, Completion Engineering Association, Gas Research Institute, Los Alamos National Laboratory, National Petroleum Council, and U.S. Department Of Energy.

About the Interview

Ralph Veatch: An interview conducted by Fritz Kerr for the Society of Petroleum Engineers, October 1, 2013.

Interview SPEOH000114 at the Society of Petroleum Engineers History Archive.

Copyright Statement

The content of this oral history transcript, including photographs, audio and audiovisual clips, and biographical information, and are intended for noncommercial educational and personal use only. Copyright restrictions apply. Commercial publication, redistribution, or use of the content is not permitted.

Anyone wishing to use the text, image, or audio or audiovisual files associated with this oral history transcript for publication, commercial use, or any other use not expressly permitted, must contact the SPE Historian.

Society of Petroleum Engineers Historian
10777 Westheimer, #1075
Houston, TX 77042

It is recommended that this oral history be cited as follows:

[Interviewee Name], interviewed by [Interviewer Name], SPE Oral History Project, Society of Petroleum Engineers History Archive, [Interview Date].

Interview Video

Interview

INTERVIEWEE: Ralph Veatch
INTERVIEWER: Fritz Kerr
OTHERS PRESENT: Amy Esdorn, Mark Flick
DATE: October 1, 2013
PLACE: New Orleans, Louisiana

KERR:

Ralph, why did you decide to work in the Petroleum Engineering Industry and how did you get involved to begin with?

VEATCH:

My decision for working in the petroleum industry was more situational than a conscious decision. It started that my dad was a professor of Mathematics, Head of the Mathematics Department at the University of Tulsa, and had been for some years. I graduated from high school in 1954 so going to college was to go to the University of Tulsa. The University of Tulsa had an extremely good Petroleum Engineering Department. It was one of the best departments in the school and that was an area that I thought might be a good area to go into. It turned out that it was a good area to go into because in the summer time petroleum engineering students got very good jobs working in the oil fields for major oil companies which could almost pay your entire tuition for the following year. That started me in to the oil business.

Prior to that my father and I had a kind of talked about a career, and I was 18 years old and at the peak of my knowledge. You’re always at the peak of your knowledge in the 18, 19, 20 year range and it’s downhill from there, but we’re kind of talking about what I was going to do as a profession and work so I said that what I want to do is I want to work in an area that I am doing things I like to do. My dad was pretty understanding and he said, “Well those kind of situations are somewhat few and far between. If you don’t want to be unhappy what you need to do is find out what you can do and do fairly well, do well enough to make a decent living at, and then learn to like to do it.”

That has served me well in my life but that’s how I got started in the industry and going through college, [I] worked in summer jobs, stayed in petroleum engineering, had some excellent professors at the University of Tulsa, found out I was very well trained to go in to that field and I liked it as I went through college. My graduation year I went on and got a Master’s Degree in Petroleum Engineering and then I went to work in the industry.

KERR:

Which discipline within the industry did you work and what drew you to that discipline?

VEATCH:

The discipline that I worked in the industry was--started out, as with many Petroleum Engineers--with major companies, and I went to work for company at that time called Amoco Production Company, a major company. You went to work as a Petroleum Engineer and you were generally assigned to some operating office in the field as doing engineering work there. You really didn’t have a whole lot of say in what you did. You were assigned to the work that was needed to be done.

In my case I started out in Monroe, Louisiana and worked in the--what was called the Mid-Continent division, which covered Louisiana, Arkansas, Alabama, Oklahoma, Kansas and whatever. At that time we went through a period--a training period--as a kind of training engineer. What we primarily did [was] everything that needed to be done from drilling a well to getting it completed, to getting it on production and to look at the reservoir engineering behavior and the production operations. So it wasn’t in a specific given area. It was more of a geographical region.

Then I worked for about seven years in the Producing Department and went up through various stages from Junior Engineer to Intermediate Engineer to Petroleum Engineer to Senior Petroleum Engineer, to Staff Engineer and then I got an opportunity to go to the research center of Amoco Research in Tulsa. During all that interval, I had moved from Monroe, Louisiana. After about a year, [I was] transferred to Jackson, Mississippi doing the same type of work, just different places, and worked there for about three years, and then transferred to Tyler, Texas. When I was in Tyler, Texas one day my boss came in and he said, “The Amoco Research Center has started a new program.” It was called Pan America at that time and I referred to as Amoco because that’s what it soon changed its name to, and was that way until I retired from there.

Anyway, he said, “They started a program and they’re going to bring engineers in from the producing department offices to the research center for short term tours of a year to two years so that they could maybe could get a better idea what goes on at the research center and then go back out to the producing department operations. Maybe have a better communication between the research center and the producing department.” He said to me would I like to consider having my name submitted to that program and I said yes, I think that might be an interesting thing. [A] couple of months later, he came back and said, “Well, you’ve been selected to go to the research center.” It was to be about six or eight months before I would be transferred to the research center, and so that was a kind of thing to look forward to. Well, my boss came to me and said, “The people at the research center might like for you to stay and you might like to stay. If that’s going to be possible situation,” he says, “and I think it is, because of the work you’ve done here at the office,” he said, “I think they’ll like you. I think they’ll want to keep you there.” He says, “If that happens, and you’re going to be there for the rest of your career, which you probably would, you need to get a PhD, and at your age you need to get your PhD now.”

[He] asked me if that was acceptable to me and I thought it over and said it was, so then I had to choose where to get a PhD, and to get accepted [into] a PhD program. It ended up that I was able to go to the University of Tulsa, which was having a PhD program in Petroleum Engineering. I was in that program for three years. That was a very interesting part of my life because I got in to a lot of areas of technology that I enjoyed, and I also found again that they trained me very well at the University of Tulsa to go in and work with colleagues of similar education in the industry.

I started back at Tulsa in 1967. I went to the research center in 1970, and from there I was offered a job in the drilling and well completions and production operations section which was not what I had gotten my PhD in, which happened to be reservoir modeling. However, the guy that was a supervisor of the drilling and production and completions, and production operations section really gave me an enticement to come and work in his section, which I did. That was a fortunate thing that I enjoyed that work there a lot. This fellow that I worked for was named Robert Fast. He was one of the inventors of [the] hydraulic fracturing process. Although I didn’t start out working in hydraulic fracturing, I eventually ended up in a specific area of hydraulic fracturing, and actually finished my career in that area. There’s a lot in between that goes on that got me into where I was, but it was mostly situational, and not that I had a whole lot of control other than just learning to like to do what I had to do and it was easy to learn to like to do it.

KERR:

Discuss your experience in the areas of hydraulic fracturing, well stimulation, and completion technologies.

VEATCH:

I also got into the well stimulation fracturing world in a more of a focused work because one day, my boss, [whose] name was Bob Huggins, called me into the office--and I wasn’t doing just fracturing work. I was doing a variety of things involved with well completion, production operation, well stimulation, perforating, fracturing and such. He calls me in and says, “The company has leased a large tract of property that runs through Colorado, Wyoming, and Utah from the Union Pacific Railroad. A lot of properties.” He said that the producing formations are extremely low permeability. They have permeability on the order of the sidewalk that we walk on, and they’re not having very good success with their fracturing treatments. They’re not paying out. And our reservoir people here at the research center had said to make those wells produce economically, you need to get a fracture that goes out at least 1,500 to 2,000 feet. He said, “Your job is to design a fracturing treatment which goes out at least 1,500 to 2,000 feet.”

At that time their fracturing jobs were running around 30,000 to 60,000 gallons of fracturing fluid with about two to five pounds per gallon, so I started trying to figure out what size of a fracturing treatment we needed to get out 1,500 feet from the wellbore, [to] penetrate from the wellbore. Studies indicated that it would take about 150,000 to 200,000 gallons instead of 30 to 50, and that was a big challenge at the time. This was in the late 1970’s. Also, that it would take a lot of propping agent to prop open a fracture of that size, so I put together a design with the tools that I had, the technical tools--whatever models we had available--and I did come up with a treatment design, a pumping schedule, a size, and it was somewhere around, I think, 200,000 gallons of fracturing fluid and about fourteen to fifteen box car loads of propping agent, which is sand.

So came the day of the fracturing treatment: I was there on location in Colorado where this first well was, and we did pump the job away successfully. That was a really kind of a big event. Wells started to produce fairly well, and we started in a program of what’s called massive hydraulic fracturing, where we kept on doing these additional fracturing treatments and they kept getting bigger and bigger. We’d done eight or nine of them, and so it came time to see what the results were. Well, when you put the results up against the 30,000 to 50,000 gallon treatments, the obvious thing was, that what was bigger was better, and bigger allowed them to take that acreage and develop it economically so that they could make money on that.

Well, [it] wasn’t maybe five or six months after that first well that the research department went through a total (along with the rest of the company) organizational restructuring, and so at the time, I--because of being successful in these fracturing treatments--was appointed to supervise a fracturing group which had three people in it, other than myself. I did serve and was involved with a number of industry committees, all of which I thought were very beneficial to the petroleum industry. These varied through the many SPE committees, sub committees, section officer, terms and a lot of cooperative work with the SPE headquarters office. Also with a number of non-petroleum engineering societ[ies], associated committees they were all involved with addressing issues that were important in well stimulation hydraulic fracturing area. At the time that this got started, we had, as I said, we had had some success with these massive hydraulic fracturing treatments up in Colorado, and this process of massive hydraulic fracturing low permeability formations kind of spread throughout the industry and grew and grew, much like the massive shale plays that we’re seeing happening today. Also, at the same time, the people that were in the group that I supervise grew to a large number and some extremely competent people who made a lot of contributions to the industry, working on fracturing technology.

But these committees, one of them I think is really a very interesting saga and it is the role of the National Laboratories. Amoco had kind of gotten a reputation for being experienced in massive fracturing treatment, but our basic knowledge needed quite a bit of development. We were finding as we moved from Colorado into Wyoming, into Utah, down to East Texas and West Texas, in those areas, that you could not unplug the technology from one place and plug it in to the other place and have it work as well as you wanted it to. So we kind of moved from the attitude that “bigger is better,” which it proved to be until we got very, very big to “smarter is better”. We started working from that, and improved the economic returns from these massive fracturing treatments.

During this process there was a lot of interest across the nation, and the Department of Energy got involved and decided that they would support some research to enhance the knowledge base. This brings in the National Laboratories of Sandia National Labs and Los Alamos, primarily. There were other national labs that were involved, but Sandia and Los Alamos were taking the lead in this. One of the interesting things was that they had come to us (us being Amoco) because they had a prospective repository for nuclear waste in Nevada and this involved whether or not an underground explosion would create a hydraulic fracture that vented to the atmosphere. So they came to Amoco and said “Hey, we need some help here and we want to do some work on hydraulic fracturing.” Well this evolved into their effort, or direction for fracture stimulation of the tight gas formations, and they became involved in a big way.

And that had a major project called the “Multi Well Experience” in Rifle, Colorado where this was something that was really unusual because, prior to that, not many of the major oil companies would get involved with government activities. They did not want the government to have much interaction with their so-called financial situations and it was not encouraged to do this. So it was kind of a new thing, but it was not encouraged. But it wasn’t also totally discouraged and at least in the 1980’s there was not an absolute “No, we’re not getting involved with any government issues.” It was, “Well, okay, go ahead, but be careful” type of attitude.

What we found was the industry had access to a lot of really high powered technical people--scientists and engineers. Typically when you start to mutually discuss problems with them they would say “well, that’s easy to solve.” Then they would get into the details and they’d find out well, maybe it’s not as easy as it might seem at first, but eventually they would come around and make some really good contributions. Well, the industries--actually the laboratories--pushed this research on massive gas in Rifle, Colorado, and they formed this multi well experiment situation [where] government put a tremendous amount of money into a lot of experiments that a major company, by itself, wouldn’t be able to afford to do. But with the government in there, and other small contributions like personnel…. I was fortunate enough to be closely involved with that experiment in getting the designs and the experimental program, and helping out with that but the government laboratories did most of the work.

At that time, I had a very good group of people working in fracturing and they made some contributions to the fracturing world that have totally redirected some of the efforts that we do and have brought about a lot of knowledge. This was because of the back and forth, the mutual work, the information that was available from a lot of these government agencies that helped in the overall growth of our knowledge, based on understanding of the fracturing process. That was, to me, a really a significant time in the development of the massive hydraulic fracturing world and it’s continued. As time goes on, people continued expanding their efforts in this and the massive hydraulic fracturing took the industry. Again, if we’re seeing a repeat of the same type of behavior in the massive shale place where we start out trying a few things and seeing that they work well and soon it spreads across to be a major, major contribution to the energy of the country.

KERR:

During your time on the committees with Sandia, Los Alamos, et cetera, you’d indicated that there was some experimentation. Can you please describe that experimentation in a little more detail, and also describe the new knowledge that was attained because of that experimentation.

VEATCH:

The work that the National Laboratories did provided a very, very important enhancement to our understanding of what controlled these massive hydraulic fracturing treatments and gave us a basis for enhancing the economic returns of our fracturing treatment designs. One of the really important things that came out of it was we got a good picture of how the subsurface stress profiles could vary with different formations as you went down through an entire set of intervals of formations. Prior to that time, it was pretty much industry thinking that it was a uniform profile in some sense--more or less uniform from the surface. As depth increase[d], stresses would increase. What we found, with some really detailed, expensive and precise tests, was that you could go down through a series of formations and the stress would start increasing some. Then you might observe a change that it started to decrease. It might wiggle around as you go deeper and change from large to small to large to small, back and forth. This was kind of a new revelation to a lot of people in the industry because they kind of [had] been used to the idea that stress profiles were a little bit like temperature profiles which did not vary a lot, but just gradually increase with depth.

Well, this had a major impact on fracture treatment design because if you came to a situation where you knew what these stress profiles were, you could take advantage of how they would affect vertical fracture growth. Vertical fracture growth affected the quantity of fluid that it took to create a certain penetrating depth. That was a really major factor in increasing the knowledge base, which made us then say, “Well, it’s important to run surveys that determine what these stress profiles are,” and to then decide our treatments accordingly. This was not the only issue. We found out that fractures would go in directions that were dependent on what the directional stress as mutual directional stress orientation was. This made us look at this aspect in other areas outside the experimental sites that we were planning. That is just a few of the things that were discovered for this fracturing work.

As a result of some of the information that was uncovered in the multi well experiment of the Department of Energy another experimental project, which Steve Holditch may have discussed, was the stage field experiments of the Gas Research Institute, which were done down in Texas and it was the same thing. It was a considerable sum of money, covering some extensive research that enhanced the knowledge based of how fractures grow, what causes them to grow, what tells you which way they might go and what their configuration is.

I was called on giving--after we’d gotten a lot of experience under our belt--I was on a Society of Petroleum Engineers Distinguished Lecture tour, giving a talk about massive hydraulic fracturing that was fairly early on [in] the stage of massive fracturing. I made a statement which has followed me through for a long time and still follows me. Today there’s still some basis for it, and the statement was (at the time) that hydraulic fracturing had been developed and patented in the late 1940’s. Between the late 1940’s and the early 1980’s, the industry had spent a tremendous amount of money on research in all the aspects of hydraulic fracturing; from the rock mechanics to the fracturing fluids to the propping agents to the pumping equipment, and after we had spent all that time, effort, and money we were at the stage that we knew everything about hydraulic fracture propagation except how far they went vertically, how far they penetrated laterally, how wide they were, what they look like, which way they grew. But except for those things, we knew everything about hydraulic fracturing. I have been credited with that statement many, many times. As time went on, and to this current day, there’s still quite a bit of that, that’s true, but it’s a lot less now than it was back when I first made that statement. But that was a kind of an interesting thing.

Another committee that I worked on that was a real interesting committee and a lot of fun, but a lot of work, was a National Petroleum Council Committee to try to discern the resource potential for gas in the low permeability type formations. This was a committee that was formed by probably about--consisted of about fifty companies. There were several of us from Amoco Research that were on that committee. One in the area of Geology, and I was in the area of reserves. The committee was headed by a guy named Ovid Baker from Mobil. He was the chairman of their finance department.

I was fortunate enough to be able to head up the engineering aspects of the well stimulation and fracturing aspect of the committee. It was about a two year effort in which our goal was to try to assess the potential of the low permeability gas resource through the year 2010. This was in like 1980 when we started this work. This brought a lot of the industry into the tight gas picture. It was kind of interesting. This is a two year project, and we ended up getting two books about that thick [indicates with his fingers] on the whole resource for the US. And as it turned out, we estimated that the price of gas would be about five to ten dollars an Mcf [unit of measurement of gas equaling one thousand cubic feet] by the 2010 area. Fortunately enough, we kind of hit the target fairly closely. Considering it was 25 years out. That was enjoyable and interesting aspect of my career.

[I] served on API [American Petroleum Institute] committees which had to do with procedures and practices, and this is a lot of people from the research area, were involved in those. I got involved in the Completion Engineering Association. [It] was early on in getting groups together to address certain specific aspects that companies were interested in. And [I] was, early on, one of the officers of the Completion Engineering Association. Basically, what came out of that were what are called the Industry Consortiums. And this is where people gather and they say, “We have a problem,” and other people are there, and they say “Okay, let me work on that problem, but it’ll cost you this much.” What has come out of it were these consortiums that address specific areas that companies are interested in and learning about and they paid memberships and then the researchers or whoever do the work and the members of that particular consortium get the results, and a lot of areas of fracturing are included in those. This is also kind of spread across the Drilling Engineering Association, et cetera, and the Production Operations Association. So it kind of got a thing going throughout other disciplines of the industry. That was kind of an interesting thing to get things going there.

I think one of my highlights on the National Petroleum Council Tour was when we finished our big final report and the fellow that was the head of the committee, Ovid Baker, and about three or four of us had to go to Washington for about a week at a time for about three weeks to finish drafting the report. So we get to the last bit of the drafting and the National Petroleum Council had set up a big celebration banquet to celebrate the completion of the great report. And the whole week that we were there finishing our editing stuff, the big buzz was that there were going to be two senators at the meeting, and that was a big deal, see? Okay.

We finished the report, and by then there’s a dozen of us in Washington going to this big banquet to celebrate the completion of the report. So we arrived and here’s this huge dining hall with all these round tables of about 8 or 10 people each. They don’t sit the committee together. We each go to a separate table where we don’t know anyone else on these things. So here I was at this table with these guys and the whole conversation was one-upsmanship. “I like Mozart.” “I think Beethoven is better.” The theater, the literature, it was all one-upsmanship in that area, and then it was one-upsmanship in who I worked for, who people worked for. I work for Senator So-and-so. Well, I’m at So-and-so’s office. Pretty soon, I got a little bit irritated with the whole conversation, so I turned to this guy next to me and say, “Hey do any of you guys around here ever hang spoons?” And this guy turned to me and said “I have no idea of what you’re talking about.” I said, “You don’t know how to hang a spoon?” “No, I have no idea.” “Did you graduate from college?” “Well. I got a set of pedigrees that were really something.” And I said, “You know with all those degrees, you need to learn how to hang a spoon and here’s how you do it.” So I picked up this spoon--by then this guy had the knife turned in already, and he was a little bit wondering how this was going on--so I pick up this spoon and I hang it off my nose. I’m sitting there looking intelligent with a spoon hanging down from my nose, and I thought these guys were going to crawl under the table. Here was this bumpkin from Oklahoma who was doing this thing that was really strange when it so happened, about two tables away, one of the senators happened to see that. He picked up a spoon and he put it on his nose, and he hung it. When that happened, spoon hanging spread throughout the entire banquet hall. There were guys up walking around with spoons hanging on their nose. It was a great ice breaker, but those guys at my table still kind of kept an eye on me. And that, to me, was one of the best uses of spoon hanging technology.

KERR:

What were some of the important technological milestones in your discipline?

VEATCH:

Okay, within my discipline and during my career, there have been a large number of what I would say are important technological milestones and developments that pertained to well simulation, particularly to hydraulic fracturing. As I said earlier, I made a statement--or reiterated a statement--that I made early on is that we knew everything about hydraulic fractures except how high they went vertically, how deep they penetrated, how wide they were, what their shapes were, and which way they went and what they looked like. And I think, during my career, there was an awful lot of enhancement of the knowledge, or knowledge base, that pertain to fracture propagation geometry that pertained to obtaining fracture--better fracture conductivity, which enhanced the production rates, the propping agents that we use today. There’s been a large number of new products that have come on the market to enhance the total results from hydraulic fracture. Fluid! Hydraulic fracturing fluids have been developed. And understandings of the basic issues that you need to know to make money by hydraulic fracturing. This has now expanded into the area of developing gas from the massive shales and it’s the same issue as it was when I was working in the tight gas formations. We’re just repeating the growth of understanding and technology that applies to massive shales. We’re not there yet, but we’re making enough headway that people are starting to improve their results, their successes, economically, in the shales.

I worked for Amoco. I started 1960, ‘67 I went back to school. In 1970 I went to the research department. I worked there until 1993 and retired from Amoco, and started doing consulting work, primarily in well stimulation and hydraulic fracturing, so I was not involved with a major company when the massive shale plays got started, but there weren’t many companies that were involved in these massive shale plays when I left Amoco, and this is a kind of an interesting phenomenon. There was one fellow, I wish I could recall his name right now, I can’t recall, George someone [George Mitchell] in Colorado, and this man persisted in trying to develop massive shales with large fracturing treatments. He finally started getting some successes and, as with everything else in the well stimulation world, if you got something that works really well or starts to work really well, someplace somebody’s going to try it somewhere else and pretty soon is going to spread like it has spread from the last ten or fifteen years to totally across the North American continent. Which has resulted in a tremendous increase in our resource base for gas energy, and oil also. I feel like I was fortunate to be in the window of time and to be a part of it.

I, myself, was a pretty minor part in any of this. The people that really accomplished it were the people that actually did the technology work, themselves, and developed their own specific contributions that in total combined to help us sustain and improve our energy resources. I think SPE is a very big contributor to this and I think that without an organization like SPE, where there was the communication across the industry, that we wouldn’t be where we are today. In not only the area that I was interested in, which was well stimulation, but in all areas, because I think that practices for people to hold things to their private areas that are potential money makers, SPE is an entity that encourages the dissemination and distribution of common technology.

Now it’s kind of like saying, well we’ve got freedom, freedom to discuss our successes and our failures. We tend to discuss our successes a lot more than we discuss our failures, but that’s okay because discussing your successes brings other people into developing ideas, developing creativity, and carrying on with things that address problems that once solved, enhance the potential gas and oil for our next ship. SPE has another aspect of it and, that is the camaraderie of the membership. The important thing to me is I come to the meetings, and I see people that I’ve known for a long time, that I respect, and hold a lot of feeling for just because of our association with the society and there’s a lot to that. It’s not something you can quantify, but it certainly is something that you can appreciate after you seen the result. The problem is it takes a long time to see the results or for me to become aware of… My goodness, it’s been a few years, but look, here we are again and I go to these meetings. I meet these people. They’re all great people. They’re good friends, people I care about, people I have a lot of respect for, and people who have made some real contributions to the industry, and SPE is an entity that really helps to keep this interaction going.

KERR:

What were some of the technological challenges that you’ve faced during your career?

VEATCH:

Well, as to technological challenges, it seems that a petroleum engineer’s life is a life of challenges, of new problems, and new situation. That’s the way it was with my situation as a petroleum engineer working at production department and particularly as a research engineer and a research supervisor for Amoco Research that I worked for. And this is primarily because we didn’t get involved in things unless they were problems, and we responded to our producing department to their problems and their needs. I don’t know how you--if I try to give you a list of what types of problems, it would take forever, but the problem that I first mentioned about here the company had leased all of this property--thousands and thousands of acres of property across three or four states—they didn’t know what to do with it. And so they said, “You guys at research, solve this problem.”

Well it seems like my experience with Amoco has just been a repeat and repeat and repeat of the same type of things of we’ve got a prob- and these are challenges and new problems about going from we don’t know what we’re doing to kind of working around, “Well we’ve got an idea now because we have a little more information, and we worked out the processes for getting this information to the point where we feel like we’ve kind of got things under control. So, it would really be hard for me to pinpoint one single major challenge because my experience have been I’ve had a whole series of major challenges and that’s kind of made life interesting. Just to go through, and to be fortunate enough to have the people that I’ve worked for, people that I’ve worked with, people who reported to me, to have them of the caliber to be able to address some of these big problems of finding out what we didn’t know, what we needed to know, how to go about finding out what we needed to know, and addressing those needs. This is back to where I say SPE was a big part of those solutions and addressing those challenges because of the network of being able to communicate with people across the industry who were facing the same challenges as we were in our companies.

KERR:

Was there a particular technological challenge or two other than operational challenges but technical challenges that you’ve face that you might highlight for us?

VEATCH:

Most of the challenges that I’ve faced, working for the producing department, were operational challenges of how you do something or where do you get equipment that properly does what you want it to do, how you get people to do what they should be doing. When I got into the research area, it was a little bit of the same, but more of the “What is the technology needed to take care of the various problems that we faced?” From a research standpoint where I work, it was, I would say, more technical, some operational but more technical.

KERR:

Were there any technical challenges that you like to share with us, some of the specific technological challenge?

VEATCH:

Specific technological challenges I have been through, faced, so many of those in the area of well stimulation and hydraulic fracturing, but they’re all interconnected and basically is how do you get or how do you create a fracture, hydraulic fracture, how do you create the penetration and achieve the fracture conductivity for that fracture and a particular type of formation that has a particular permeability, how do you go about doing that at the optimum range of what you spend versus what you get back. You get back the maximum for what you spend.

That’s what the entire industry faces in whatever discipline they are, it’s an optimization of when you’re trying to get a well to produce something more than it would produce naturally, how much money do you spend, and what’s the limit of expenditure before your returns start diminishing. That, sometimes, is one of the biggest problems.

And sometimes a bigger problem is the apathy of people not to address that, but just to take something that works. Whether it makes the most money or not is not as big of issue as whether it works because in fracturing, you don’t want things not to work. You want to go like you’re supposed to go. And it gets back to the old saw that sometimes it’s difficult to remember that your objective is to drain the swamp when you’re up to your ears in alligators.

If I was to say, if I was to be able to specify a given challenge, I would say getting people to economically optimize or develop things that would economically optimize the monetary returns for what they do. That’s a big challenge. It’s not specifically a technical challenge, but it is getting people to use the technology that’s available to do that.

KERR:

Tell us again, one of these technological challenges, as you say, that you’ve made progress on.

VEATCH:

I mentioned that one of the things that we had learned about hydraulic fracturing, we’d learn everything there was except how high they grow vertically, how deep they penetrate, how high they are, their geometry, which way they go, and what their configurations are. That scenario where we have made a tremendous amount of progress and when I say we, I talk about industry, and all of my comments really pertain to industry as opposed to me, personally.

In the area of fracture propagation geometry, there has been an extreme, I think, advancement in our understanding of what this is by the virtue of the development of fracture mapping processes that will give people an inference of how deep fractures go, what they’re shaped like, which directions they go, and some degree of their magnitude. That didn’t exist in the 1970s. It started with a lot of work. We’ve supported work and we conducted work in that area. A lot of that was in the multi well experiments that I mentioned earlier, and I think if there’s anything that we have--I can’t say that we’ve made a tremendous amount of progress in--it is in the basic perception of what is happening during a hydraulic fracture treatment. We don’t have it to the point that we feel [it] is the ultimate understanding or ability to measure this, but our progress at this point has been very, very, very large.

I don’t know that I know of another area or I can think of another area at this time where we’ve made as much progress over the time frame as we have in fracture mapping processes. Doesn’t say we’ve solved the problem. There’s still a tremendous amount of discussion about the reliability and accuracy of these processes, but they have certainly added to our ability to follow what happens when someone creates a fracture in a horizontal wellbore, and what’s going on during that process.

KERR:

Can you describe for us what you consider to be the most important contributions that you have made in the industry during your career and why?

VEATCH:

Address the issue of contributions that I have made, personally. It is really a difficult thing to address, and the reason is if [I] was to think, “What have I done in all of this?” it’s really hard to attribute anything specific to me, specifically. I don’t feel people are an island. I feel that people contribute because of their association with others who are addressing a common problem, and whatever is achieved is sometimes due to an individual, but no one could achieve those things without help from other people or some kind of assistance from other people and so I’m really hesitant to…

KERR:

Why don’t you go into something that you and your team, maybe when you were a team leader or something of that nature that you and your team contributed to the industry?

VEATCH:

Well, I had a premiere team of research people, and I handled some people who were very well technically trained and qualified. They were extremely bright, creative, innovative, and these people, also working with people from the producing department, and working with technologists that did the laboratory testing and the conducting of experiments. With all of that synergy, these people, they would come up with an idea and they would carry through with this.

One of the things that’s become an industry standard is the shut-in pressure decline analysis for fluid loss in a formation. Another one is the net pressure versus time behavior that allows you to get an inference of fracture propagation geometry. These are things that came out new. These are things that the industry picked up on, and these are things that have caused the revolutions in different thinking. The people that worked for me, like I say, they are the ones that did it. But they developed understandings of fluid behavior, rheology that we had not had before in the industry and in fracture computer reservoir or computer hydraulic fracturing simulators, developments of those.

These were people that worked in my group and I may have made some contributions by saying, “I want you to work on this and here are some problems” and focusing them on the problems. That’s about all I can say that I personally did in this. And giving them the “Here’s what we need” type thing and “here’s what we need to know” and “here are the integral aspects of what’s important” and maybe being able to evaluate what they might have come up with and say, “Well, this may be a better idea than this, and let’s focus on that.” A very major factor in design of hydraulic fracturing treatments is fluid loss of the fracturing fluid to the formation and how to control fluid loss to the formation because if fluids going out of the fracture into the formation, it’s not creating fluid volume, which is what you need for fracture propagation. Well, one of the things that the fracturing group and one or two individuals specifically came up with was a method for measuring or gaining an inference of the potential fluid loss that will occur during a fracturing treatment and this was called the shut-in pressure decline analysis approach. What this did, was this took the industry from using pinpoint laboratory core data of fluid loss tests in the laboratory to an individual well covering the entire vertical extent of a particular well. You got a broad picture of fluid loss behavior and with that, it improved your design. It gave you a basis for designing fluids which would mitigate that behavior.

Another thing was what is the general propagation behavior of a fracture? And that is, during injection as a fracture propagates, is it being confined so that you get a lot of propagation per unit injection because it’s not going vertically or that it is whether or not it’s doing that or whether it’s going vertically and thus not penetrating that gives you the production operation. Some of the folks in the group came up with the process called the Nolte Smith Net Pressure Versus Time Behavior.

And what they found out, or what they proposed, was that the pressure behavior--during a certain pressure behavior defined a certain fracture propagation behavior and it correlated whether your fracture was being confined vertically, whether it was growing vertically, whether it has stopped growing and was ballooning. The things that these people came up with have spread as being now standard industry practice in trying to understand what fracture propagation is during the time injection. And all this stuff is now the service company fracturing-side computers, and has become a standard part of fracture treatment design.

But I think, really, our understanding with fracture behavior and fracture models and what they can do to help you, if they’re used properly, has been a real benefit to the industry. Fracture propagation behavior as studied with computer models is somewhat a bit of a questionable thing because we have many different models and many different types and which one is right is always the question. Well it’s more, which model fits the propagation behavior of the fracture and the formation as the way it will occur, which model is built to fit that? It is more of the issue as to which model is right because if you apply a model which has a certain type of fracture growth algorithms in it to a fracture that doesn’t, if you apply that model to try to predict fracture behavior of a fracture that doesn’t adhere to those algorithms then you get mispredictions.

The industry’s development of those models and having ones which maybe every model applies to this situation but maybe only a few models apply to this situation. And we’ve had a lot of model developments and there’s still a lot controversy about the use of models. My take on fracture models is that essentially the model tells you what you’ve told the model to tell you and I don’t get much disagreement among my colleagues on that statement and it’s pretty true.

KERR:

What do you consider to be the greatest challenges facing the industry as we move into the future?

VEATCH:

The greatest challenges that I see in the area that I work in in the future in the industry is that we be able to create hydraulic fractures which will basically drain the massive shales. We have systems of doing that where you have horizontal wells that have possibly transverse fractures or parallel fractures and right now we’ve learned a lot but we’re still at the stage where you pay your money and you take your chances and this has been the history of fracturing.

From the beginning in the conventional permeability formations, we started with you pay your money and you take your chances. As time goes on and the industry learns about how to better do this, it improves. We move to the tight gas formations, same thing. A low knowledge base with experience and the focusing of people who knew how to solve problems who were intelligent, focusing on that issue until we gain a better understanding and knowledge base and it proves our success.

We’ve got the same thing with the massive shales. We’re in an embryo stage, not quite as embryo as we were five or six years ago, but still there. And, as we go on, I feel confident that the industry repeating what is has in the past, will continue to address this. I feel that the same thing applies to every aspect of the petroleum industry. We get new processes. We get new things and we develop them through a period until we understand them and it solves a problem, and it helps improve our energy resources. It’s not just fracturing, it has to do in drilling, it has to do in reservoir enhancement performance and in offshore operations and the entire gamut. The industry continually goes through--we face new things, we address the problems, and we start working on solutions and eventually, we improve the economic returns and the technical competence in addressing those problems. So my experience particularly mostly being in hydraulic fracturing, I think, is mirrored across the other technical disciplines of the petroleum industry.

KERR:

What are some of your favorite memories working in the industry?

VEATCH:

The membership in the SPE, which involves--you’re communicating and associating with other members of SPE--has really brought about a lot of favorite memories, and these become favorites from one time to another.

KERR:

Go into some specifics for us.

VEATCH:

There are times, some of them that you really can’t repeat because of the appropriateness, but there is one that I recall with the Midcontinent Section back in the early days of the Midcontinent Section, even prior to my deep involvement. The Midcontinent Section’s officers decided that they would have a membership drive and they were going to have a picnic barbecue in the backyard of one of the officers. Now these officers who were executives in major oil companies and engineering upper level echelon of management, and they have some pretty nice grounds for having a big picnic. This was during Prohibition in Oklahoma, so these people brought in many, many, many cartons of Kansas liquor that they had in their garage for the big party. They’ve put out a lot of invitations and they had the big barbecue and lots of people came to the barbecue. The next morning all the liquor was gone and the Midcontinent Section has tripled their membership. This is kind of typical of a lot of things that you get with association in the society.

KERR:

What has made working in the petroleum engineering industry meaningful for you?

VEATCH:

The things that have made the petroleum engineering industry meaningful to me is that during my experience as both a production engineer, research scientist, a research engineer, and a research supervisor is the broad spectrum of technical disciplines that we were involved with in the many things that we addressed. In some industries, you get down and you focus on one particular discipline, such as possibly electrical engineering so to speak.

In petroleum engineering you cover the gamut. You’ve got to cover Geology, you’ve got to cover Geophysics, you’ve got to cover well logging and well evaluation, you’ve got to cover reservoir engineering, and you’ve got to cover production operations and stimulation, and you’ve got to deal with the environment. And all of these, in some sense, bring you to having to involve many disciplines of science, radioactivity, electricity, physics, chemistry, chemical engineering, thermodynamics, and these make a very interesting stew that may or may not prevail in other engineering disciplines. But I think that in my experience as a petroleum engineer is that you’ve got to cover the waterfront and you’ve got to do it in a well back-grounded way. To me, that’s made petroleum engineering a fun thing to do. So back to my dad, I did find a job working in something I like. Because I did learn to like it, but it was easy to learn.

KERR:

How has being a member of SPE affected your work and your career?

VEATCH:

When you think about how SPE is involved in your work and your career, there is just no question that without SPE, this industry wouldn’t be where it is because it offers the communication networking that people really need to get others to make some kind of contributions to problems that they’re trying to solve, the contribution to the solutions to problems. People write papers and from that you get some idea of how to solve a problem. You also have the meetings where people interact, this way or that way. Well, I think if people were left to their own resources with no other help from the outside, it would take them a tremendous amount of time to solve some of the problems that they have to solve. Through SPE and the networking, the associations, and the communications--this brings about a synergy that I think accelerates the application of technology and the addressing of the solution to problems that exist.

KERR:

Ralph, tell us a little bit about Software Enterprise Inc. or SEI and what you do.

VEATCH:

SEI, or Software Enterprises Incorporated, grew out of a situation again of when I was working on my Ph.D. I had developed a research effort to look at reservoir history matching and I had developed an approach that my major professor was thinking would be a marketable situation and marketable process. When I finished my degree (my Ph.D. at the University of Tulsa), we formed the company and we took the computer model that I developed for my dissertation and we started a company of which he had half of the stock, I had half of the stock.

Well, I had a job to go back to Amoco which I felt was a lot more potentially lucrative to my survival than trying to go on with marketing this model but he-- my major professor--was also associated with the consulting outfit, and they were going to take this thing and run with it. Well, I couldn’t be actively involved in the marketing this while I was working for Amoco. It was a conflict of interest, so they took off with it. Eventually, my major professor and other people, they got in some kind of situation to where I didn’t want to have the model that I developed tied up by the associates that my major professor had connected with. So I said to him, “Look, let’s split up the model. You take and do with it whatever you want, and I’ll take it and do with it whatever I want.” We made that arrangement.

So we went off, and each had our own piece of it. Well, I was working for Amoco, [so] I put it in moth balls. When I retired from Amoco, I just had a thing to pull out of moth balls there which was basically that model. But by that time, I was established in well stimulation and hydraulic fracturing and that’s what I like to do and that’s where the business was. I started doing consulting work, and I did that for jobs as they came in, and I also started teaching at industry school in hydraulic fracturing. This would be week-long schools at various places throughout the US and Canada and whatever. So, I just carried on, and consulted in well stimulation and hydraulic fracturing and other aspects (I wasn’t just limited to hydraulic fracturing). And I was teaching in industry schools and I have done that for most of the time since I retired from Amoco. And that’s been a really rewarding thing. And I’ve maintained my association with SPE, which is a very rewarding thing to do.