Milestone-Nomination:First Optical Fiber Laser and Amplifier: Difference between revisions

From ETHW
No edit summary
No edit summary
Line 3: Line 3:
== In the space below the line, please enter your proposed citation in English, with '''title''' and '''text'''. ''Text absolutely limited to 70 words; 60 is preferable for aesthetic reasons. NOTE: The IEEE History Committee shall have final determination on the wording of the citation''  ==
== In the space below the line, please enter your proposed citation in English, with '''title''' and '''text'''. ''Text absolutely limited to 70 words; 60 is preferable for aesthetic reasons. NOTE: The IEEE History Committee shall have final determination on the wording of the citation''  ==


<br><br><br><br> <br><br>''Please also include references and full citations, and include supporting material in an electronic format (GIF, JPEG, PNG, PDF, DOC) which can be made available on the IEEE History Center’s Web site to historians, scholars, students, and interested members of the public. All supporting materials must be in English, or if not in English, accompanied by an English translation. If you are including images or photographs as part of the supporting material, it is necessary that you list the copyright owner.''  
<br><br>Between 1961 and 1963 Elias Snitzer and colleagues, working in the former AO complex located across the street from this plaque, constructed and operated the world's first optical fiber laser and amplifier. Fiber lasers that can cut and weld steel have since become powerful tools used in manufacturing. Optical fiber amplifiers now routinely boost signals in the global optical fiber network allowing messages to cross oceans and continents without interruption. <br><br> <br><br>''Please also include references and full citations, and include supporting material in an electronic format (GIF, JPEG, PNG, PDF, DOC) which can be made available on the IEEE History Center’s Web site to historians, scholars, students, and interested members of the public. All supporting materials must be in English, or if not in English, accompanied by an English translation. If you are including images or photographs as part of the supporting material, it is necessary that you list the copyright owner.''


== In the space below the line, please describe the historic significance of this work: its importance to the evolution of electrical and computer engineering and science and its importance to regional/national/international development.  ==
== In the space below the line, please describe the historic significance of this work: its importance to the evolution of electrical and computer engineering and science and its importance to regional/national/international development.  ==

Revision as of 17:10, 11 April 2012


Docket Number: 2012-01

Proposal Link: https://ethw.org/Milestone-Proposal:First_Optical_Fiber_Laser_and_Amplifier

In the space below the line, please enter your proposed citation in English, with title and text. Text absolutely limited to 70 words; 60 is preferable for aesthetic reasons. NOTE: The IEEE History Committee shall have final determination on the wording of the citation



Between 1961 and 1963 Elias Snitzer and colleagues, working in the former AO complex located across the street from this plaque, constructed and operated the world's first optical fiber laser and amplifier. Fiber lasers that can cut and weld steel have since become powerful tools used in manufacturing. Optical fiber amplifiers now routinely boost signals in the global optical fiber network allowing messages to cross oceans and continents without interruption.



Please also include references and full citations, and include supporting material in an electronic format (GIF, JPEG, PNG, PDF, DOC) which can be made available on the IEEE History Center’s Web site to historians, scholars, students, and interested members of the public. All supporting materials must be in English, or if not in English, accompanied by an English translation. If you are including images or photographs as part of the supporting material, it is necessary that you list the copyright owner.

In the space below the line, please describe the historic significance of this work: its importance to the evolution of electrical and computer engineering and science and its importance to regional/national/international development.

Elias Snitzer and colleagues developed the first working optical fiber laser and amplifier in 1963 at American Optical, drawing on his earlier work in optical fibers and his demonstration of the first solid-state laser made of glass in 1961. His ground-breaking combination of two young technologies, published in Applied Optics in 1964, was many years ahead of its time. The advent of optical fiber amplifiers was vital in building the high-speed backbone of the global telecommunications network, which carries our words, pictures and data around the planet. More recently, fiber lasers have become powerful tools in manufacturing, generating multikilowatt beams that can cut and weld materials from plastics to metals.

What features or characteristics set this work apart from similar achievements?

Other early solid-state lasers, such as the ruby laser demonstrated by Theodore Maiman in 1960, another IEEE Milestone, were made of bulk materials. The fiber laser uniquely transmitted the light it generated along a light-guiding core, concentrating its energy in a small area inside the glass, and making it easy to transfer light from a fiber laser into a passive optical fiber for transmission. This became important when fiber-optic communications emerged in the 1970s, because optical signals needed to be amplified after passing through tens of kilometers of glass. Initially that required converting the signals into electronic form for amplification, but building upon Snitzer's work, David Payne and others developed optical fiber amplifiers that could directly boost signal strength across a wide range of wavelengths, allowing high-speed transmission across continents and under oceans. That technology is today the backbone of the global telecommunication technology. Fiber lasers also have proved exceptionally well suited for efficiently generating high-quality beams with powers reaching many kilowatts in strength, greatly expanding the applications of lasers in cutting, welding and other machining of materials.

Please attach a letter in English, or with English translation, from the site owner giving permission to place IEEE milestone plaque on the property.

The letter is necessary in order to process your nomination form. Click the Attachments tab to upload your letter.