IEEE
You are not logged in, please sign in to edit > Log in / create account  

Kam Lau

From GHN

Jump to: navigation, search

Biography

The combined work of Yasuhiko Arakawa, Kam Y. Lau, and Kerry J. Vahala formed the basis for nearly all of today’s high-speed semiconductor laser design for lightwave high-speed telecommunications, particularly in the metropolitan and local-area arena. They not only established the physical principles required for high-information-rate transmission by directly modulating the lasers but also demonstrated the underlying physics and performance benefits of electronic quantum confinement to achieve the goal. Dr. Lau’s groundbreaking work in the early 1980s introduced the relationship between the relaxation oscillation frequency of the laser and differential optical gain—a material design property—and verified this relationship by operating a laser at low temperature, demonstrating that a higher differential gain would result in an increased modulation bandwidth. Dr. Arakawa and Dr. Vahala predicted in 1984 that quantum confinement could enhance differential gain and improve modulation speed per Lau’s findings. Subsequent work by these three proved that to be the first experimental verification that quantum-confined lasers have high relaxation oscillation frequencies. Their fundamental, theoretical and experimental breakthroughs have proven to have had a lasting impact on today’s Internet.

An IEEE Fellow, Dr. Lau is Professor Emeritus at the University of California, Berkeley. Formerly he was founding Chief Scientist at Ortel Corp., a leading supplier of linear fiber-optic subsystems for Hybrid Fiber Coax (HFC) infrastructure. Ortel was acquired by Lucent in 2000. In 1997 Dr. Lau co-found LGC Wireless Inc., an equipment supplier for in-building wireless coverage and capacity solutions. LGC was acquired by ADC Telecom (NASDAQ:ADCT) in 2007