Beam Lead Technology: Difference between revisions

From ETHW
No edit summary
No edit summary
Line 3: Line 3:
<br>Beam Lead Technology is the name given to the structure and method of micro-fabricating a semiconductor device structure. Its original application was to high-frequency silicon switching transistors and ultra-high-speed integrated circuits.<span style="">&nbsp; </span> <span>In the early 1960's Lepselter<sup>1, 2</sup><span style="">&nbsp; </span>developed the <span style="">&nbsp;</span>techniques for fabricating a structure consisting of electroforming an array of thick, self-supporting gold patterns on a thin film Ti-Pt Au base, hence the name "beams", deposited on the surface of a silicon wafer . The excess semiconductor from under the beams was removed, thereby separating the individual devices and leaving them with self-supporting beam leads or internal chiplets cantilevered beyond the semiconductor. The contacts served as electrical leads in addition to also serving the purpose of structural support for the devices. </span>  
<br>Beam Lead Technology is the name given to the structure and method of micro-fabricating a semiconductor device structure. Its original application was to high-frequency silicon switching transistors and ultra-high-speed integrated circuits.<span style="">&nbsp; </span> <span>In the early 1960's Lepselter<sup>1, 2</sup><span style="">&nbsp; </span>developed the <span style="">&nbsp;</span>techniques for fabricating a structure consisting of electroforming an array of thick, self-supporting gold patterns on a thin film Ti-Pt Au base, hence the name "beams", deposited on the surface of a silicon wafer . The excess semiconductor from under the beams was removed, thereby separating the individual devices and leaving them with self-supporting beam leads or internal chiplets cantilevered beyond the semiconductor. The contacts served as electrical leads in addition to also serving the purpose of structural support for the devices. </span>  


<u><span>Legacy</span></u>
<u><span>Legacy</span></u>  


This technology, also known as air-bridge technology, has established itself for its unsurpassed reliability in high-frequency silicon switching transistors and ultra-high-speed integrated circuits for telecommunications and missile systems. The Beam Lead devices, produced by the hundreds of millions, became the first example of a commercial microelectromechanical structure (MEMS).<br>
This technology, also known as air-bridge technology, has established itself for its unsurpassed reliability in high-frequency silicon switching transistors and ultra-high-speed integrated circuits for telecommunications and missile systems. The Beam Lead devices, produced by the hundreds of millions, became the first example of a commercial microelectromechanical structure (MEMS).<br>  
 
Other omniscient uses of Beam Lead Technology are the silicide process and structure used in every silicon integrated circuit today; plasma etching, and precision electro-forming, etc.


<span></span><span>[BSTJ_Beam_Lead_Technology.pdf‎]</span>[[Image:BSTJ Beam Lead Technology.pdf|center|BSTJ article]][original IEEE paper.pdf][[Image:Original IEEE paper-1965.PDF|Image:Original_IEEE_paper-1965.PDF]]<br>  
<span></span><span>[BSTJ_Beam_Lead_Technology.pdf‎]</span>[[Image:BSTJ Beam Lead Technology.pdf|center|BSTJ article]][original IEEE paper.pdf][[Image:Original IEEE paper-1965.PDF|Image:Original_IEEE_paper-1965.PDF]]<br>  

Revision as of 18:39, 5 April 2009

Beam Lead Technology


Beam Lead Technology is the name given to the structure and method of micro-fabricating a semiconductor device structure. Its original application was to high-frequency silicon switching transistors and ultra-high-speed integrated circuits.  In the early 1960's Lepselter1, 2  developed the  techniques for fabricating a structure consisting of electroforming an array of thick, self-supporting gold patterns on a thin film Ti-Pt Au base, hence the name "beams", deposited on the surface of a silicon wafer . The excess semiconductor from under the beams was removed, thereby separating the individual devices and leaving them with self-supporting beam leads or internal chiplets cantilevered beyond the semiconductor. The contacts served as electrical leads in addition to also serving the purpose of structural support for the devices.

Legacy

This technology, also known as air-bridge technology, has established itself for its unsurpassed reliability in high-frequency silicon switching transistors and ultra-high-speed integrated circuits for telecommunications and missile systems. The Beam Lead devices, produced by the hundreds of millions, became the first example of a commercial microelectromechanical structure (MEMS).

Other omniscient uses of Beam Lead Technology are the silicide process and structure used in every silicon integrated circuit today; plasma etching, and precision electro-forming, etc.

[BSTJ_Beam_Lead_Technology.pdf‎]File:BSTJ Beam Lead Technology.pdf[original IEEE paper.pdf]File:Original IEEE paper-1965.PDF