T

O3NIO1063

NORWEGIAN COMPUTING CENTER
FORSKNINGSVEIEN 1 B

OSLO 3 - NORWAY

JUNE 1967

SIMULA 67
COMMON BASE DEFINITION
BY

OLE-JOHAN DAHL AND KRISTEN NYGAARD

0316 OSLO

Fra samlingen til
Kristen Nygaard
1926 - 2002




Introduction

The SIMULA 67 language is based upon experiences with
the SIMULA I language [1] and is intended as a general
programming language with a well developed simulation
capability.

As SIMULA I, SIMULA 67 is a true extension of ALGOL 60
[2], except that the own concept and integer labels
are excluded. Specifications are required for formal

parameters. The language will consist of two levels:

the SIMULA 67 Common Base, which should be a part of
any implementation of the language

the SIMULA 67 Complete Version, which contains the
Common Base as a true subset. The main difference is
that the Complete Version also will contain a unifi-
cation of the concepts "class" and "type", with the

natural consequences of such a feature.

The development and maintenance of SIMULA 67 will be
supervised by a SIMULA Standards Group.

The main new features of SIMULA 67 are:

the "class" declaration, with the possibility of introducing
subclasses by means of a prefix notation. This allows the
construction of hierarchies of data structures and associated

actions.

the "virtual quantities". These quantities are specified
in a class declaration and their precise meaning may be

defined (or redefined) in subclasses.

new means for referencing of objects, built upon the ideas
of C.A.R. Hoare [3], but extended to exploit the class-
subclass concept.




A class may also be used as prefix to ordinary blocks,
the effect being that all concepts defined in this class
are directly available within the block. In this way a
user may provide himself and others with augmented
versions of the language, containing aggregated concepts

oriented towards a specialized area of applications.

SIMULA 67 will contain one such problem oriented class
as part of the language: the class "SIMULATION". When
it is used as a prefix to a block features corresponding
to those of SIMULA I are available. Transcription of
SIMULA I programs into SIMULA 67 will be very simple
when the prefix "SIMULATION" is used.

Standard classes oriented towards data processing,
engineering problems, etc. are possible and natural

additions to the language.

The range of application will be the same for botih the
Common Base and the Complete Version, the difference

being greater user convenience and improved machine

efficiency in certain areas by using the Complete Version.




™o
.

- F
Class Declarations
2.1 Syntax
<declaration> ::= <ALGOL declaration>|<class declaration>|<empty>
<class identifier> ::= <identifier>
<prefix> ::= <empty>|<class identifier>
<virtual part> ::= <empty>|virtual : <specification part>
<class body> = <statement>|<split body>
<split body> = <block head><statement 1list)
; inner; <compound tail)>
<statement 1list> ::= <empty>|<statement list>j<statement>
<class declaration> ::= <prefix><main part>
<main part> ::= class <class identifier>
<formal parameter part)>;
<specification part><virtual part>
<class body>
2.2 Semantics

A class declaration serves to define the class associlated
with a class identifier. The class consists of objects,
each of which is a dynamic instance of the class declaration
(cf. 4.1 and 4.2.2)on object designators.:.

The class body always acts like a block. If it takes the
form of a statement which is not an unlabelled block, the
class body is identified with an implicit block enclosing
the statement.

For a given object the formal parameters, the quantities
specified in the virtual part, and the quantities declared
local to the class body, are called the "attributes" of the
object. The statements of the class body constitute the
"operation rule" of the object. The operation rule of a
split body is divided into the "initial operations" and the
final operations", separated by the symbols "j;inner;". For
an object whose class body is a split body the symbol "inner"

represents a dummy statement.




p.2.1.

Subclasses

A class declaration with the prefix "C" and the class
identifier "D" defines a subclass D of the class C. An
object belonging to the subclass consists of a "prefix
part", which is itself an object of the class C, and a
"main part" described by the main part of the class
declaration. The two parts are '"concatenated" to form one

compound object. The class C may itself have a prefix.

Let Cl,C2,.¢.,Cn be classes such that C, has no prefix and
C, has the prefix Gy _; (k=2,3,...,n). Then Cq,Cpy...,Cp 4
i1s called the prefix sequence of C, (k=2,3,...,n). The
subscript k of C, (k=1,2,...,0n) 1s called the'prefix level"

of the class. C; 1s said to include C., 1f 1 < J, and C; 1is
called a subclass of Cj ifi>j (1,j=1424...4n). The
prefix level of a class D 1s said to be "higher" than that

of a class C 1f D is a subclass of C.

The diagram below depicts the following class hierarchy and
the structure of objects belonging to each class.

class A ceevee}

class B ceceese}

class C sesees}
D I.l'..;
class E seeaesey

> W W o
e]
=
O]
n
10)]

.
) -O

&
» |

0]

|

//
E
i
o'
1
o |
S I —
1
o'
]

Class relationships

Structures of objects




1 2.2

A capital letter denotes a class. The corresponding lower
case letter represents the attributes of the main part of
an object belonging to that class. In an implementation of
the language the object structures shown above may indicate
the allocation in memory of the values of those attributes
which are simple variables.

Concatenatien

A compeund object can be described formally by a "“concatenated"

class declaration, which is defined by the following rules.

1) If the prefix refers to a concatenated class declaration,
in which ldentifier substitutions have been carried out,
then the same substitutions are effected within the main
part.

2) If identifiers declared or specified within the main part
ceincide with identifiers occurring within the prefix
declaration, then name conflicts are avoided through
suitable systematic changes of these identifiers within
the main part.. Identifiers corresponding to virtual
quantities of the prefix class are not changed.

3) The formal parameter list of the concatenated declaration
consists of the formal parameters of the prefix follewed

by these ef the main part.

4) The specificatien part is that of the prefix followed by
that of the main part,

5) The virtual part contains the virtual specifications of

the prefix follewed by those of the main part.




6) The block head of the class body contains the declarations
in the block head of the prefix bedy followed by those
of the main part.

7) 1In the concatenation of operation rules, that of the main
part is considered "inner" to that of the prefix. From
the prefix the eperation rule of the main part may be
referenced threugh the symbol "inner". At the place of
"inner" the operation rule of the main part will be inserted.
If the prefix does not have a split body, it will be inter-
preted as if the symbols "sinners" is inserted between the
last statement of the operation rule and the final end.

8) Name conflicts within the concatenated class declaration
are resolved according to rules stated in section 2.2.4%.

It follows that for a prefixed class declaration the attributes

of the concatenated prefix sequence are accessible as local
quantities from within the class body. If an attribute identifier
of the main part coincides with a non-virtual one (cf. 2.2.4%)

of the prefix sequence, then the declaration or specification
occurring in the prefix sequence is superceded by the one
occurring within the main for references to the identifier
occurring within the main part or within any subclass.

An expressien, which is a subscript beund of an array declaration
belonging to a class body, may reference any formal parameter
of the concatenated class declaration, virtual quantities excepted.

-2.3 TFormal Parameters of Class Declarations

Specification is required for each formal parameter of a class
declaration. The following specifiers are accepted:

<type>, array and <type> array.

<type> parameters are transmitted "by value", i.e. to a <type>
parameter of an object, an initial assignment is made of the
Value denoted by the corresponding actual parameter of the

110 - generating reference (cf. 4.2.2).




2.4

-7 =

Array parameters are transmitted "by location", i.e. an array
parameter of an object designates the array denoted by the
corresponding actual parameter. The type of the actual array
parameter must be subordinate (cf. 3.2.4)to the type of the
formal parameter specification.

Virtual Quantities

A declaration or specification D1 is said to match another one
D2 of the same identifier, if

1) Dl and D2 define quantities of the same kind, and

2) the type of D1 coincides with, or is subordinate to (ef.
3.2.4) the type of D2.

A virtual quantity may be declared or specified as parameter
within the class declaration containing the virtual specification.
Name conflicts caused by concatenation (cf. 2.2.2) are dealt

with in the following way. Re-declaration or -specification of
an attribute is permitted, if and only if

1) it matches any conflicting one given at a lower prefix level,
and

2) 1t matches a virtual specification of the same identifier.

Conflicting virtual specifications are illegal. For an object
belonging to a given class, a virtual quantity is identified with
the attribute defined at the highest prefix level, whose definition
matches the virtual specification. The identification is valid

at all prefix levels which, after concatenation, contain the
virtual specification. Reference to a virtual quantity, for

which no matching definition has been given, constitutes a run

time error.

It follows that a virtual quantity introduced at one prefix level
makes it possible to refer, at this level, to a quantity defined

at some higher prefix level. Alternative definitions may be




3.1

3.2

Je2.1

3.2,2

- 8 =

provided within different subclasses of the given class.
Furthermore, a definition given at one prefix level (which

‘may be the level of the virtual specification itself) will

be superceded by a matching definition provided within a
subclass.

The following specifiers are accepted for virtual quanitities:

label, switch, procedure and <type> procedure.

Types

Syntax

<type> ::= <ALGOL type>|ref<qualification>|string
<qualifiecation)> ::= <empty>|(<class identifier>)
<expression> ::= <ALGOL expression)|<string expression> |

' <reference expression>

Semantics

Reference Types

Associated with an object is a unique value of type ref, which
is said to "reference" or "point to" the object. A reference
value may, by qualifying a declaration or specification by a
class identifier, be restricted to point to objects belonging
either to the stated class or to any of its subclasses.

The reference value "none" is a legal value of any quantity of

type ref, regardless of its qualification.

Strings

ALGOL 60 is extended by including the symbol "string" as a

type declarator. ©String operations and expressions to be included
in the Common Base will be defined by the SIMULA Standards Group.




2.3 Initialization

'Any dynamic instance of a.declared variable is given an initial
value at the time of entry into the block to.which it is local.
One initial value is associated with each <type>:

real 0

integer 0

Boolean false

‘string implementation dependent

ref none, regardless of qualification

.2.% Subordinate Types

The concept "subordinate" is defined for reference types. One
reference type is said to be subordinate to a second one if the
qualification of the former is a subclass of the class which
qualifies the latter. No qualification will be regarded as
qualification by a universal class, which includes all declared

classes.

A proper precedure is said to be of "type universal'". Any
type is subordinate to the universal type.

teo Reference Expressions

+.1 Syntax

<simple reference expression> ::= none|<variable>|
<function designator>|<generating reference>|
<local referenced>|<qualified reference>|{reference expression)
<reference expression> ::= <simple reference expression>|
if <Boolean expression> then
<simple reference expression> else <reference expression}
<generating reference> ::= new <class identifier>
<actual parameter partd>
<local reference> ::= this <class identifier>

i <qualified reference> ::= <simple reference expressionj.

this <class identifier>




2»1

12,3,

- 10 =

Semantics

A reference expression is a rule for computing a reference
value. Thereby reference is made to an object, except if
the value is "none", which is a reference to '"no object".

Qualification

Any reference expression has a qualification associated to

its type. A variable or function designator is qualified
according to the declaration or specification of the variable
or procedure. A generating reference is qualified by the

class identifier following the symbol "new". A local reference
or a qualified reference is qualified by the class identifier
following the symbol "this". The expression "none" is not
qualified (or is qualified by the universal class).

The qualification of a conditional reference expression is the
class at the highest possible prefix level, which includes the

qualifications of both alternatives.

Object Generation

As the result of evaluating generating reference, an object
belonging to the stated class is generated. Each actual para-
meter is evaluated, and its value is assigned to the correspond-
ing formal parameter of the object. (The Walue" of an array
identifier is a pointer to the referenced array, cf. 2.2.3.)
Then the (concatenated) class body is called into execution.
Control returns to the generating reference when exit 1s made
out of the class body through its final end, or whenever the
basic procedure "detach" is executed (cf. 8.1). The value of
the generating reference is a reference to the generated object.

Local Reference

A local reference "this C" is a meaningful expression within

a block of any of the following kinds:




2.4

IR & I

1) a class body
2) a prefixed block (cf. sect. 7),

3) a <connection block 1>, and

4) a <connection block 2> (ef. 6.2),
provided that the qualification associated with th= bHlock
is C or a subclass of C, and that the local refercace 1is

within the scope of the class declaration C.

The qualification associated with each of the above block

types is respectively

1) the class identifier of the class declaration,
2) the class identifier of the block prefix,
3) the class identifier of the preceding connection clause,

4) the qualification of the preceding reference expression.

The value of a local reference is a reference to the object
associated with the smallest enclosing block in which the local
reference is meaningful. If there 1s no such block, the local
reference is illegal. The objeet associated with the block

is either the current instance of the block (case 1,2) or the

connected object (case 3,4)-

Instantaneous Qualification

Let X represent any simple reference expression, and let C and D

be class identifiers such that D is the qualification of X. The
qualified reference "X,.this C" is then a legal reference expression,
provided that C includes D or is a subclass of D. Otherwise,

i.e. 1f C and D belong to disjoint prefix sequences, the qualified

reference is illegal.

If the value of X is none or refers to an object belonging to a

class not ineluded in C, the evaluation of X.this C constitutes

a run time error. Otherwise, the value of X.thig C is that of X.




| 48

= 1% =

For the purpose of this rule the '"scope'" is defined after

the execution of all indicated concatenations.

The last rule represents a compile time check which has

several important consequences.

1) It simplifies the problem of combining security and run-
time efficiency. Increased economy can be obtained with

respect to storage space as well as execution time.

2) It protects the user against making any reference assign-
ment, whose consequences for the storage economy are
difficult to overlook. The rule guarantees that any retriev-
able reference value is useful in the sense that the
attributes of the referenced object are accessible through

remote referencing (cf. sect. 6).

3) The dynamic scope of an object becomes limited by that of
its class declaration, which makes "wholesale" de-allocation

of data space possible.

Rules similar to those above apply to assignments of reference
values implicit in for clauses and in the initializations of

formal parameters called by value.

1.2 Relations
1.2.1 Syntax

<relation> ::= <ALGOL relation>|
<reference expression> = <reference expression>|
<reference expression> # <reference expression>|
<reference expression> is <class identifier>|

Kreference expression> in <class identifier>

N

2.2 Semantics

The operators "=" and "#" may be used to compare reference values

for equality. Two reference values which are equal refer to the

Same object, or they are both none.




e

e,

e+ 2

=l

The operators "is" and "in" may be used to test the class

membership of a referenced object. "X 1s C" has the value

‘true 1if the value of X refers to an object belonging to the

class C, otherwise the value is false. "X in C" has the value
true if the value of X refers to an object belonging to a class
included in C, otherwise the value 1s false. Both relations

are false if X has the value none.

For statements

Syntax

<for list element> ::= <ALGOL for list element>|
<reference expression>|

<reference expression> while <Boolean
expression>

Semantics

The extended for statement will facilitate the processing of

list structures. The implied assignment operations are subject

to the rules of section 5.l1l.2.




Gl

6.1.1

- 15 -

Attribute Referencing

An attribute of an object is identified completely by the
following items of information:

1) the value of a <reference expression> identifying an
object,

2) a <class identifier> specifying a class, which includes
that of the object, and

3) the <identifier> of an attribute declared for objects
of the stated class.

The class identification, item 2, is implicit at run time
in a reference value, however, in order to obtain run time
efficiency, it is necessary that this information is avail-
able to the compiler.

For a local reference to an attribute, i.e. a reference from
within the class body, items 1 and 2 are defined implicitly.
Item 1 is a reference to the current instance (i.e. object),
and item 2 is the class identifier of the class declaration.

Non-local (remote) referencing is either through remote
identifiers or through connection. The former is an adaptation
of the technique proposed in[3], the latter corresponds to

the connection mechanism of SIMULA I|jl].

Remote TIdentifiers

Syntax

<remote identifier>» ::= <reference expression>.<identifier)>
<identifier 1> ::= <identifier>|<remote identifier>
<variable identifier 1> ::= <identifier 1>

<simple variable 1> ::= <variable identifier 1>

<array identifier 1> ::= <identifier 1>

<variable> ::= <simple variable l>|<array identifier 1>

[<subseript list>]




b.2

6.2.1

6.2.2

- A6 =

<procedure identifier 1> ::= <identifier 1>
<label 1> ::= <identifier 1>

«switch identifier 1> ::= <identifier 1>

<actual parameter> ::= <expression) (<array identifier 1>|
<switch identifier 1> |<procedure identifier.
<function designator> ::= <procedure identifier 1>
<actual parameter part>
<swltch designator> ::= <switch identifier l>[<subscript expression

<simple designational expression> ::= <iabel‘l>|<switch designator>
(<designational expression>)
<procedure statement> ::= <procedure identifier 1><actual parameter
part>
Semantics
A remote identifier identifies an attribute of an individual
object. Item 2 above is defined by the gqualification of the
reference expression. If the latter has the value none, the
evaluation of the remcte identifier constitutes a run time error.
Connection
Syntax
<connection block 1> ::= <statement>
<connection block 2> = <statement>
<connection clause> ::= when<cless identifler>do<connection block 1: |
<otherwise clause> ::= <empty>\otherwise<statement>
<connection part> ::= <connection clause>W<connection parts
<connection clause>
<connection statement> ::= Iinspect <reference expression> do
<connection block 2><otherwise clause>|
inspect <refercence expression>
<connection‘part><otherwise clanse>
Semantics

The connection mechanism serves a double purpose:




= 45 -

1) To define item 1 above implicitly for attribute references
within connection blocks.  The reference expression of a
‘connection statement is evaluated once and its value is
stored. Within a connection block this wvalue is said to
reference the connected object. It can itself be accessed
through a <local reference> (cf. 4.2.3).

2) To discriminate on class membership at run time, thereby
defining item 2 implicitly for attribute references within
alternative connection blocks. Within a <connection block>
item 2 is defined by the class identifier of the connection
clause. Within a <connection block 2> it is defined by the
qualification of the reference expression of the connection
statement.

Attributes of a connected object are thus immediately accessible
through their respective identifiers, as declared in the class
declaration corresponding to item 2. These identifiers act as
if they were declared local to the connection block.

The otherwise clause following a <cocnnection block 2> 1is
entered if and only if the computed reference value is none.
An empty otherwise clause represents the symbol "otherwise"
followed by a dummy statement.

. Prefixed Blocks

'l -l S‘yntaX
<block prefix> ::= <class identifier><actual parameter part>
<main block> ::= <unlabelled block>
<unlabelled prefixed block> ::= <block prefix><main block>
<prefixed Dblock)> ::= <unlabelled prefixed block>|<label>:<§feﬂgxed,uwé
ock>

<block> ::= <ALGOL block>Kprefixed block>
<program> ::= <block>




[ 7.1.2

Sl o

Semantics

An instance of a prefixed block is a compound objeci, which

is the result of concatenating an object of the stated class
and an instance of the main block. The formal parameters of
the former are initialized as indicated by the actual para-
meters of the block prefix. Any virtual quantity is identi-
fied by the quantity defined by a matching declaration in

the block head of the main block, or by the matching definition
at the highest prefix level of the prefix sequence. The
operation rule of the concatenated object is defined by prin-
ciples similar to those given in 2.2.2. The object belongs to
an anonymous subclass of the class associated with the block

prefix. The scope of this subclass is the prefixed block.

An instance of a prefixed block is an initially detached object
(ef. sect. 8). When exit is made through the final end of

the concatenated operation rule, control proceeds to the
statement following the end of the prefixed block.

An instance of a program is an initially detached object,

whether it is a prefixed block or not.




| 48

- 19 =

Quasi-parallel Seguencing

The basic constituent parts of a SIMULA program execution are
dynamic instances of blocks. There are the following types of
blocks:

1) Prefixed blocks
2) Sub-blocks

3) Procedure blocks
4) Connection blocks
5) Class blocks

In ALGOL 60 the block instances form a nested structure. A

block instance is said to be "attached to" the one containing

it. A block instance A is said to "enclose dynamically" an
instance B, if B 1s attached to A, or if there is a block instance
C attached to A, such that C dynamically encloses B.

A block instance is said to be the "local to" the one which
contains its describing program text (or, if concatenated, the
text describing its main part). An instance of a sub-block is
attached to and local to the same block instance.

The "program sequence control", PSC, identifies that program
point within a block instance which is currently being executed.
For brevity, we shall say that the PSC is "positioned" at the
program point and is "contained" in the block instance. If A

is the block instance containing the PSC, then Aand any block
instance dynamically enclosing A are said to be "operating".

A block instance attached to another one is said to be in the
"atfached state", or simply "attached". When the PSC leaves an
instance of a block, the instance is said to become "terminated".

Since ALGOL 60 is a subset of SIMULA 67, the above definitions
are valid also for SIMULA program executions. In SIMULA 67, how-
ever,there are block instances which are, or may be, neither
attached nor terminated. They are said to be in the "detached
state". The table below shows the possible states and the initial
state of block instances of the different types.




- DO

Block types Possible states Initial state

1 D, (T) D
2,3,k A, (T) A
5 A, D, T A

A: attached D: detached T: terminated

Any terminated block instance, except possibly instances of class
blocks is inaccessible and therefore can be regarded as '"not
present". Thus, within its "dynamic scope" an instance of

type 1 is permanently detached and an instance of type 2,3 or

4 is permanently attached. The program as a whole is a block

of type 1 (cf. section 7).

An object is defined as a block instance of type 1 or 5, to-
gether with the block instances dynamically enclosed by it.
These block instances are said to be "part of" the object. An
object of type 5 can be attached and thereby part of another
object.

A detached object A is said to "enclose" a detached object B, if

1) B is local to a block instance which is part of A, or
2) there is a detached object C, such that C is local to
a block instance which is part of A, and C encloses B.

Let A be an instance of a prefixed block. All detached type 5
objects, whose smallest enclosing instance of a prefixed block
is A, comprise together with A a "quasi-parallel system". These
objects, including A, are sald to be the "components" of the
quasi-parallel system, and are said to be detached at the same
"system level", A is called the "main program" of the quasi-
parallel system., A detached object enclosing A is said to be
detached at a "lower" system level. The program as a whole 1is

detached at system level zero.




| @

- 89 .

A component of a quasi-parallel system can not be refererced
from outside the quasi-parallel system. It follows that the
dynamic scope of any detached object is limited by that of
the main program of its quasi-parallel system.

Bach detached object has an associated "local sequence control",
LSC. Associated with a quasi-parallel system is an "outer sequence
control", OSC, which is the LSC of the smallest object enclosing
its main program. The OSC of the quasi-parallel system at level
zero 1s the PSC,.

For any given quasi-parallel system, one and only one of its
detached objects is said to be "active with respect to the 0SC",
or simply "active". The LSC of that object coincides with the
0SC of the quasi-parallel systems.

An instance of a prefixed block is initially active, l1.e. it
contains the 0SC of its own quasi-parallel system. The OSC may
move from one detached object to another one of the same system as
described in section 8.2. The LSC of a detached object not con-
taining the OSC remains positioned at the program point at which
the OSC left the object the last time.

There exists at any given time a sequence of active detached objects

X07X1’°'°Xn such that:

1) X, 1s active at system level k (k = 051 «oeyn),

2) X
is enclosed by X, (k = 0,1,..05n = 1),

is a member of a quasi-parallel system whose main program

The objectsof this sequence, all containing the PSC, are said to
be operating. The LSC of a detached object remains fixed as long

as it is not a member of the sequence of operating objects.

The "detach" statement

Let the smallest operating and attached object be X. Then the

eXecution of the statement '"detach" has the following consequences.




1) The object becomes detached at the level of the smallest
enclosing prefixed block instance, its LSC positioned at
the end of the statement.

o) The PSC returns to the generating reference of the object,
within the block instance to which it was attached. The
reference value associated with the object is transmitted
as the function value of the generating reference.

If there is no operating and attached object, the statement
constitutes a run time error.

9 The "resume'" statement
The resume statement is a basic statement for quasi-parallel
sequencing. "resume" i1s formally a procedure with one unqualified

reference parameter.

Let the actual parameter of a resume statement be a reference to

a detached object Y, which is a component of a quasi-parallel system
S. ©Since Y cannot be referenced from outside S, there must be a
component X of S which is operating. The resume statement has

the following effects. |

1) The 0SC of S leaves X. As a consequence the PSC leaves X and
all operating objects detached at system levels higher than X.
The LSC of each object remains at the end of the resume state-
ment.

2) The 0SC of S enters Y at the current position of its LSC. As
a consequence Y, and possibly a sequence of objects detached

at system levels higher than that of Y, become operating.

If the actual parameter of a resume statement does not reference
a detached object, the statement constitutes a run time error.

. Object "end"

~—

The final end of the operation rule of an object has an effect

Which depends on the type and state of the object.




| 4B

- DR =

Aﬁﬁ@ghed object: The object becomes terminated. The PSC
returns to the generating reference of the object, within the
plock instance to which it was attached. The reference value
agssoclated with the object is transmitted as the function value

of the generating reference.

Detached object: Exit through the final end of a detached type

5 object constitutes a run time error. When control passes through
the end of a prefixed block, the object becomes terminated. The
1LSC of the enclosing object (and the PSC) continues to the next
statement.




F

8.1

.5

- oy -

go to Statements

cm—

A go to statement leading to a program point outside the smallest
operating detached object, has an undefined effect.

If control leaves an attached object by a go to statement,
thé object becomes terminated.

SIMULA I Sequencing Statements

The special syntax of the "scheduling statements" of SIMULA I

(1, chapter 4) is part of the SIMULA 67 Common Base, except that
a scheduling statement may not be followed by connection clauses.
A compiler (or a preprocessor) will transform any statement of
the form.

getivate X vevesenny OF

reactivate X ceoeeoe

into
X. schedule (veees)y

where there is a one to one correspondence between the form of
the scheduling statement and the parameter values of the '"schedule"
procedure.

It follows that the special syntax may be used if the referenced
object belongs to a class for which a procedure "schedule" is

appropriately declared.

For the system defined class "SIMULATION" (cf. section 10),
"schedule" is declared local to the class "process" (and thus also
1ts subclasses) in a manner which corresponds to the SIMULA I
Scheduling statements.

All sequencing statements of SIMULA I, except "terminate'", will
have counterparts declared within the class "SIMULATION",




4

10.

- 25 -

Random Drawing and Data Analysis

aTMULA 67 random drawing facilities will be those of SIMULA I
(1, chapter 7).

The procedure "histo" of SIMULA I (1, chapter 8) will be part
of SIMULA 67. The procedure "accum" in the same chapter will
be a part of the class "SIMULATION", The procedure "hprint"
is machine-dependent and will not be a part of SIMULA 67.

It should be noted that it will be possible in SIMULA 67 to define
more powerful data collection facilities than those of SIMULA T.
The inclusion of such facilities in the Common Base will have ta
be decided upon by the SIMULA Standard Group.

System Classes

The SIMULA I extensions of ALGOL 60 consist of

1) The "process" cencept, classes of processes being described
by "activity" declarations.

2) Means of referencing processes through items called "elements",
and the introduction of circular two-way lists called "sets".

Along with these extensions are introduced a number of procedures
and special syntax statements and declarations to allow efficient
exploitation of the concepts - for quasi-parallel sequencing

accerding to a "system time" criterion and for set operatioms.

In SIMULA 67 the SIMULA I councepts may be made available through

two system defined classes:

1) "SIMSET", which introduces "sets", and

2) N"SIMULATION", having "SIMSET" in its prefix seguence, which

: - : , 2 -ial. scquenain
in addition introduces the "processes" and Spec g

facilities.,




10-1

_ 26 -

Transcription from SIMULA I to SIMULA 67 is straightferward
within blocks having the prefix "SIMULATION".

The Class "SIMSET"

The class "SIMSET" contains facilities for the manipulation
of circular two-way lists, called "sets". SIMULA 67 sets
correspond to SIMULA I sets, but are implemented without
the implicit use of "elements™", "SIMSET" will be a prefix
to the class "SIMULATION".

The reference variables and procedures necessary for set
handling are introduced in standard classes declared within
the class "SIMSET" which are considered parts of the language.

Using these classes as prefixes, the relevant data and other
preperties are made parts of the objects themselves,

Both sets, and objects which may acquire set membership, should
have references to a successor and a predecessor. Consequently
they are made subclasses of the "linkage" class.

The sets are objects belonging to a subclass "set" of
"linkage", objects which may be set members belong to subclasses
of "link" which is itself another subclass of "linkage'".

As stated in section13,it will be permitted within the Common
Base to exclude unqualified reference variables. The incon-
venience caused by such a restriction may be circumvented by
introducing an explicit "universal! class. The class 1s empty
of attributes:

class univ;;

If "univ" is used as class prefix whenever possible, qualifi-

cation by "univ" will for most purposes function as no gqualifi-

cation.




= B8 -

rhe definition of the other "SIMSET" classes are:

univ class linkage;
begin ref (linkage) succ, prede ;
ref (link) procedure suc ;
suc := if succ 1s link then succ glse none ;
ref (link) procedure pred ;
pred := if prede 1s link then prede else none ;

end linkage 3

The references '"succ" and '"prede" will only be available through
the procedures "suc" and "pred" and not for direct assignment by
the user. The handling of "succ" and "prede™ in connection with

set operations will be through the system procedures defined below,

linkage class link ;

begin procedure out ; if succ # none then begin

succ.prede ¢= prede j; prede.succ = succ ;
succ.:= prede := none end out ;
procedure follow (X) 5 value X 3 ref (linkage)X ;

begin out 3 if X # none then begin

if X.succ # none then begin

prede := X 5 succ := X.succ j
succ.prede := X.succ = this linkage end end

end follow j

procedure precede(X) j value X j ref (linkage)X ;
begin out ;3 1f X # none then begin

if X.succ # none then begin succ := X ;

prede := X,prede ; prede.succ 3= X.prede := this
linkage end

end end precede j

procedure into (S) j walue S § ref (set) S j

begin out 5 1f S # none then begin

suce := S § prede := S.prede 3
prede.succ := S.prede := this linkage end

end into

end link s




- 28 -

linkage class set ;

begin ref (link) procedure first § first := suc 3
ref (link) procedure last j; last := pred ;
Boolean procedure empty ;

empty := succ = this linkage ;

integer procedure cardinal g

begin integer 1 5 ref (linkage) X 3§ 1 =0 5 X :=

this linkage j

for X := X.suc while X # none do 1 :=1i + 1
cardinal := 1 end ;

procedure clear ;

begin ref (link) X 5 for X := first while X # none do
X.out end ; o
succ := prede := this linkage

end set ;

The last statement (the body) of the class declaration initialigzes

the set to refer to itself through "succ" and "prede".
link class element (object) j ref (univ) object ;;

Objects of the class element are similar to the "elements" of

SIMULA I and may be used to simulate multiple set memberships.

Many of the procedures associated with sets in SIMULA I will
either be omitted or substituted by corresponding "SIMSET"

procedures:

proc(X) : substituted by the generative expression new element (X),
head(S) : no meaning within SIMSET
suc(X) : substituted by "suc" local to "linkage"
pred(X) : substituted by "pred" local to "linkage"
same(X,Y) : of little interest since elements are not a basic
part of SIMULA 67
similar(X,Y),X =Y and X # Y will be substituted by sulitable

Boolean expressions.
prcd(X,Y) : substituted by "precede" local to "1ink"
remove(X) : substituted by "out" local to "link"
first(8) : substituted by "first" local to "set"
last(8) : substituted by "last" local to "set"




10.2

“ T =

successor(n,X) : omitted, since it has not been proved useful
in SIMULA TI.

number(n,S) : as for successor (n,X)

member(X,S) : omitted ,

exist(X) : substituted by X # none, since "sethead" does not

appear in SIMSET
empty(S) : substituted by "empty" local to '"set"
ordinal(X) : as for successor (n,X). Also inefficient in

execution

cardinal(8) : substituted by "cardinal' local to "set"
precede(X,Y) : substituted by "precede" local to "link"
follow(X,Y) : substituted by "follow" local to "link"
transfer(X,5) : substituted by "into" local to "link"
include(X,S) : substituted by "into" local to "link"
clear(8) : substituted by "eclear" local to "set"

"SIMSET" may be used as prefix to user defined classes when
the above set-handling facilities are wanted and the other

"STMULATION" concepts are unnecessary.

The Class "SIMULATION"

The class "SIMULATION" has "SIMSET" as a prefix. It contalns

two additional classes - "process" and its subclass "main program".
The definition of the class "SIMULATION" in terms of SIMULA 67,
similar to the above definition of "SIMSET", will be given in

a report which will be an appendix to this report and will be part
of the SIMULA 67 Common Base.

The definitions will follow the pattern given 1n (4], but

1) the class "process" will have "link" in 1its prefix sequence

2) the procedure "schedule" is declared local to "process'".

3) the "final operations" (cf.2.2.) of "process" 182

. 0 nd'r
"s I, 3 current := nextev ; resume (nextev) j go to L end'.




11.

12.

.1

2, >

= 3 -

The use of "SIMULATION" as block prefix makes all features
corresponding to SIMULA I available. The procedure "terminate"
is however excluded, and the declarator "activity" is substituted
by "process class'".

Input - output

The quasi-parallel sequencing features of SIMULA 67 offers
possibilities of convenient and powerful input-output handling
within the language. These pcssibilities have not yet beeen
sufficiently explored, and it has been decided to transfer the
decisions on input-output to the SIMULA Standards Group. The
SIMULA 67 Common Base Conference in 0Oslo, June 1967, felt that

inclusion of input-output was "extremely important".

Separate Compilation

If an implementation permits user defined procedure and class
declarations to be szgraratsly compiled, then a program should

have means of making reference to such declarations as external

to the program.

The following additional declarations are recommended as an

optional part of the Common Base.

I

<external item> <external identifier>|

<identifier> = <external identifier)>

I

<external list> <external item>|
<external list>,<external item>
<external declaration> ::=

external procedure <external 1list>|

external <type> procedure <external list>|

external <prefix>class <external 1list>

Semantics

An external identifier is an identification with respect to

an "operating system" of a separately compiled declaration.




13.

- 3] -

An external declaration introduces local identifier for such
declarations. A local identifier is either identical to the
corresponding external one, or different as defined by an

equality sign.

Optional Restrictions

The following language restrictions are optional within the

Common Base.

1) Rule "S'": All classes of the prefix sequence of a class
declaration must be declared within the block head containing
the given one. The block head may be that of a concatenated s
class declaration or prefixed block.

2) The unqualified "ref" is excluded as <type> declarator and
specifier.

3) A local reference (4.2.3) referring to an instance of a pre-
fixed block is not accepted as the right hand side of any

reference assignment (including implicit ones).

These restrictions together imply the satisfaction of rule

"R" of section 5.1.2 and may be easier to implement. They have
also several other consequences which may simplify an imple-
mentation.

Although being quite restrictive the above rules preserve the
essential ecapahilitics of ULhe SIMULA 67 language. It should be
noted that rule "S" is too restrictive for an implementation

permitting separate compilation of class declarations.

However, rule "S" does not prevent the use of system declared
classes or other classes as block prefixes at different block
levels. System classes to be used as prefixes to class declara-

tions may be brought in "protected" by an enclosing class, which
1s used as block prefix.




REFERENCTES

1. 0-J Dahl and K, Nygaard:; "SIMULA - a Language for
Programming and Description of Discrete Event Systems,
Introduction and Users's Manual"™, HNorwegian Computing
Center, 0slo 1965,

2. P. Naur, ed.: "Report on the Algorithmic Language
ALGOL 60",

3. C.A.,R. Hoare: "Record Handling", Lectures delivered
at the NATO Summer Schooi, Vilard—de-Lans, September 1966,
(Academic Press),

4. 0-J Dahl and K. Nygaard: "Class and Subclass Declarations",
Paper presented at the IFIP Working Conference on

Similation Languages. Oslo, May 1967,




2.

. Table of Contents

preface

Introduction

Class Declarations

2.1 Syntax

2.2 Semantics
2.2.1 .Subclasses
2.2,2 Concatenation
2.2.3 Formal Parameters of Class Declarations
2.2.4 Virtual Quantities

Types

3.1 Syntax

3.2 Semantics
3.2.1 Reference types
3.2.2 Strings
3.2.3 Initialization
3.2.4 Subordinate types

Reference E:xpressions

4.1 Syntax

4.2 gemantics
4.2.1 Qualification
4,2,2 Object Generation
4.2.3 Local Reference
4.2,4 Instantaneous Qualification

Reference Operations

5.1 Assignment

5.1.1 Syntax

5.1.2 Semantics

page

"

1"
f

"

—N

O O O oo (00 o0 o oo O Ul F o w w

10
10
10
10
1
12
e
12
12




5.2 Relations page 13
5.2.1 BSyntax n 13

5.2.2 Semantics " 13

5.3 For Statements il 14
5.3.1 Syntax n 1y

5.3.2 Semantics n 14

6., Attribute Referencing " 15
6.1 Remote Identifiers " 15
6.1.1 Syntax " 15

6.1.2 Semantics i 16

6.2 Connection " 16
6.2.1 Syntax n 16

6.2.2 Semantics " 16

7. Prefixed Blocks 1" 15
7.1.1 Syntax n 17

7.1.2 Semantics n 18

8. Quasi-Parallel Sequencing o 19
8.1 The "detach" Statement n 21
8.2 The "resume" S.tatement " 22
8.3 Object Heng" n 22
8.4 go to Statements " 24
8.5 SIMULA I Sequencing Statements " 24

9. Random Drawing and Data Analysis 8 25
10, System Classes " 25
10,1 The Class SIMSET e 26
10.2 The Class SIMULATION g 29

' Input_output, n 30
12, Separate Compilation i 30

13, Optional Restrictions " 31




