Introduction

¥ t I-- —
- N i
- ¥ h:h 1

I

T T Rl Rl e



1st Printing, June 1976
2nd Printing {Rev). October 1977
3rd Printing, August 1979

Copyright © 1976, 1977, 1979 by Digital Equipment Corporation

The reproduction of this workbook. in part or
whaole, is strictly prohibited. For copy information
contact the Educational Services Department.
Digital Equipment Corporation, Bedford. Massa-
chusetts 01730.

Printed in U.S.A,



INTRODUCTION TO MINICOMPUTERS

Operating Systems

Student Workbook

Audio-Visual Course by Digital Equipment Corporation



COURSE MAP

Ifo
TECHNIQUES

LA

PROGRAMMING
LANGUAGES

FO

FILE
ORGANIZATION

GENERAL
SOFTWARE

BU

BUS
STRUCTURES

CENTRAL
PROCESSOR

PD

PERIPHERAL
DEVICES

INSTRUCTION
SETS

MAIN
MEMORY

COMPUTER
ARITHMETIC

PROBLEM NUMBER
SOLVING SYSTEMS

TERAMS AND
CONVENTIONS




CONTENTS
I O AU T OTN. .o oo i ssisercssnarsssosssansssassnsssssrssssnss sansnnrasssnsrhbbbssnssvasansmsnivinssssosrrmonss 1

Program Development Without an Operating System............
Objective and Sample Test [tem........cccovcmnimivivmrnanean
Program Deavelopment ... iiaiisssis i rsimpiass s
EXercises and SOIULIONS.......coviveervrreimssmiesscsiinesssssrsssssarsasesssressssssssssssssnans |

oo W W

General Functions of an Operating system .................cccnvincennnn 21
Objectives and Sample TESt BMS oo reese @ 1
General Functions... R A S P SR
Major Components... . SRR S Y
Libraries and the Llhranr Manager SR R ——
Exercises and Solutions... N

On-Line Operating SYStems ...........c.cccvevcniiiiinsnninnisnsisisiesses 3 1
Objective and Sample Test ItemM ...........ccccmvrncrcnimiminsmnies 3 1
Single-User Operating SvstemsBB
Exercise and Solution... e I AT TTORTRONEE - L
Timesharing Operating Systems PSPPSR : .
Exercise and Solution... 49
ROBI-TiMIB SYBIAMS........rsscesrersrenibsimimisissssssssisrosnsssmssssnin iiissssisgpssnsiosnions i B
Exercise and SnlutmnEG
Summary.... i B D SO SRR P SR A & =
Exercises and Solutluns TR, . 1

Off-Line Operating SYStems.............c.cccvviiniininiiisisnsneen. 6 1
Objectives and Sample Test Items ... 8 1
Batch Operating Systems ... T AT 1 .1
Foreground/Background Operatlng Svstems....,........,.....,,,.........““.”.65
Exercises and Solutions... S R e A R B




Operating Systems

Introduction

Thus far, you have learned about various computer components
such as main memory, the central processor, peripheral devices, and
bus structures. Together, these components form the computer hard-
ware or architecture.

You have also learned about low- and high-level programming lan-
guages, the translators that are required to convert programming lan-
guages into machine code, and three |/O techniques that allow
programs to initiate and/or to control input/output operations.

As Lesson 1 of this module will show, the presence of both hard-
ware and software does not by itself guarantee rapid, easy devel-
opment and execution of programs. An additional element is needed to
make a computer the powerful tool it is. Some means to manage or
coordinate the many activities and features of the hardware and soft-
ware is needed and, further, to manage these resources at computer
speeds. This management of computer resources is precisely the task
of the operating system.

An operating system is a set of programs that collectively automate
the management of computer resources to provide efficient computer
operation. An operating system is usually tailored for a specific hard-
ware configuration for two reasons:

* The user is ultimately dependent upon the hardware for pro-
gram execution.

* Different application areas use different peripheral devices and
have different operational requirements.




The operating system performs numerous activities such as:

Allowing user communication and control of the computer sys-
tem by interpreting and executing keyboard commands.

Aiding in all phases of program development and execution.
Making available common software items such as peripheral
device handlers, interrupt servicing routines, and language
translators.

Allowing multiple users and concurrent programming.

Scheduling CPU and peripheral usage for greatest efficiency.

To accomplish these goals, operating systems commonly perform a
standard set of general functions. Often, these functions are performed
by individual components or routines, each having a specific task.
These functions and components are discussed in Lesson 2 of this
study unit.

Also, an operating system is frequently tailored for particular areas
of applications. Hence, some operating systems are better suited for
controlling industrial processes, while others may be better for appli-
cations such as airline reservations, program development or process-
ing large amounts of data. Lessons 3 and 4 of this module discuss the
major categories of operating systems and the application areas for
which they are normally used.

0os 2




Program Development
Without An Operating System

OBJECTIVE

Given a blank flowchart of the program development process for
a computer without an operating system and a list of flowchart
contents, be able to match each flowchart symbol with its
contents.

SAMPLE TEST ITEM

The blank flowchart below represents the program development
process for a computer without an operating system. Match
each step of the process with its corresponding position in the
flowchart by writing the correct letter in the space provided.

Step Position

(O ==

First Error Check -

Assemble Program _

Second Error Check —

Execute Program e

Enter and Edit Program ____

Debug Program R

L=}

Document Program "

Done N

Initialize Computer ——




Mark your place in this workbook and view Lesson 1
of the A/V program, “Operating Systems.”

Program Development

The development of a program is a lengthy process. Without the
assistance of an operating system, programmers must perform many of
the steps manually. This lesson discusses this process in detail.

Before using the computer, the task the computer is to perform must
be analyzed using problem solving procedures. Then, a flowchart of the
procedure must be generated, and the flowchart must be translated
into a handwritten source program in a programming language.
Because this step is performed without the computer’s assistance, the
existence of an operating system has no effect on this phase. The pro-
grammer is generally the only active agent, and the output of this phase
is the handwritten source program on a piece of paper.

assembly language program

START, CLA
ADD NUMBER
ADD NUMBER
ADD NUMBER
ADD NUMBER
STR SUM
HLT

Figure 1 Source Program

( smm ) 1. Once the source program is written on

paper and ready to be further developed
using the computer, the programmer
must /nitialize the computer for this pur-

pose. The programmer enters the first
program manually.

INITIALIZE
COMPUTER

0sS 5




Figure 2

Programmer Enters First Program Manually

The first program loaded is called a
bootstrap. The bootstrap is a program
that is designed to be short to reduce
the manual effort of the programmer in
entering it, and yet to contain enough
instructions to enable the computer to
input other programs, A program that
instructs the computer to input other
programs into memaory is called a foader
— the bootstrap is sometimes called a
bootstrap loader.

0S 6




The only function of the bootstrap is to
allow the computer to input, or load, the
loader program. On small computers
that do not have an operating system,
the loader program is stored on, and
loaded from, paper tape.

The programmer places the general-
purpose loader machine code paper
tape into the paper tape reader, enters
the starting address of the bootstrap
through the front panel switches into
the program counter, and starts the
computer. The computer reads the
paper tape of the general-purpose
loader and deposits it into memory. This
completes the initialization of the
computer,

From this point on, any time a program is to be loaded into memory,
the programmer places a machine tape of that program in the paper
tape reader. Then, the programmer enters the starting address of the
general-purpose loader through the front panel switches into the pro-
gram counter, and starts the computer. The computer halts when the
loading process is complete. The program development process
requires the loading of many programs.

(o ) 2. The first purpose of the general-purpose

loader is to load an editor program into
memory. Once this is done, the editor is
mauze Started by entering its starting address

into the program counter through the
front panel switches, and starting the
computer,

EMTER AND
EDIT PROGRAM

os 7




fl:lll;;.:; T

-

S e S

Figure 3 Programmer Entering Source Program

While the editor is executing, the pro-
grammer enters the source program
through the keyboard. After the pro-
gram has been entered, the program-
mer can also correct mistakes using the
editor. When the programmer is satis-
fied with the source program, he/she
types a command to the editor, which
Instructs the computer to punch out the
edited source program on paper tape.

0s 8




@ 3. When the source tape has been punch-
ed, the program is ready for translation.

The programmer loads the assembler

' (or compiler) using the general-purpose
Minire loader, and starts it. The translator then
processes the source tape. Note that

the source tape must be loaded once for
each pass of the assembler. The trans-

lator punches the machine code tape
T PROGRY and prints listings of the symbol table
and the program. The work of this phase
is divided between the user (loading
four paper tapes) and the computer
s (translating the program). If errors are
PROGRAM detected during assembly, the program-
mer returns to the third phase (Enter
and Edit Program) to correct the source

program. The editor and source tapes

“’ . are loaded, and the corrections are
typed in. Then, the assembly process is

o attempted again. When no further

errors are detected, the development
process continues with the next phase.

)

PASS 1 ) symbol
table

PASS 2 >

PASS 3 >assembly
[

listing

Figure 4 Assembly Phase




1 START '

INITIALIZE
COMPUTER

EMTER AND
EDIT PROGARAM

ASSEMEBLE
PROGRAM

(1#]

"-
,

EXECUTE
PROGRAM

4. When no more assembly errors have
been detected, the program is ready for
execution. Before this can happen, the
programmer must load the machine
code tape into memory. Errors in the
program logic are almost certain to
appear during the first execution of the
program. Program results are also pro-
duced until a serious error occurs.

0s 10




START

P

INTTIALIZE
COMPUTER

~

ENTER AND
EDIT PROGRAM

ASSEMBLE
PRCGRAN

ERADRE YES
!
NT

EXECUTE
FERODGRAM

5. Many computers have

debugging programs to
assist in correcting
errors within machine
code programs. To use
this process, the pro-
grammer loads the
debugging program, and
then the machine code
tape of the erroneous
program. These debugg-
ing programs allow a
programmer at a termi-
nal to selectively execute
parts of the program to
check the functioning of
each section. When
errors are discovered,
the debugging program
allows the programmer
to directly modify the
machine code.




IHITALITE
COMPUTER

YES

DOCUMENTATION
WANTED

ENTER AND
EDIT PADG RaM

ASSEMBLE
PROGRAM

ERADAS i
¥
L [u]

EXECUTE
PAGGRAM

DEBUG
PROGRAM

ERRCRAS
Lj

0s

Once the corrections to
the program have been
made, a new machine
code tape is punched.
The execute-debug loop
is then repeated until all
detected errors have
been corrected. Fre-
quently, however, cor-
recting the machine
code is not the desired
operation. If the program
is to be properly docu-
mented, the source code
of the program should be
corrected and a new list-
ing generated. New
documentation prevents
a discrepancy between
what the documentation
(flowchart and program
listing) says and what
the program actually
does. Without these dis-
crepancies, other pro-
grammers can easily
tailor the program to
their specific needs.
Hence, execution errors
or logic errors usually
cause the programmer
to go back to editing the
source program and per-
forming all the sub-
sequent steps again.




As can be seen, the program development process is a complex and
lengthy one - regardless of whether an operating system is present.
However, when no operating system is available, the high software
development cost is greatly increased due to the large amount of man-
ual programmer intervention required.

The following chart summarizes the material of this lesson.

Software Development Summary (Without an Operating System)

Agents Performing Input Output
This Action
Programmer Only Problem Specification Source Program
Programmer Only “Empty" Machine, “Ready’’ Machine

Toggle Switches Loader

(Paper tape)

|

Programmer, Loader, Editar (Paper tape) Source tape (Paper tape) |
Editor Source Program (Keyboard)
Programmer, Loader, Assembler (Paper tape) Symbol table (Printer)
Assembler Source tape (Paper tape) Machine code (Paper tape)

Source tape (Paper tape) Program listing (Printer)

Source tape (Paper tape)}*® and assembly errors if any |

|

Programmer, Loader, Machine code {Paper tape) Results, showing logical |
Program errors if any,
Programmer, Loader, Debugger (Paper tape) Corrected Program
Debugger Machine code tape Machine code tape
Upon completion, the paper tape of the working program is saved with its
documentation for later use as needed

*Some systems with several output devices can output assembly listing and machine code during

pass 2 Three passes are typically required when paper tape punch and printer are both part of the
same terminal.




1.

EXERCISES

The flowchart for the program development process is given below.
Explain the operations within the four process blocks (rectangles) in

terms of the'steps that the programmer must do when no operating
system is available.

(s ) a) Enter and Edit Program

FHITIALIZE
COMPUTER

ENTER AMD

EDIT PROGHRAM b} Assemble Prﬂﬂrﬂm

ASSEMBLE
PROGRAM

Q;L c) Execute Program
¥
wO

EMECUTE
PROGRAM

DEBLG
PROGRAM

ERRORAS

d} Debug Program

0§ 15




SOLUTIONS

1. Steps that the programmer must do when no operating system Is
available.

a)

b)

c)

d)

Enter and Edit Program — The programmer first loads the paper
tape of the machine code of the editor, and the editor is started.
Next, the source program is entered using the keyboard. Editing
is performed when errors are detected in entering the program.
When the programmer is satisfied with the entered source pro-
gram, a paper tape is punched.

Assemble Program — The assembler is first loaded from a paper
tape and started. The source paper tape from the edit phase is
loaded two or three times during the assembly process. If the
assembly is error free, a machine code paper tape is punched.

Execute Program — The machine code paper tape is loaded into
memory. It is then executed by setting the program counter (PC)
to the starting address of the program and pressing START.

Debug Program - If execution errors are encountered, the pro-
gram must be debugged. The debugging program is loaded from
a paper tape and started. The machine code program is then
loaded. Using the debugger, the programmer can selectively exe-
cute parts of the program and examine the behavior of the pro-
gram. Depending on the level of documentation required, either
the machine code or the source code is corrected to remove the
errors.

08§ 16




EXERCISES

2. Why would a programmer go back and edit the source program after |
debugging, instead of simply punching a new machine code tape? : &

ll

0s 17




SOLUTIONS

2. Why would a programmer go back and edit the source program after
debugging, instead of simply punching a new machine code tape?

* A programmer re-edits the source program after debugging to
provide up-to-date documentation of the present form of the program.
Because the program listing and the symbol table listing are valuable
tools for understanding the program, they must reflect the actual ver-
sion of the program saved as machine code. Otherwise, if a new
machine code tape is produced directly after debugging. the changes
will not be reflected in the documenation. Thus, the program will not
execute as the documentation says it should.

0OS 18




EXERCISES

3. Fill in the following flowchart of the program development process.
Next to each process step write the results or output of the step.

Results or Qutput

|

— Programmer outputs hand-
written source code,

a)

b)

c

<l>— d} '
\ e) |I

5

0os 19




SOLUTIONS

3. Fill in the following flowchart of the program development process.
Next to each process step write the results or output of the step.

Results or Output

(s ) — Programmer outputs hand

written source code.

a) “Ready’’ machine.

INITIALIZE
COMPUTER

b) Source program on paper
tape.

i A c) Symbol table and program
EOTE RO listing. machine code paper
tape and assembly errors if
any.

ASSEMBLE d} F[ggram results, |GgiCEI|

PROGAANM

errors if any.

e) Corrected machine code pro-
gram on paper tape.

EARORS

COCUMENT

FROGRAM HOQ

EXECLTE
FROGRAM

“'lliiiiiill"'
¥

ND

DEBUG
PROGAAM

0s 20




General Functions of An Operating System

OBJECTIVES

1. Given the six major parts of an operating system and six func-
tions, be able to match each part with its function.

2. Given five memory management statements, be able to label
those that refer to swapping, overlaying. and queuing, respec-
tively.

SAMPLE TEST ITEMS

1. Match each of these major parts of an operating system with
its function.

Part Function
Interrupt Handler

Library Manager

Functions
a. Maintains and fetches programs when they are requested.

b. If a peripheral device were to request service, this unit
would determine which routine would respond to the
request.

0os 21




SAMPLE TEST ITEMS

letter in the space provided.
Statement

Only parts of a single user program
are in memory; remaining parts are
fetched from secondary storage as
needed.

2. Indicate whether the following statements refer to swapping
(S). overlaying (O), or to queuing (Q) by writing the correct

Refers To

0os 22




General Functions

Operating systems automate the interaction between users and
computers. Many operations that require manual intervention on the
paper tape computer system are handled automatically on computers
with operating systems.

In this lesson, the simplest type of operating system, one designed
for a single user, is compared to paper-tape software, which also serves
a single user. Also discussed are the general functions of an operating
system.

Mark your place in this workbook and view Lesson 2
of the A/V program, “Operating Systems."

0s 23



In a disk-based computer, the operating system loads programs to
be executed, just as the general-purpose loader does in a paper tape-
based computer. However, operating systems do much more.

For example, consider the development of an assembly language
program on a paper tape computer system and on a computer with a
single-user operating system. The general flowchart for the devel-
opment process (see Figure 5) is the same for both systems.

START

L

INITIALIZE
COMPUTER

ENTER AND
EDIT PROGRAM

ASSEMBLE
PROGRAM

YES
ERRBORS
YES
NO
\m

DOCUMENT

EXECUTE
PROGRAM

DEBUG YES
PROGRAM

ERRORS

NO

Figure 5 Development of an Assembly Language Program

0s 24




However, in a paper tape system, each process begins with the pro-
grammer manually entering the starting address of the loader into the
program counter through the front panel switches, threading a paper
tape through the reader, and starting the computer. Then, after the
program is loaded, its starting address is entered. and the computer is
started again.

With even a simple single-user operating system, programs are
started automatically when they are loaded in response to keyboard
commands. Further, with an operating system, programs are loaded
directly from the disk and are not handled by the programmer.
Major Components

A typical operating system is composed of seven major
components:

* the executive (also called the monitor or supervisor)

* the scheduler (also called the dispatcher or queue manager)
* the interrupt handler (also called the interrupt service routine)
* the device handlers (also called the peripheral drivers)

* the storage allocator (also called the memory manager)

e the library manager

® the /ibrary of system programs

Each of the components and its function is discussed in turn in this
lesson.

Executive. The executive (or supervisor or monitor) is the central com-
ponent of the operating system. The executive is a/ways memory-resi-
dent. As its name implies, the executive coordinates and controls all
other components of the operating system.

Scheduler. The scheduler (or dispatcher) also has a self-explanatory
name. The scheduler is often part of the executive and is responsible for
two activities:

* scheduling or allocating CPU time to jobs

¢ establishing and maintaining various queues representing jobs
waiting for computer resources

0SS 25



A queue is a storage structure in which the first request is the first to
be served. This first-in/first-out (FIFOQ) characteristic is similar to the
“lines” you encounter in everyday life outside theaters and restaurants.
In large operating systems, there is a queue of programs waiting for
each resource, including the CPU. Additional queues may be used to
establish priorities or categories for jobs waiting to execute. Thus, some
jobs may be preferentially allocated resources before other jobs. This is
similar to restaurant lines in which customers with and without reser-
vations are waiting for the same set of tables. The actual behavior of
the scheduler in allocating resources and the number of queues is high-
ly dependent on the fundamental type of the operating system. This
topic will be discussed in the next two lessons as the various types of
operating systems are described.

Interrupt Handler. The interrupt handler (or interrupt service routine) is
also frequently part of the executive. The interrupt handler is respon-
sible for handling interrupts arising from conditions such as:

* completion of an I/0 process
* a request for service from a peripheral device
® anerror occurrence (such an interrupt is also called a trap)

The interrupt handler performs two operations. When an interrupt is
detected, the handler determines which routine is to be used to service
the interrupt request. Before transferring control to the selected rou-
tine, the interrupt handler also saves the status information of the inter-
rupted process. This action is done to ensure that the process may be
resumed (once the interrupt request has been serviced).

Device Handlers. The device handlers (or peripheral drivers) are a col-
lection of routines that connect the system and the user program with
the peripheral devices. There is one device handler for each type of
peripheral device in the hardware configuration supported by the oper-
ating system. Individual device handlers are required because each
handler performs data transfers between its particular device and main
memory. Because each device has unique hardware logic, the device
handlers must have sections of their programs tailored to the individual
devices’ particular needs and features.

0SS 26




Storage Allocator. The storage allocator performs two major func-
tions. First, the storage allocator is responsible for the allocation of
main memory to a program. The allocator maintains a memory map
that indicates to the scheduler what areas of memory are available for
programs and what areas of memory are already allocated to which
particular programs. In systems in which more than one program is
allowed in memory at one time, the storage allocator makes sure the
programs do not use each others’ allocated memory. This activity is
called memory protection. A sample memory map appears in Figure 6.

FROGRAM A

PROGRAM B

FROGRAM C

PROGRAM O

}‘.. —————
I OPERATING
F--r-
i' SYSTEM
j___L__

Figure 6 Memory Map

The second major function of the storage allocator is controlling the
use of auxiliary storage for the temporary storage of all or parts of a
program during execution. This function is required particularly for two
operations: swapping and overfaying.

Swapping is a technique by which an operating system permits two
or more programs to alternately use the same area of memory. While
one program executes in main memory the remaining programs are
stored in a suspended state on auxiliary storage. At some point, the
program in main memory is suspended, stored on auxiliary storage, and
another program is then loaded into main memory for execution. This
exchange of entire programs is called swapping. If the swapping proc-
ess occurs regularly and at frequent intervals, the computer can appear
as if it were executing many programs at the same time and allowing
each program to use the entire system. Thus. swapping is invisible to
the programmer and is handled by the operating system through the
storage allocator.




PROGRAM A

FPROGRAM E

PROGRAM C

PROGRAM D

lr OPERATING

by =

I L]
1 EYSTEM

|___L.._-

MEMORY

_—
e —

P— ]

PROGRAM B

R

e

PROGRAM E
-

o
.

DISK

Figure 7 Swapping

PROGRAM A

PROGRAM B

AN~

-

".-.-._-___-‘-“ﬁ
l"I-|.|_|_|_'_,_,.|-l"

OVERLAY &

OVERLAY B

—— ]
OVERLAY C
—

OVERLAY D

M—

——

Figure 8 Overlaying with One Overlay Region

and Four Overlays

oS 28



Overlaying is a technique by which certain parts of a single-user
program may take turns in main memory. This technique is useful for
situations in which a program is physically larger than the available
memory. When a program has been written with subroutines, over-
laying allows the programmer to bring a given subroutine into memory
only when it is needed. At other times the memory locations can be
used by other subroutines. Figure 9 shows the “calling structure” of a
typical user program. Notice the tree-like appearance. The mainline
program calls subroutines A and B, while subroutine A in turn calls
subroutines C and D. To use overlaying, the programmer specifies
which routines are a/ways to be memory-resident. These routines are
called the root.

OVERLAY 1 OVERLAY 2 OVERLAY 3 OVERLAY 4

& ROOT

Figure 9 Overlay Structure

Note that in Figure 9, the mainline program (which is a/ways in the
root) and the subroutines A and B compose the root. The remaining
subroutines are then grouped into overlays. In Figure 9, the program
will have in memory, at any time, the following routines:

¢ the mainline, subroutine A and subroutine B, and

e one and only one of subroutines C, D, E or F in an overlay region.




The overlay region is typically a fixed area in the memory area assigned
to the program. When a new overlay is required, the contents of the
overlay regions are overwritten with the new overlay that is moved
from auxiliary storage into the overlay region.

Thus, because only part of the program is present in main memory at
any point, the physical size of the program may be considerably larger
than the amount of available memory. Note that, unlike swapping, the
user can control the behavior of the program by specifying which rou-
tines belong to the root and which routines belong to each overlay
region. Once the program is executing, the actual overlaying operations
are handled automatically by the memory allocator. Table 1 summa-
rizes the differences between swapping and overlaying.

Table 1 Differences Between Swapping and Overlaying

Swapping Overlaying
- Initiated by Operating System. ® Initiated by Program,
®  Two directional — one program e One directional — all overlays
goes to the disk and another are kept on disk and copied
comes in. into memory as needed,
erasing what was in memory
before.
e  Entire programs and their data ®  Only subroutines are * overlayed.”
and status are swapped. Data is not.

Libraries and the Library Manager

Libraries are collections of programs that are supplied with the oper-
ating system by the computer manufacturer or developed by users.
There are three major parts to an operating system’s libraries:

the system library, including language translators, frequently
used subroutines, and utility routines (such as the debugger, link-

er. editor, etc.):

the user library, including user-written programs and data files;

the directory, which is an index to where each member (a pro-

gram file or a data file) has been stored.

0s 30




The libraries are not strictly part of the operating system but the pro-
gram that controls their use (the library manager) is, in fact, a com-
ponent of the operating system that detects a request for a library
member and locates it so that a device handler can be called to read or
write it.

In summary, we have seen that the operating system itself is com-
posed of six parts:

the executive (controlling and coordinating all operations),
the scheduler (determining which program gets a resource next)
the interrupt handler (selecting which device is serviced next),

the device handlers (managing data transfers and 1/0
operations),

the storage allocator (controlling the usage of main memory and
auxiliary storage), and

the library manager (controlling use of the system and user
libraries)

In the following lessons, you will learn how these components are com-
bined to produce operating systems with very different characteristics
from each other.

INTERRUPT HANDLER

SCHEDULER

EXECUTIVE

STORAGE LIBRARY
ALLOCATOR MANAGER

DEVICE HANDLERS

MEMORY

Figure 10 Operating System

0os 31




EXERCISES

1. List the operations that a programmer performs manually on a paper
tape system, but that are done automatically by an operating
system.

2. Define:

al Swapping

b) Overlaying

c) Queue

0s 33




SOLUTIONS

1. List the operations that a programmer performs manually on a paper
tape system, but that are done automatically on an operating
system.

a) Start Programs
— Load starting address into program counter.
— Start computer.

b) Handle paper tapes containing programs to be executed.

2. Define:

a) Swapping - A memory management technique in which several
different user programs and their data and status are alternately
executed and exchanged between a common memory area and
auxiliary storage.

b) Overlaying - A memory management technigue in which only
parts of a program are in memory at any point. The remaining
parts are stored on auxiliary storage until they are called by the
program.

c) Queue — A data structure in which the first item in the line is the
first to be serviced (first-in/first-out).

0s 34




EXERCISES

3. List the six major components of an operating system and give one

function for each.

Component Function

0Ss 35




SOLUTIONS

3. List the six major parts of an operating system and give one function

for each.

Component

Executive

Scheduler

Interrupt Handler

Device Handler

Storage Allocator

Library Manager

0sS 36

a)

a)

b)

a)

b)

a)

b)

al

b)

a)

b)

Function

Coordinates and controls
all other components.

Determines which pro-
gram gets a given
resource next.

Maintains and estab-
lishes queues for
priorities.

Selects which device is
to be serviced next.

Saves status information
of the interrupted pro-
gram so that it can be
resumed.

Control data transfers
between devices and
main memory.

Connects CPU and user
program with
input/output devices.

Maintains memory map
for scheduler.

Allocates and controls
which areas of memory
and auxiliary storage are
used by which user
programs.

Controls libraries of sys-
tem and user programs,
and data files.

Fetches a library mem-
ber when it is requested.




On-Line Operating Systems

OBJECTIVE

Given a table of 5 general functions of operating systems and 3
types of on-line operating systems, and 15 descriptions, be able
to match each function/type combination with its description.

SAMPLE TEST ITEM

Three types of on-line operating systems, five functions of oper-
ating systems, and fifteen descriptions are given below. Match
each combination of type and function with its description.

Time- Real- Single
Function Sharing Time User

Executive

Scheduler

Storage Allocator

Library Manager

Application

Functions

Executive
a. Multiprograms machine tasks.
b. Multiprograms user tasks.
c. Loads and starts requested programs.

Scheduler
d. Time slices all user tasks.
e. Plans time-critical tasks.
f. Performed by the user program.

Storage Allocator




Mark your place in this workbook and view Lesson 3
of the A/V program, “Operating Systems.”

Single-User Operating Systems

The simplest form of operating system is that which is designed to
serve only one user at a time. Because users are not competing for
computer resources, each operating system component can be made
as simple as possible.

In operation, program development on a single-user system resem-
bles the program development process described in Lesson 1 — with
one important exception. Commonly used programs such as the loader,
editor, assembler, and debugger are stored on some auxiliary storage
medium (usually a disk). Instead of having to load a machine code tape
each time the user wishes a new program, the user types a command
on the console keyboard, and the operating system loads the desired
program without requiring further user action.

In a single-user operating system, the components have the follow-
ing responsibilities:

* The executive coordinates all operating system actions, and
loads and starts programs requested by the user through com-
mands typed on the console keyboard.

* The scheduler is normally nonexistent in a single-user system
because the single user at the terminal makes all the decisions
as to what programs to run in which order.

* The interrupt handler remains essentially the same size regard-
less of the number of users as it is responsible for identifying 1/0
devices that issue interrupts. The demands on the interrupt
handler are a function of the hardware configuration and not of
the operating system.

0s 39




The device handlers (one handler for each type of peripheral
device) move information between their specific devices and
main memory. Device handlers are relatively standard programs
that do not vary from one operating system to the next because
common |/O techniques are used. When a device handler is
started, it is told how many words of information to move, the
address of a memory buffer, the location on the peripheral device
(if it has locations) and in which direction to move the informa-
tion. The device handler moves the information and returns con-
trol to the executive.

The storage allocator in a single-user system is relatively simple
because the memory map will always show just the operating
system and one user program. Thus, the user is allocated all of
memory not used by the operating system, and the storage
allocator only manages one memory area. Overlay capability is
included in some systems to handle very large user programs,
but swapping capability is generally not implemented.

The library manager on single-user operating systems oversees
simple files that contain programs and data and are all available
to the user of the system.

NOTE

In many single-user operating systems, the executive can receive
commands not only from the user at the terminal, but also from
the executing program. This feature allows programmers to use
the general functions of the operating system to handle inter-
rupts, handle information movement to and from peripheral
devices, and manage the files on the system. Thus, the program-
mer need not write programs to perform these functions.

The single-user operating system represents the earliest developed

form of operating systems. Its primary advantages are its faster and
more convenient operation than paper tape systems, and the fact that
programs can call the operating systems to perform standard functions.
However, single-user operating systems are generally found only on
computers with minimal hardware configurations. This is because the
major disadvantage of single-user systems is the inefficient use of CPU
time compared to larger, more complex operating systems. On a single-
user system, while the user program is performing an 1/0 operation, the
CPU is largely idle because CPUs work much faster than peripheral

devices.

0s 40




TIME

Usar
CPuU

/0 FAS

Single User System

o T T )

User 2 A O

User 3 I J‘ .“'I'lm'I'll'n'lh“'l'l‘.“'l“.'l'l’ll“f
Total CPY . -
Total 1/0

Multiprogram ming System

Key: Ej Idie

- CPU usage m 1/0 operation

Figure 11 Single User vs Multiprngramming

The idle time of the CPU is reduced in most large Operating systems
through what is called a multi-user or mufr.f}:amgrammfng capability.
Muiﬂpmgramrnfng allows two or more Programs to be executed by the
CPU concurrently. Each program runs in a separate area of memory
(called a partition) and uses the CPU alternately. Note that only one
program executes at any given instant because there is still only one
CPU. But, while one program is waiting for an 1/0 device, another
program can be executed. Figure 11 graphically shows the increased
CPU and 1/0 efficiency of muitiprcgramming. Notice that the CPU and
170 devices are seldom idle for long, and that frequently both are active
at the same time. Hence, mu!tiprogramming provides a much higher
utilization of Computer resources. On the other hand, an individual

0s 41



EXERCISE

For a single-user operating system, describe with a phrase the func-
tion of each routine listed below.

Single-User Operating System
a) executive

b) scheduler

c) storage allocator

d) library manager




SOLUTION

For a single-user operating system, describe with a phrase the func-
tion of each routine listed below.

Single-User Operating System
a) executive — loads and starts requested programs
in response to keyboard commands or

calls from executing program

b) scheduler - this function performed by user at
terminal, or by executing program

c) storage allocator —~ manages one memory area
d) library manager — oversees simple files, all available to
the user

os 44




Timesharing Operating Systems

Timesharing operating systems multiprogram for many on-line
users. Computer resources are shared concurrently among the users,
permitting each user to interface with the system as if it were a single-
user system. Competition for common resources is managed automat-
ically by the operating system.

In a timesharing operating system, the operating system com-
ponents have the following responsibilities:

The executive is more complex than for a single-user system
because of the number of users. The activities of the executive
are similar to those of a single-user system, except now there are
many users to coordinate. The executive loads and starts pro-
grams for each user in response to keyboard commands.

The scheduler, however, is far more complex than for a single-
user system. All the user programs, sometimes called user tasks,
are executed in a sequential or “round-robin” manner. Each pro-
gram is allowed to execute for a maximum period of time called
a “time slice.” At the end of the time slice or when an |/O oper-
ation is requested, the program is halted and another program
executed. The status of the interrupted program is saved to allow
it to be resumed when its turn for execution comes again. Deter-
mination of the end of a time slice is provided by an internal
clock that interrupts the CPU and signals that a specific period of
time has elapsed. Some timesharing systems allow program pri-
ority levels in order to give some users or some programs prefer-
ential access to both CPU time and peripheral devices. Because
of these responsibilities, the design of the scheduler is crucial to
the performance of a timesharing operating system.

The storage allocator is also very complex. Because there are
several users, the memory map is more complex, and users must
be protected from each other. Additionally, most timesharing
systems allow more user programs than can be stored in memo-
ry at one time. Therefore, the technique of swapping is heavily
used. Hence, a user program may reside in memory only when it
is being executed. At all other times, it will be stored on auxiliary
storage — waiting for its next turn or time slice. Like the sched-
uler, the design of the memory allocator is very important to the
operating system’s performance.




The library manager in a timesharing system must not only pro-
vide access to files on auxiliary storage, but must limit access to
files to authorized users. This requires users to enter identi-
fication numbers and passwords that can be checked against
access restrictions for each file. These restrictions are normally
recorded in the file directory along with the name of each file and
other information.

The interrupt handler and the device handlers, are all basically
similar to those for a single-user operating system.

Timesharing systems are designed for on-line processing. Programs
are generally developed on-line with the assistance of interpreters or
compilers of high-level languages. However, most systems also have
assemblers for developing programs that must execute quickly.
Because timesharing systems allow many users to develop programs
concurrently, they are frequently found in academic environments
where many students need access to a computer. In a timesharing
system, interactive programs can be developed for on-line modification
of data files. Typical applications using this feature include inventory
control and airline reservations handling programs.

There are several important advantages of timesharing systems:

Each user has the benefit of a dedicated computer at a fraction
of the cost.

If the system’'s hardware and software are adequate, the user is
not aware of other users.

The CPU and other resources are efficiently used.
Programs may be interactively developed.

Data files can be updated on-line.

Counterbalancing these advantages are several important
disadvantages:

A significant part of main memory is taken up by the executive
and other parts of the operating system.

There is a larger amount of overhead involved because of
swapping and other system operations.

0S 46




* Individual programs take longer to execute than on a single-user
system.

* A much larger capital outlay is required for such things as a fast
CPU, multiple terminals for several users, more main memory,
and faster and larger auxiliary storage devices.

Hence, timesharing systems are not always the best choice for a par-
ticular application.

oS 47



EXERCISE

For a timesharing operating system, describe with a phrase the
function of each routine listed below.

Timesharing Operating System

a) executive

b) scheduler

c) storage allocator

d) library manager

0s 49



SOLUTION

For a timesharing operating system, describe with a phrase the
function of each routine listed below.

Timesharing Operating System

a) executive - multiprograms user tasks, loading
and starting each in turn

b) scheduler — time slices all current user tasks

c) storage allocator — swaps user tasks continually

d) library manager - limits access to files to authorized
users

0§ 50




Real-Time Systems

Real-time operating systems are designed to interact with machines,
which often operate faster than people at terminals. Certain appli-
cations, such as industrial process control or intensive care patient
monitoring, cannot tolerate the inherent slowness of “round-robin”
scheduling. Accordingly, real-time operating systems are designed to
provide rapid responses to certain priority programs or devices. The
term “real-time” means that the system responds to external events
during the time in which they are actually (really) occurring. Thus, the
computer can process information and respond fast enough to control
events while they are happening.

Real-time systems may allow more than one program to operate
concurrently. In this case, program priorities are definitely established
to indicate which programs receive the most rapid responses.

The responsibilities of the operating system components are similar
to those for a time-sharing system, except that the handling of inter-
rupts and the servicing of peripheral devices is far more critical. There-
fore, great care is taken to ensure that the interrupt handler and
required device handlers are efficient and memory-resident at all times.

Real-time systems are used in applications such as laboratory or
medical instrument monitoring and industrial process control. The
primary advantage is fast response to external stimuli, The orientation
of the operating system toward this special ability makes a real-time
system somewhat less flexible for applications not requiring rapid
responses. In summary:

* The executive in a real-time operating system multiprograms
tasks that service other machines.

* The scheduler plans execution based upon priorities that have
been set according to the time-critical nature of the machine
being serviced by each program or task.

* The storage allocator swaps tasks that are not time-critical and
allocates permanent space to tasks that must be started in less
time than it takes to swap them into memory.

* The library manager operates quickly to reference files and make
information available.

Further abilities that increase a real-time system's flexibility will be dis-

cussed in the next lesson under the topic *'Foreground and Background
Programs.”

0s b1



EXERCISE

For a real-time operating system, briefly describe the function of
each routine listed below.

Real-Time Operating System

a) executive

b) scheduler

c) storage allocator

d) library manager

0Ss 53




SOLUTION

For a real-time operating system, briefly describe the function of
each routine listed below.

Real-Time Operating System

a) executive - multiprograms tasks that interact
with machines

b) scheduler - plans execution of time-critical tasks
according to priorities based on
urgency

c) storage allocator - allocates some memory, per-

manently, to programs that must be
started in a hurry; the rest is allocated
on a temporary, swapping basis

d) library manager - accesses and creates files quickly

0Ss 54




Summary
Table 2 summarizes the major differences between single-user,

timesharing, and real-time operating systems. Look carefully at this
table before going on to do the exercises for this lesson.

Table 2 Comparison of On-line Operating Systems

Single User Timesharing Real Time
Executive Loads and starts Multiprograms Multiprograms
requested user tasks machine tasks
programs
Scheduler This function Time slices all Plans time-critical
performed by the user tasks tasks

user or program

Storage Allocator Manages one Swaps Allocates memory
memory area continuously permanently

Library Manager Oversees simple Limits access References files
files to files quickly

Single-user operating systems are used in applications where the
capital outlay for a larger system cannot be justified, yet the computer
must perform a wide variety of tasks. These applications include small
laboratories, small educational institutions, and small private business-
es. In these applications the same system is used for program devel-
opment and the execution of programs for the ongoing operations of
the group. department, or business.

Timesharing operating systems are used in applications where
many people must interact with the computer to develop and execute
programs. Thus, timesharing systems are generally found in the educa-
tional environment and in business data processing environments
where it is important for people to access data on the system.

Real-time operating systems are used in applications where fast
response is necessary to keep automated processes operating properly.
Thus, in general, real-time operating systems control machines such as
atomic reactors, paper making machines, chemical plants, scientific
measuring instruments, and valves in water supply systems and trans-
continental pipelines.




EXERCISE

List the general functions that distinguish single-user, timesharing,
and real-time operating systems. Describe briefly how each type of
operating system performs these functions.

0s 57




SOLUTION

ﬁ

List the general functions that distinguish single-user, time-sharing,
and real-time operating systems. Describe briefly how each type of
operating system performs these functions.

Single User Timesharing Real Time
Executive Loads and starts Multiprograms Multiprograms
requested user tasks machine tasks
programs
Scheduler This function Time slices all Plans time-critical
performed by the user tasks tasks
user or program
Storage Allocator Manages one Swaps Allocates memory

memaory area

continuously

permanently

Library Manager

Oversees simple
files

Limits access
to files

References files
guickly

0SS 658




EXERCISE

For the operating systems below, list applications in which each
might be used.

a) Single-User Operating System

b) Timesharing Operating System

c) Real-Time Operating System

0s 59




SOLUTION

For the operating systems below, list applications in which each
might be used.

a) Single-User Operating System
¢ Small groups

— laboratory, education, business, where both program
development and data processing are done.

b) Timesharing Operating System
* Education
— Computer science
- Executing programs to process data for other disciplines
* Business
— Where people must access information on computer.
c) Real-Time Operating System
* Industrial Control
- Atomic reactors
-~ Paper making machines
- Chemical production
* Science and Engineering

~ Fast measuring instruments

0§ 60




Off-Line Operating Systems

OBJECTIVES

1. Given five general functions of an off-line operating system
and five descriptions, be able to match each function with its
description.

2. Given six statements and examples referring to operating
systems, be able to label those that refer to foreground pro-
grams and those that refer to background programs.

SAMPLE TEST ITEMS

1. Match each of these off-line operating system functions with
its description.

Function Description

Executive

Scheduler

Storage Allocator

Library Manager

Application

Descriptions

a. Handles multiple directories.
b. Manages space for different sizes of programs.

0S 61




SAMPLE TEST ITEMS

2. Indicate whether these statements and examples refer to
foreground (F) or background (B) programs by writing the
correct letter in the space provided.

Statements and Examples Type of Program

May be a subordinate operating sys-
tem such as batch.

Example: process control. e —

0SS 62




Mark your place in this workbook and view Lesson 4
of the A/V program, “Operating Systems.”

Batch Operating Systems

A batch operating system is a system in which programs are handled
non-interactively as a single input stream of tasks. The executive identi-
fies each individual program in the input stream. These individual pro-
grams are then run consecutively without operator intervention. In
larger batch systems allowing multiprogramming, the scheduler may
allow priorities to be established for classes of programs.

In contrast to timesharing and most real-time systems, the editing
process of program development in a batch system is normally per-
formed off-line, typically using keypunches or similar devices. The pro-
gram is combined with the accompanying data and submitted as a job.
Many jobs are submitted as an input stream, sometimes called a batch
stream. At some later time, dependent upon the job’s priority and its
place in the input queue, the job is executed and its results are output.

Batch processing suffers somewhat from the lack of interaction
available during program development and execution. Interpreters are
rarely found in batch systems; compilers and assemblers are the rule.
Further, programs cannot be written to interact with users at keyboard
terminals, and all program data must be submitted with the program.

A second disadvantage is the time delay or “turn-around time"” exist-
ing between the time a program is submitted and the time the results
and/or errors are received for analysis. For experienced programmers in
a production environment, this feature is actually an advantage as the
typing of programs and data onto cards can be performed by less
skilled, less expensive personnel. However, with an interactive system,
programmers generally must type in their own programs.

The major advantage of batch systems is efficiency. When multi-
programming is implemented, jobs are executed one after another
without time lapses in between. Furthermore, when one program is
waiting for /O operations, another can run in its place. There is also
less system overhead in a batch system than in a timesharing or real-
time system, because the executing program is not being constantly
interrupted.

e ——




Because of the emphasis on efficiency and the existence of turn-
around time. batch system applications tend to be the following:

* programs requiring large amounts of processing time, and often
large amounts of stored data

* programs generally of a non-urgent nature, of varying sizes and
descriptions

* programs of a routine or periodic nature (e.g.. payroll or
accounting)

These characteristics describe nearly all commercial and non-time-criti-
cal scientific applications with a large amount of data to be processed.
Often the data handled by a batch operating system is so large that
many auxiliary storage devices, each with its own directory, are needed
to hold the information.

In a batch operating system, the general functions are performed by
the various operating system routines as follows:

* The executive multiprograms non-time-critical programs that
have been prepared off-line.

* The scheduler uses complex priority systems to queue tasks for
execution, and if spooling is available on the system, spooling
programs must also be scheduled.

* The storage allocator manages space for many different kinds
and sizes of programs.

® The library manager handles large numbers of program files and
data files, often using multiple auxiliary storage devices, each
with its own directory.

The following table summarizes the major differences among the
three operating systems: timesharing, real-time, and batch.

0S 64




Table 3 Comparison of Multiprogramming Operating Systems

external event or
interrupt

Criterion Timesharing Real-Time Batch

Primary input medium Human via terminal | Special purpose Cards
hardware device

Method of service Round robin By internal or Sequential

Primary advantage

Interactive for

Rapid response for

Efficient use of

Requires expensive
hardware con-

many Users time critical tasks + | processor and
peripherals
Disadvantages Execution speeds Less efficient as Completely non
are slow a multi-user system interactive

Introduces time
delay between

Inventory cantrol

Airline reservations

control

Medical patient
manitoring

Scientific
labaratory
manitoring

figurations submission and
results
Typical applications Education Industrial process Many commercial

and scientific
applications with
long jobs and high
volumes

Foreground/Background Operating Systems

In some applications, a combination of on-line and off-line process-
ing must be done. This combination occurs most frequently in real-time
control applications where inventory and production reports must be
generated.

Often, the computer controlling the operation of machinery is not
kept busy by this task and spends time waiting for an interrupt from an
external event. In these applications, a so-called fore-
ground/background operating system can be used to give the computer
other jobs to do while it is waiting for an interrupt.

0S 65



A foreground/background operating system is basically a real-time
operating system that also executes non-time-critical programs such as
are normally executed under a batch operating system. In a fore-
ground/background system, memory is typically divided into three
areas: the operating system, the current real-time programs, and the
current non-critical batch-type programs.

The memory area that holds the real-time programs is called the
foreground, the area that holds the non-critical batch-type programs is
called the background.

Thus, foreground programs are time-critical tasks such as patient
monitoring or process control. Time-critical tasks are further distin-
guished by their interaction with devices such as A/D converters and
remote sensors. These devices have a ““mechanical”’ rather than
“human” orientation.

By contrast, background programs are low-priority tasks that run
when the foreground program is not running. Typical background tasks
include program development tasks, report generation, mailing list
maintenance, payroll, and other tasks that are not time critical. A back-
ground task runs until one of the following occurs:

e A hardware interrupt for a foreground task is detected.

* The computer operator requests interruption of the background
program.

* The background program calls an operating system routine.

* A scheduled event occurs. This type of interrupt can be triggered
by the time of day, an elapsed time counter, or a periodic sched-
ule such as once a minute or every hour.

In summary, foreground/background systems make efficient use of
an entire computer system. Real-time control is performed in the fore-
ground. When no time-critical program is running in the foreground, a
background program can be executed to produce payrolls, reports,
mailing lists, or other batch-type jobs.

0S 66




EXERCISES

1. For a batch operating system, describe briefly the functions of each
routine listed below.

Batch Operating System

a) executive

b) scheduler

c) storage allocator

d) library manager

oS 67




SOLUTIONS

1. For a batch operating system, describe briefly the functions of each
routine listed below.

Batch Operating System

a) executive - multiprograms tasks pre-
pared off-line

b) scheduler - uses complex priorities to
queue tasks and spooling
programs

c) storage allocator - manages space for differ-
ent sizes of programs

d) library manager - handles large quantities of

data with multiple
directories

0OsS 68




EXERCISES

2. For each statement, place an X in the box or boxes under the oper-
ating system that best fits the statement.

Timesharing Real Time Batch

a) Primary medium is:

e special-purpose hardware
* cards
« humans via terminals

b) Method of service is:

sequential
¢ “round robin” basis
* by interrupts

c) A typical application area is:

¢ education
e medical patient monitoring
¢ high-volume processing

d) A disadvantage is:

requires expensive hardware
introduces ‘‘turn around”

delay

e |ess efficient as a multi-user
system

e usually completely non-
interactive

s gxecution speeds are slow

e) The major advantage is:

e rapid response for critical
tasks

* interactive processing for
many users

* very efficient use of
resources

0s 69



SOLUTIONS

2. For each statement, place an X in the box or boxes under the oper-
ating system that best fits the statement.

Timesharing Real Time Batch

a) Primary medium is;

* special-purpose hardware e
® cards
* humans via terminals X

b) Method of service is:

* sequential
* “round robin" basis X
* by interrupts

c) A typical application area is:

education
* medical patient monitoring A
* high-volume processing

d) A disadvantage is:

* requires expensive hardware |
* introduces ‘‘turn around”
delay X
* |ess efficient as a multi-user
system
* usually completely non- X
interactive
* execution speeds are slow X

e) The major advantage is:

* rapid response for critical
tasks ><
* interactive processing for X
many users
* very efficient use of
resources X

0s 70




EXERCISES

3. Explain the difference between foreground and background pro-
grams. Give an application of each.

os 71




SOLUTIONS

3. Explain the difference between foreground and background pro-
grams. Give an application of each.

* Foreground programs - in a real-time operating system, the
high-priority programs requiring rapid responses to interrupts to
avoid losing highly changeable data. Industrial process control
and medical patient monitoring are example applications.

e Background programs - the low-priority programs of a non-
time-critical nature. The background task may be a subordinate
operating system such as timesharing, single-user, or batch sys-
tems. Typical background applications include program devel-
opment and other non-critical programs such as payroll, etc.

os 72




Take the test for this module and evaluate your
answers.

os 73




	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038
	Scan0039
	Scan0040
	Scan0041
	Scan0042
	Scan0043
	Scan0044
	Scan0045
	Scan0046
	Scan0047
	Scan0048
	Scan0049
	Scan0050
	Scan0051
	Scan0052
	Scan0053
	Scan0054
	Scan0055
	Scan0056
	Scan0057
	Scan0058
	Scan0059
	Scan0060
	Scan0061
	Scan0062
	Scan0063
	Scan0064
	Scan0065
	Scan0066
	Scan0067
	Scan0068
	Scan0069
	Scan0070

