Milestone-Proposal:LORAN: Difference between revisions

From ETHW
(Article updated via HTTP request)
(Article updated via HTTP request)
Line 53: Line 53:
INSERT INSERT INSERT
INSERT INSERT INSERT
PIERCE ARTICLE HERE.
PIERCE ARTICLE HERE.
INSERT  LORAN CHART HERE
The Gee System in Britain
The Gee System in Britain
At the time that loran was being designed, there existed in Britain a similar navigation system being developed called Gee. Gee was also a pulse-modulated hyperbolic navigation system, similar to loran. Gee operated at ultra-high frequencies and was limited to line-of-sight distances, of 400 miles or so. Gee was intended for aircrafts traveling short distances; not long sea voyages. In mid-1942, R. J. Dippy, who had invented the Gee system, came to the United States for eight months to assist in loran development.  Pierce admits that Dippy's basic concept was borrowed by American scientists working on long-range navigation but not Gee designs and nor techniques. He acknowledges that "Loran copied gee's concepts rather than techniques and may be said to have been invented in America in the sense in which Galileo is said to have invented the telescope".
At the time that loran was being designed, there existed in Britain a similar navigation system being developed called Gee. Gee was also a pulse-modulated hyperbolic navigation system, similar to loran. Gee operated at ultra-high frequencies and was limited to line-of-sight distances, of 400 miles or so. Gee was intended for aircrafts traveling short distances; not long sea voyages. In mid-1942, R. J. Dippy, who had invented the Gee system, came to the United States for eight months to assist in loran development.  Pierce admits that Dippy's basic concept was borrowed by American scientists working on long-range navigation but not Gee designs and nor techniques. He acknowledges that "Loran copied gee's concepts rather than techniques and may be said to have been invented in America in the sense in which Galileo is said to have invented the telescope".
Line 64: Line 68:
" The crews of loran stations varied somewhat in size, depending on their locations. They have averaged about fifteen men. As the stations had to be entirely self-sufficient, they had cooks, hospital corpsmen, in addition to the electronic technicians who operated and maintained the transmitters. Each station was commanded by a commissioned officer, usually a lieutenant, with a chief petty officer as second in command. Prospective commanding officers were given a short training course in loran and administration before assignment. Many young men dreaded loran duty because of the isolation, but after it is over, nearly all of them felt it had been well worthwhile. At isolated stations, tours of duty were for one year. The great majority of loran stations were supplied with fuel, bulky spare parts, and large staple items by a Coast Guard supply ship, which called once or twice a year. Unless they were located near a large community, loran stations received mail; personnel, fresh stores, and emergency spare parts by Coast Guard airplane. Most stations had their own airstrip." (*)
" The crews of loran stations varied somewhat in size, depending on their locations. They have averaged about fifteen men. As the stations had to be entirely self-sufficient, they had cooks, hospital corpsmen, in addition to the electronic technicians who operated and maintained the transmitters. Each station was commanded by a commissioned officer, usually a lieutenant, with a chief petty officer as second in command. Prospective commanding officers were given a short training course in loran and administration before assignment. Many young men dreaded loran duty because of the isolation, but after it is over, nearly all of them felt it had been well worthwhile. At isolated stations, tours of duty were for one year. The great majority of loran stations were supplied with fuel, bulky spare parts, and large staple items by a Coast Guard supply ship, which called once or twice a year. Unless they were located near a large community, loran stations received mail; personnel, fresh stores, and emergency spare parts by Coast Guard airplane. Most stations had their own airstrip." (*)


5. Training operators and navigators: A great number of radio operators and technicians from the US and other countries had to be trained on how to operate the new navigation transmitters. Equally important, navigators aboard ships and aircrafts had to learn a whole new way of doing things to find their position.|a7=The Hood building is not a suitable place for the proposed  IEEE plaque. Instead, the loran  milestone plaque could probably be mounted alongside the other IEEE milestone plaques at MIT Building N42,  211 Massachusetts Avenue. The Boston Milestone Committee will seek their approval from MIT and proceed accordingly. |a8=No|a9=The proposed plaque would be be wall-mounted outdoors,  probably attached to  MIT Building N42, alongside other plaques at 211 Massachusetts Avenue.  The plaque would be readily visible to pedestrians walking on this public sidewalk. |a10=MIT|a11=No|a12=The Boston Section with support from local  Society Chapters, and financial contributions from sponsors.|a13name=Bruce Hecht|a13section=Boston|a13position=2010 Chair|a13email=Bruce Hecht|a14name=Robert Alongi|a14ou=Boston Section|a14position=Section Business Manager|a14email=sec.boston@ieee.org|a15Aname=Gilmore Cooke|a15Aemail=gilcooke@ieee.org|a15Aname2=|a15Aemail2=|a15Bname=c/o Robert Alongi|a15Bemail=sec.boston@ieee.org|a15Bname2=To be assigned later|a15Bemail2=|a15Cname=Gilmore Cooke|a15Ctitle=retired PE|a15Corg=Boston Section Executive Committee|a15Caddress=8 Canvasback, W. Yarmouth, MA 02673|a15Cphone=617-759-4271|a15Cemail=gilcooke@ieee.org}}<br>[[Media:Pierce_Loran.pdf|Pierce Loran.pdf]]<br>[[Media:Loran1.jpg_.png|Loran1.jpg .png]]<br>[[Media:Loran_chart.png|Loran_chart.png]]  
5. Training operators and navigators: A great number of radio operators and technicians from the US and other countries had to be trained on how to operate the new navigation transmitters. Equally important, navigators aboard ships and aircrafts had to learn a whole new way of doing things to find their position.|a7=The Hood building is not a suitable place for the proposed  IEEE plaque. Instead, the loran  milestone plaque could probably be mounted alongside the other IEEE milestone plaques at MIT Building N42,  211 Massachusetts Avenue. The Boston Milestone Committee will seek their approval from MIT and proceed accordingly.|a8=No|a9=The proposed plaque would be be wall-mounted outdoors,  probably attached to  MIT Building N42, alongside other plaques at 211 Massachusetts Avenue.  The plaque would be readily visible to pedestrians walking on this public sidewalk.|a10=MIT|a11=No|a12=The Boston Section with support from local  Society Chapters, and financial contributions from sponsors.|a13name=Bruce Hecht|a13section=Boston|a13position=2010 Chair|a13email=Bruce Hecht|a14name=Robert Alongi|a14ou=Boston Section|a14position=Section Business Manager|a14email=sec.boston@ieee.org|a15Aname=Gilmore Cooke|a15Aemail=gilcooke@ieee.org|a15Aname2=|a15Aemail2=|a15Bname=c/o Robert Alongi|a15Bemail=sec.boston@ieee.org|a15Bname2=To be assigned later|a15Bemail2=|a15Cname=Gilmore Cooke|a15Ctitle=retired PE|a15Corg=Boston Section Executive Committee|a15Caddress=8 Canvasback, W. Yarmouth, MA 02673|a15Cphone=617-759-4271|a15Cemail=gilcooke@ieee.org}}<br>[[Media:Pierce_Loran.pdf|Pierce Loran.pdf]]<br>[[Media:Loran1.jpg_.png|Loran1.jpg .png]]<br>[[Media:Loran_chart.png|Loran_chart.png]]  






This is a test&nbsp;
This is a test&nbsp;

Revision as of 00:49, 15 December 2010

This Proposal has not been submitted and may only be edited by the original author.
Pierce Loran.pdf
Loran1.jpg .png
Loran_chart.png


This is a test