Milestone-Proposal:LORAN: Difference between revisions

From ETHW
(Article updated via HTTP request)
(Article updated via HTTP request)
Line 15: Line 15:
Jack Pierce's epic article published by the IEEE in 1946 is the prime source for the information here.  
Jack Pierce's epic article published by the IEEE in 1946 is the prime source for the information here.  
Who was he?
Who was he?
John (Jack) A. Pierce, who retired from a position as a senior research fellow at Harvard University, Cambridge, Mass. was awarded the Medal For Engineering Excellence in 1990 for the "design , teaching and advocacy of radio propagation, navigation and timing which led to the development of Loran,  Loran C and Omega." In 1941, Pierce began working at the Massachusetts Institute of Technology's Radiation Laboratory which was testing the United States' first hyperbolic radio aid to navigation called Loran. It inaugurated in October 1942. Later work produced Loran C which operated at a lower frequency of 100 kHz. After WWII, he was appointed senior research fellow in applied physics at Harvard and from 1950 to 1974 did work on low frequency navigation aids that lead to Omega.
 
Among his many awards are a 1948 Presidential Certificate of Merit and the 1953 Morris Liebmann Prize of the Institute of Radio Engineers. He earned a BA in physics from Harvard while an assistant at the University's Cruft Laboratory. (Photo and copy courtesy IEEE Spectrum, August 1990)
John (Jack) A. Pierce, a senior research fellow at Harvard University, Cambridge, Mass. was awarded the Medal For Engineering Excellence in 1990 for the "design , teaching and advocacy of radio propagation, navigation and timing which led to the development of Loran,  Loran C and Omega." In 1941, Pierce began working at the Massachusetts Institute of Technology's Radiation Laboratory which was testing the United States' first hyperbolic radio aid to navigation called Loran. Later work produced Loran C which operated at a lower frequency of 100 kHz. After WWII, he was appointed senior research fellow in applied physics at Harvard and from 1950 to 1974 did work on low frequency navigation aids that lead to Omega.
Among his many awards are a 1948 Presidential Certificate of Merit and the 1953 Morris Liebmann Prize of the Institute of Radio Engineers.  
JA Pierce was . . .???/////
JA Pierce was . . .???/////
In the spring of 1941, a small technical group was formed to receive and test some radio navigation equipment already being fabricated. This group, headed by Melville Eastman of the Microwave Committee, founder of General Radio Corporation of Cambridge, was organized under the newly formed Radiation Laboratory of the Massachusetts Institute of Technology, from which it drew two or three key personnel, while other were recruited from outside sources. Further research and investigations were undertaken and soon indicated that changes in the basic design were necessary..
In the spring of 1941, a small technical group was formed to receive and test some radio navigation equipment already being fabricated. This group, headed by Melville Eastman of the Microwave Committee, founder of General Radio Corporation of Cambridge, was organized under the newly formed Radiation Laboratory of the Massachusetts Institute of Technology, from which it drew two or three key personnel, while other were recruited from outside sources. Further research and investigations were undertaken and soon indicated that changes in the basic design were necessary..
Line 47: Line 48:
A second application of the same principle must be used, based on the time difference of a different pair of stations. In practice, one of the stations in the second pair also may be—and frequently is—in the first pair. In simple terms, this means signals must be received from at least three transmitters to pinpoint the receiver's location. By determining the intersection of the two hyperbolic curves identified by this method, a geographic fix can be determined.
A second application of the same principle must be used, based on the time difference of a different pair of stations. In practice, one of the stations in the second pair also may be—and frequently is—in the first pair. In simple terms, this means signals must be received from at least three transmitters to pinpoint the receiver's location. By determining the intersection of the two hyperbolic curves identified by this method, a geographic fix can be determined.
L
L
LORAN-C was originally developed to provide radionavigation service for U.S. coastal waters & was later expanded to include complete coverage of the continental U.S. as well as most of Alaska. Twenty-four U.S. LORAN-C stations work in partnership with Canadian and Russian stations to provide coverage in Canadian waters and in the Bering Sea. They system provides better than 0.25 nautical mile absolute accuracy for suitably equipped users within the published areas. and provides navigation, location, and timing services for both civil and military air, land and marine users. It is approved as an en route supplemental air navigation system for both Instrument Flight Rule (IFR) and Visual Flight Rule (VFR) operations. The LORAN-C system serves the 48 continental states, their coastal areas, and parts of Alaska. Dedicated Coast Guard men and women have done an excellent job running and maintaining the LORAN-C signal for 52 years. It is a service and mission of which the entire Coast Guard can be proud.


Loran stations


Deming
TODAY LORAN-C was originally developed to provide radionavigation service for U.S. coastal waters & was later expanded to include complete coverage of the continental U.S. as well as most of Alaska. Twenty-four U.S. LORAN-C stations work in partnership with Canadian and Russian stations to provide coverage in Canadian waters and in the Bering Sea. They system provides better than 0.25 nautical mile absolute accuracy for suitably equipped users within the published areas. and provides navigation, location, and timing services for both civil and military air, land and marine users. It is approved as an en route supplemental air navigation system for both Instrument Flight Rule (IFR) and Visual Flight Rule (VFR) operations. The LORAN-C system serves the 48 continental states, their coastal areas, and parts of Alaska. Dedicated Coast Guard men and women have done an excellent job running and maintaining the LORAN-C signal for 52 years. It is a service and mission of which the entire Coast Guard can be proud.
Baccaro
 
Quote from extracted from
 
Website entitled LORAN A
 
http://www.jproc.ca/hyperbolic/loran_a.html
 
" In mid-1942, R. J. Dippy, who had invented the Gee system, was sent to the USA for eight months to assist in Loran development. Many of the techniques used in Gee were adopted, and it was he who insisted that the Loran and Gee receivers were made physically interchangeable so that any RAF or USAAF aircraft fitted for one could use the other by simply swapping units. This was still to prove valuable, long after the war had finished, for Transport Command navigators flying the Australia run from the UK who could plug in the appropriate set depending on where they were. He also designed the ground station timing and synchronization equipment and his assistance speeded up Loran development considerably.  Once design had been finalized, production went ahead rapidly. The first Loran-A pair was on the air permanently by June 1942 (Montauk Point, NY, and Fenwick Is, Del.), and by October there were additional stations along the Canadian east coast. The system became operational in early 1943, and late that year stations were established in Greenland, Iceland, the Faeroes and the Hebrides to complete the North Atlantic cover, some being operated by the Royal Navy. At the request of the RAF, another station was put into the Shetlands to cover Norway, and Loran was eventually used by over 450 aircraft of Coastal Command.
 
" But it was in the Pacific that Loran made its greatest direct contribution to winning the war. Distances in the Pacific Ocean are enormous. As American forces moved westward, air fields were built on many of the small islands and atolls that dot the ocean beyond Hawaii. The limited range of many World War II aircraft demanded that they frequently land and refuel. Navigation by celestial observations is possible only when weather permits and, moreover, it requires a highly trained man who does little on the plane except navigate. Because of the lengthy training required, celestial navigators, particularly on Army Air Corps planes, were extremely scarce. Thus it was that loran provided the easy-to-use, accurate navigational system required to and the air fields so necessary for refueling.
The intensive bombing of Japan began as soon as air bases could be secured near enough for aircraft to make the round  trip. Accurate navigation was necessary not only for precision bombing, but also for carrying a maximum bomb load instead of a large reserve of gasoline. The loran system provided the means for this accurate navigation. By the end of World War II there were 75 standard loran stations serving the needs of aircraft and vessels in operation with over 75,000 receivers in use. Coverage in the Japanese and East China Sea Areas was extended in the 1950's
 
" The crews of Loran stations varied somewhat in size, depending on their locations. They have averaged about fifteen men. As the stations had to be entirely self-sufficient, they had cooks, hospital corpsmen, damage controlmen, and enginemen, in addition to the electronic technicians who operated and maintained the transmitters. Each station was commanded by a commissioned officer, usually a lieutenant (junior grade ), with a chief petty officer as second in command. Prospective commanding officers were given a short training course in Loran and administration before assignment. Command of a Loran station was almost invariably a young a Coast Guard officer's first independent assignment, and it provided an excellent opportunity for him to demonstrate his leadership qualities. Many young others dreaded Loran duty because of the isolation, but after it is over, nearly all of them felt it had been well worthwhile. At isolated stations, tours of duty were for one year. The great majority of Loran stations were supplied with fuel, bulky spare parts, and large staple items by a Coast Guard supply ship which called once or twice a year. Unless they were located near a large community, Loran stations received mail, personnel, fresh stores, and emergency spare parts by Coast Guard airplane. Most stations had their own airstrip."
 


#1 Mon
#2
#4
#5
#6
#7




http://www.scribd.com/doc/35814242/MIT-Radiation-Lab-Series-V2-Radar-Aids-to-Navigation
http://www.scribd.com/doc/35814242/MIT-Radiation-Lab-Series-V2-Radar-Aids-to-Navigation
THE COAST GUARD AT WAR
THE COAST GUARD AT WAR
IV LORAN VOLUME II
IV LORAN VOLUME II
Prepared in the Historical Section Public Information Division U.S. Coast Guard Headquarters Aug. 1, 1946
Prepared in the Historical Section Public Information Division U.S. Coast Guard Headquarters Aug. 1, 1946
http://www.uscg.mil/History/STATIONS/loran_volume_2.pdf
http://www.uscg.mil/History/STATIONS/loran_volume_2.pdf
REFERENCES
REFERENCES
JA Pierce, "An Introduction to Loran",  IEEE AES Magazine 1990 (attached)
JA Pierce, "An Introduction to Loran",  IEEE AES Magazine 1990 (attached)
Bowditch, American Practical Navigator.U.S. Navy Hydrographic Office, 1958 pp. 333 - 343  
Bowditch, American Practical Navigator.U.S. Navy Hydrographic Office, 1958 pp. 333 - 343  
Willoughy, Malcom Francis; The Story of LORAN in the U.S. Coast Guard in World War II, Arno Pro, 1980
Willoughy, Malcom Francis; The Story of LORAN in the U.S. Coast Guard in World War II, Arno Pro, 1980
WEBSITES
WEBSITES
THE COAST GUARD AT WAR. IV LORAN VOLUME II
THE COAST GUARD AT WAR. IV LORAN VOLUME II
Prepared in the Historical Section Public Information Division U.S. Coast Guard Headquarters Aug. 1, 1946
Prepared in the Historical Section Public Information Division U.S. Coast Guard Headquarters Aug. 1, 1946
http://www.uscg.mil/History/STATIONS/loran_volume_2.pdf
http://www.uscg.mil/History/STATIONS/loran_volume_2.pdf
http://www.loran-history.info/
http://www.loran-history.info/
http://www.uscg.mil/history/stations/loran_volume_1_index.asp
http://www.uscg.mil/history/stations/loran_volume_1_index.asp
Wikipedia, LORAN http://en.wikipedia.org/wiki/LORAN
Wikipedia, LORAN http://en.wikipedia.org/wiki/LORAN
Line 92: Line 89:
http://www.uscg.mil/History/STATIONS/LORAN_Section_1.asp
http://www.uscg.mil/History/STATIONS/LORAN_Section_1.asp
http://www.scribd.com/doc/35814242/MIT-Radiation-Lab-Series-V2-Radar-Aids-to-Navigation
http://www.scribd.com/doc/35814242/MIT-Radiation-Lab-Series-V2-Radar-Aids-to-Navigation
TO PROBE FURTHER
TO PROBE FURTHER
I. B.W. Sittelry, “ELEMENTS OFLORAN,” MIT Radiation Laboratoyr Re- port No. 499; March, 1944; also available as Navships 900, 027, Bureau of Ships, April 1944
I. B.W. Sittelry, “ELEMENTS OFLORAN,” MIT Radiation Laboratoyr Re- port No. 499; March, 1944; also available as Navships 900, 027, Bureau of Ships, April 1944

Revision as of 23:12, 9 December 2010

This Proposal has not been submitted and may only be edited by the original author.
Pierce Loran.pdf