Stuart Parkin: Difference between revisions

From ETHW
(Created page with "== Biography == James M. Daughton, Stuart Parkin and Saied Tehrani each made key contributions to Magneto-Resistive Random Access Memory (MRAM) technology. The work of Dr. Daug...")
 
No edit summary
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Biography  ==
== Biography  ==


James M. Daughton, Stuart Parkin and Saied Tehrani each made key contributions to Magneto-Resistive Random Access Memory (MRAM) technology. The work of Dr. Daughton in sensors and couplers, Dr. Parkin in Magnetic Tunnel Junction, and Dr. Tehrani in materials and processes, when combined, helped make MRAM a viable memory technology for both military and commercial applications. MRAM is an integrated-circuit access memory fabricated with nanotechnology. Using an electron spin to store data, it has the capability to combine many of the best attributes of different types of semiconductor memories.
[[Image:Parkin.jpg|thumb|right]]


Dr. Parkin is an IBM Fellow at the IBM Almaden Research Center, San Jose, California, where he manages the magnetoelectrics group, directs the IBM-Stanford Spintronic Science and Applications Center, and serves as a consulting professor at Stanford University.  Dr. Parkin has received numerous awards and honors including: distinguished lecturer for the IEEE Magnetics Society; the Economist Magazine’s “No Boundaries” Award for Innovation; the American Institute of Physics Prize for Industrial Applications of Physics; the European Physical Society’s Hewlett-Packard Europhysics Prize; and the American Physical Society’s International New Materials Prize (1994). He is a Fellow of the IEEE, AAAS, APS, MRS and the Royal Society, has two honorary doctorates and has authored more than 360 papers and holds more than 70 patents. He received a bachelor’s, masters and doctorate from the Cavendish Laboratory, Cambridge, all in physics.
[[James M. Daughton]], Stuart Parkin and [[Saied Tehrani]] each made key contributions to Magneto-Resistive Random Access Memory (MRAM) technology. The work of Dr. Daughton in sensors and couplers, Dr. Parkin in Magnetic Tunnel Junction, and Dr. Tehrani in materials and processes, when combined, helped make MRAM a viable memory technology for both military and commercial applications. MRAM is an integrated-circuit access memory fabricated with nanotechnology. Using an electron spin to store data, it has the capability to combine many of the best attributes of different types of semiconductor memories.


[[Category:Random_access_memory]]
Dr. Parkin is an IBM Fellow at the IBM Almaden Research Center, San Jose, California, where he manages the magnetoelectrics group, directs the IBM-Stanford Spintronic Science and Applications Center, and serves as a consulting professor at Stanford University.  Dr. Parkin has received numerous awards and honors including: distinguished lecturer for the [[IEEE Magnetics Society History|IEEE Magnetics Society]]; the Economist Magazine’s “No Boundaries” Award for Innovation; the American Institute of Physics Prize for Industrial Applications of Physics; the European Physical Society’s Hewlett-Packard Europhysics Prize; and the American Physical Society’s International New Materials Prize (1994).  He is a [[IEEE Fellow Grade History|Fellow of the IEEE]], AAAS, APS, MRS and the Royal Society, has two honorary doctorates and has authored more than 360 papers and holds more than 70 patents. He received a bachelor’s, masters and doctorate from the Cavendish Laboratory, Cambridge, all in physics.
[[Category:Electromagnetics]]
 
[[Category:Random access memory|Parkin]] [[Category:Electromagnetics|Parkin]]

Revision as of 19:02, 27 February 2012

Biography

Parkin.jpg

James M. Daughton, Stuart Parkin and Saied Tehrani each made key contributions to Magneto-Resistive Random Access Memory (MRAM) technology. The work of Dr. Daughton in sensors and couplers, Dr. Parkin in Magnetic Tunnel Junction, and Dr. Tehrani in materials and processes, when combined, helped make MRAM a viable memory technology for both military and commercial applications. MRAM is an integrated-circuit access memory fabricated with nanotechnology. Using an electron spin to store data, it has the capability to combine many of the best attributes of different types of semiconductor memories.

Dr. Parkin is an IBM Fellow at the IBM Almaden Research Center, San Jose, California, where he manages the magnetoelectrics group, directs the IBM-Stanford Spintronic Science and Applications Center, and serves as a consulting professor at Stanford University. Dr. Parkin has received numerous awards and honors including: distinguished lecturer for the IEEE Magnetics Society; the Economist Magazine’s “No Boundaries” Award for Innovation; the American Institute of Physics Prize for Industrial Applications of Physics; the European Physical Society’s Hewlett-Packard Europhysics Prize; and the American Physical Society’s International New Materials Prize (1994). He is a Fellow of the IEEE, AAAS, APS, MRS and the Royal Society, has two honorary doctorates and has authored more than 360 papers and holds more than 70 patents. He received a bachelor’s, masters and doctorate from the Cavendish Laboratory, Cambridge, all in physics.