Introduction
to- :

Mlmcomput ers

Instruction Sets =
| T -
- |
L T .
WA~ R ’

1st Printing, June 1976
2nd Printing (Rev). October 1977
‘3rd Printing, August 1979

Copyright =~ 1976, 1977, 1979 by Digital Equipment Corporation

The reproduction of this workbook. in part or
whaole. is strictly prohibited. For copy information
comtact the Educational Services Department,
Digital Equipment Corporation, Bedford, Massa-
chusetts 01730,

Printed in U.5.4.

INTRODUCTION TO MINICOMPUTERS

Instruction Sets

Student Workbook

Audio-Visual Course by Digital Equipment Corporation

COURSE MAP

oS
OPERATING
SYSTEMS
o
o
TECHNIQUES
LA
PROGRAMMING =
LANGUAGES
FILE
ORGANIZATION
S0
GENERAL
SOFTWARE
BU
BuUS
STRUCTURES

CENTRAL
PROCESSOR

FD

PERIPHERAL
DEVICES

COMPUTER
ARITHMETIC

PROBLEM NUMBER
SOLVING SYSTEMS

TERMS AND
CONVENTIONS

SYSTEM
OVERVIEW

CONTENTS
INErOdUCTION.........cooiieiiiiiiiie e e rsssrssesrassrssssneeersesseresserssessssssssssees]

Instruction Formats... 3
Objectives and Sampla Test Itams R R A
Operation Field and Op Cudesﬁ
Operand Field and Operands............co.ocvecviiernvnessssisssssmssssseressesseressessn 8
Instruction Mnemonics ... o A TRt T B RN CP Mt
Variations in the Basic Instructmn Forrnat?
Exercises and SOIUHONSccanvismunsusissssmnsonaammimnsss Tl

Addressing Data .. i R e Y B
Objectives and Sampla Tast Itams POV IERI SN .
Direct Addressing........... 1 7
Indirect Addrassing A SR AN SR A R R g SRS RS
EXOTCiSns BN SOIOND oo o st B

Typical Instruction Set... S R A R R D e]
Objectives and Sample Tast itams PSR S s R B ot |
Program Examples... 35
Negative Numbers and Subtrar.:tron S T e AR
Program Loops, Tallys, and Branchas4ﬁ
Program Contiol InSInIctions ..omesrsmmauinsmmmmssasassisss il
Additional Program Exampiesﬁ‘l
Summary.... PO POORRTOORTRO - 1 -
Exercises and Sulut;ons GG e DS

IS v

Instruction Sets

Introduction

In this module, you will have an opportunity to apply many of the
basic concepts that you learned in the earlier units. In fact, when you
complete this study unit, you will be able to write simple computer
programs using a set of basic instructions.

As we have seen, a digital computer is completely dependent on the
instructions that we supply it with. Any problem that the computer is
required to solve must be specified correctly in every detail by the
programmer.

Computer programmers frequently use flowcharts to help them plan
the various steps, or operations, that the computer must perform. The
flowcharts must then be converted into a sequence of instructions to
which the computer can respond. A complete sequence of instructions
for solving a particular problem is called a program.

After the program is written, the instructions and accompanying
data are input to the computer and are stored in main memory. The
central processor then retrieves and executes the instructions one-at-a-
time in logical order to arrive at a solution to a given problem.

Each computer is designed to recognize and perform a specific
group of instructions called an instruction set. Although instruction sets
may vary significantly from one computer manufacturer and model to
the next, there are certain fundamental instructions that are used in
most general purpose digital computers.

In this module we will discuss the format and use of instruction sets.
Qur discussion is divided into three lessons. The first lesson describes
the basic components of an instruction word and discusses variations
in the basic instruction format. The second lesson explains how the
instructions address data stored in main memory. Our third lesson
defines a typical instruction set and develops some simple programs
using these instructions.

Instruction Formats

OBJECTIVES

1. Given six field names and two field purposes, be able to select
the two fields that constitute an instruction word. and match
each of the word fields with its corresponding purpose.

2. Given the terms “operand,” “op code,” “instruction mne-
monic,” and “accumulator” and four definitions, be able to
match each term with its definition.

3. Given four instruction formats and descriptions, be able to
match each format with its description.

SAMPLE TEST ITEMS

1. In Part A below, circle the two letters that identify the names
of instruction word fields.

In Part B, write the letter of the field being defined in the
space provided.

Part A

The two fields of an instruction word are:

Instruction field
Operand field
Program field
Word-size field
Operation field
Mnemonic field

~eooOw

Part B

a. The____ tells the CPU where to find the data that are
to be processed.

b. The holds a binary code that tells the CPU exactly
what to perform next.

IS 3

SAMPLE TEST ITEMS

2. Match each of the terms below with its definition,

Term Definition
Operand

Op Code =
Instruction Mnemonic -

Accumulator
Definitions

a. A 3- or 4-letter abbreviation that programmers use in
place of the binary operation code.

b. An item of data to be acted upon by an instruction,
c. A special storage area contained in the CPU.

d. A predefined binary code that tells the CPU what oper-
ation it is to perform.

3. Match the following instruction formats with the appropriate
description:

a. Three operand () If the instruction calls for an
fields addition, the sum is placed
in @ memory location for-
b. Two operand merly occupied by one of
fields the operands.
c. Single operand ()} Memory is not referenced:
field the instruction operates
directly on the contents of
d. No operand field the AC.

{)} Not widely used in mini-
computers because it re-
quires a large word size.

() If the instruction calls for an
addition, the contents of a
memory location are
added to the contents of
the AC.

IS 4

Mark your place in this workbook and view Lesson 1
in the A/V program, “Instruction Sets.”

In the audio-visual portion of this lesson we defined the basic format
of an instruction word. We noted that most computer instructions con-

sist of two major elements, or fields — an operation field and an operand
field.

ONE INSTRUCTION WORD

OPERATION OPERAND
FIELD FIELD

Operation Field and Op Codes

The operation field holds a predefined binary code called an oper-
ation code or, simply, an op code. Each time the central processor
(CPU) retrieves an instruction from main memory, the instruction op
code tells the CPU exactly what operation to perform next. For
example, an op code of 001 may specify an add operation, while an op
code of 011 may designate a store operation.

At the time a computer is designed, a different op code is assigned
to every instruction in the instruction set. Special circuits in the central
processor are then used to interpret (decode) each op code so that the

central processor can perform (execute) the operation that the op code
represents.

The number of bits that make up the op code generally depends on
the size of the computer's instruction set: the larger the instruction set,
the more bits that are required to represent each instruction uniquely.
For example, a 3-bit op code is sufficient if there are only 8 instructions
in the set (23 = 8). However, if there are 32 different instructions, then
a 5-bit op code is necessary (258 = 32). Stated in more general terms,
an op code of “n” bits can represent a maximum of 2" different
instructions.

IS 5

Operand Field and Operands

In addition to the op code, most instructions contain one or more
operand fields (see Figure 1). Before the central processor can perform
an operation, such as adding two numeric values, it must be told where
the values are stored. This is the purpose of the operand field; it tells
the CPU where to find the data (or operands) that are to be processed.
Thus, an operand is simply an item of data to be acted upon by an
instruction, and the operand field is a part of the instruction word that
usually holds the memory address of the operand.

TWO OPERAND FIELDS

.

']
ADD 300 301
MEMORY
OPERAND
ADDRESSES
200 OPERAND et
301 OPERAND -

S W Ve

Figure 1 Instruction Referencing Operands Stored in Memory

Instruction Mnemonics

Although binary op codes are essential because the computer reads
only 1s and Os, they are very cumbersome for us to work with. There-
fore, to simplify the task of writing or reading programs, each instruc-
tion is often represented by a simple 3- or 4-letter abbreviation. This
abbreviation is called an instruction mnemonic (see Table 1). Since
mnemonics suggest the meaning of each instruction, they are much
easier for us to remember and to work with. For example, to specify an
add instruction. we can use the mnemonic ADD in place of the op code
001. Or, to specify a store instruction, we can substitute the mnemonic
STR for the op code 011.

IS 6

Remember that the computer does not understand any language
except binary numbers. Consequently, instruction mnemonics must still
be converted into their equivalent binary op codes before the computer
can use them.

Table 1 Typical Instruction Mnemonics

Typical Instruction Binary
Instruction Mnemonic Op Code
Add ADD 001
Store STR 011
Jump JMP 101

Variations in the Basic Instruction Format

As we noted in the audio-visual program, some instruction formats
may use as many as three separate operand fields. At the other
extreme, some instructions may not contain any operand field. The
number of operand fields depends on factors such as:

e The design of the computer
¢ The word-size
e The type of operation called for by the instruction

Three Operand Fields

Figure 2 illustrates the use of an instruction format that contains
three separate operand fields. Two of the fields specify the memory
addresses of the two operands that are to be added together. The third
operand field indicates the address of the memory location where the
sum is to be stored. Note that this instruction format is not suitable for
most computers — especially minicomputers — because it requires a
large word size to accommodate all three operand fields.

Is 7

3 OPERAND FIELDS

ADD 300 301 302

MEMORY

300 OPERAND A |=

301 OPERAND B fa—r1o

302 | SUMI(A + B) |e

dYad

Figure 2 Typical Instruction with Three Operand Fields

Two Operand Fields

Instructions with two operand fields are used in some mini-
computers (see Figure 3). This format still allows the central processor
to address two operands stored in memory. However, after the two
operands have been processed, the result must be stored in the same
memory location that formerly held one of the operands, thereby
destroying that operand.

TWO OPERAND FIELDS

ADD 300 301

MEMORY

300 OPERAND A

301 OPERAND B

i
AN

Figure 3 Typical Instruction with Two Operand Fields

IS 8

Single Operand Field

A single-operand format is widely used in minicomputers because
their smaller word sizes (12 to 16 bits) often cannot accommodate
more than one operand field. When this format is used, the instruction
can reference just one memory location. If a second operand is required
(for example, in an addition), that operand is placed in a special storage
element called an accumulator. Because the accumulator is part of the
central processor, it is not necessary to address one of the operands
(the operand is already in the CPU).

As Figure 4 shows, the CPU responds to the single-operand instruc-
tion by adding the contents of memory location 300 to a second oper-
and held in the accumulator. After the addition is performed, the
resulting sum is held in the accumulator where it is available for further

processing. The operand stored in memory location 300 is not
changed.

SINGLE OPERAND FIELD

ADD 300
MEMORY
ACCUMULATOR
A B
300 OPERAND A | OPERAND B

e]
/\/\/\

Figure 4 Typical Instruction with One Operand Field

Thus, the accumulator (or AC) serves as a working area for all com-
putations. The central processor uses the accumulator to provide tem-
porary storage for an operand that is to be used in a computation. After
the computation is completed, the AC serves as a temporary holding

area for the answer. Note that the accumulator is usually designed to
hold just one word of data.

IS 9

-

No Operand Field

Some types of instructions only operate on the contents of the accu-
mulator, These instructions do not reference operands stored in memo-
Ty and, therefore, do not contain an operand field.

A “clear accumulator” instruction is an example of an instruction
with no operand field. This instruction is used whenever it is necessary

ONE INSTRUCTION WORD

| CLEAR ACCUMULATOR]
le—— OPERATION FIELD —of

(OP CODE)

IS 10

EXERCISES

1. A complete sequence of instructions for solving a particular problem
is called a

2. The computer is designed to recognize and perform a specific group
of instructions called a(an) .

3. Write in the names of the two elements or fields that are contained

in the following instruction word. Briefly explain the purpose of each
element.

a. b.

Purpose

a.

4. Write a brief definition for each of the terms listed below.

a. Operand

b. Op Code

c. Instruction Mnemonic

d. Accumulator

SOLUTIONS

1. A complete sequence of instructions for solving a particular problem
is calleda program.

2. The computer is designed to recognize and perform a specific group
of instructions called alan) instruction set.

3. Write in the names of the two elements or fields that are contained
in the following instruction word. Briefly explain the purpose of each
element.

a. Operation Field b. Operand Field

Purpose

a. The operation field holds a binary op code that tells the CPU
exactly what operation to perform next.

b. The operand field tells the CPU where to find the data (operands)
that are to be processed.

4. Write a brief definition for each of the terms listed below.
a. Operand — An item of data to be acted upon by an instruction.

b. Op Code — A predefined binary code that tells the CPU what
operation it is to perform. The op code is held in the operation
field of the instruction word.

c. Instruction Mnemonic — a 3- or 4-letter abbreviation that pro-
grammers use in place of the binary op code. Instruction mne-
monics suggest the meaning of each instruction and are easier to
work with.

d. Accumulator — A special storage area contained in the CPU. The

AC serves as a working area for all computations and is usually
designed to hold just one word of data.

IS 12

EXERCISES

5. How many different instructions can be represented by a 4-bit op

code?

6. If an instruction set consists of 64 different instructions, then how
many bits are required in the Op code to accommodate all 64

instructions?

7. Match the following instruction formats with the appropriate

description:

a. Three operand fields
b. Two operand fields
c. Single operand field

d. No operand field

(

)

13

If the instruction calls for an
addition, the sum is placed in
a memory location formerly
occupied by one of the
operands.

Memory is not referenced: the
instruction operates directly
on the contents of the AC.

Not widely used in computers
because it requires a large
word size.

If the instruction calls for an
addition, the contents of a
memory location are added to
the contents of the AC.

SOLUTIONS

5. How many different instructions can be represented by a 4-bit op
code?

16 instructions

6. If an instruction set consists of 64 different instructions, then how

many bits are required in the Op code to accommodate all 64
instructions?

6 bits

Match the following instruction formats with the appropriate
description:

a. Three operand fields (b) If the instruction calls for an
addition, the sum is placed in

b. Two operand fields a8 memory location formerly
occupied by one of the

c. Single operand field operands.

d. No operand field (d) Memory is not referenced: the

instruction operates directly
on the contents of the AC.

(a) Not widely used in computers
because it requires a large
word size.

(c) If the instruction calls for an
addition, the contents of a
memory location are added to
the contents of the AC.

IS 14

Addressing Data

OBJECTIVES

1. Given a diagram specifying the content of various memory
locations and a table listing instructions that reference the
various memory locations, be able to complete the table by
writing the addressing method, the operand address, and the
operand for each of the instructions.

2. Given three techniques for overcoming addressing limitations
and a list of descriptive phrases, be able to match each phrase
with the technique it describes.

SAMPLE TEST ITEMS

1. The diagram at the right specifies
the contents of various memory \/\/
locations. The table below lists sev- 300 1200
eral instructions that reference
these memory locations. For each 301 1202
instruction, specify the addressing
302 1201
method and the actual operand
address and the accompanying op-
erand. [= Chhea
1200 1600
1201 0200
1202 0277

VANYAN,

Addressing Operand
Instruction Method Address Operand
ADD 300 300 1200
ADD | 300
ADD | 301
ADD 302

IS 15

SAMPLE TEST ITEMS

2. The computer word size places a limit on the maximum num-
ber of memory locations that can be directly addressed. Three
techniques that may be used to overcome this addressing lim-
itation are: multiple-word instructions (MW), special registers
(SR). and memory pages (MP).

Match each of the descriptions below.with the technique it
describes by writing the correct abbreviation in the space pro-
vided.

Description Technique

Part of the CPU.

Sometimes used for purposes other
than addressing main memory.

Segments of main memory. L —
Used in place of single-word
instructions. T—
Size of each is chosen so that CPU
can address any location by using
the available address bit in the
instruction. —

IS 16

Mark your place in this workbook and view Lesson 2
in the A/V program, “Instruction Sets.”

In the audio-visual portion of this lesson we described different
methods of addressing operands stored in main memory. Let's review

and amplify the major points associated with each of these addressing
methods.

Direct Addressing

The following example illustrates the use of direct addressing.

OPERAND FIELD

OP
CODE il
MEMORY
DIRECT
ADDRESSING
':> 277 OPERAND

/\/N

This method is called direct addressing because the operand field of

the instruction “points” directly to the memory location (277) that con-
tains the operand.

The number of memory locations that can be addressed on a direct
basis depends on the number of address bits that are used. We can
define this relationship using a simple formula:

2" = |,

In our formula, “n"” represents the number of address bits and "L"
represents the maximum number of locations that can be addressed.
Thus, if an instruction word contains a 7-bit address, the central pro-
cessor can reference up to 128 memory locations (27 = 128).

IS 17

Most minicomputer systems contain at least 4K of memory (4096
words). To directly address all 4096 locations, we need a 12-bit
address (2'2 = 4096). However, if our minicomputer uses a 12-bit
word, it cannot possibly accommodate all 12 address bits in one
instruction word and still have room for the op code. Consequently, the
computer word size places a limit on the number of memory locations
that can be directly addressed. The following techniques can be used to
overcome this addressing limitation:

* Use multiple-word instructions.

* Address memory using registers in the CPU.

* Divide memory into smaller segments called pages.
Multiple-Word Instructions

When the word size limits the number of address bits, one solution is
to use two or three words to represent one complete instruction. This
solves our addressing problem by providing enough address bits to

directly reference any location in main memory. Figure 5 illustrates the
use of a multiple-word instruction.

SINGLE-WORD MULTIPLE-WORD
INSTRUCTION INSTRUCTION
3 hits 9 bits 12 bits
op OP
CODE ADDRESS CODE
12 bits
X
_,.{ ADDRESS
29.= 5§12
4K
MEMORY >"———
217 = 40986

Figure 5 Single-Word Instruction Vs Multiple-Word Instruction

IS 18

In this example, the single-word instruction can only reference 512
memory locations. On the other hand, the multiple-word instruction
can reference all 4096 locations.

A major disadvantage in using multiple-word instructions is that
main memory must be referenced two or more times to retrieve one
complete instruction. This effectively reduces the operating speed of
the CPU. Another obvious disadvantage is that multiple-word instruc-
tions use up more memory space (two or three memory locations com-
pared to one location for a single-word instruction).

Using Registers to Address Memory

A register is a common storage element that is usually designed to
hold just one word of information. In some minicomputers the central
processor is equipped with one or more registers that are used for

addressing operands stored in memory. This addressing technique is
shown in Figure 6.

MEMORY
ADD INSTRUCTION s R)
ADD | R1 | RO 4500| OPERAND
——» RO /
4500
———— & R1

7600

REGISTERS
IN CPU

7600 OPERAND

A

Figure 6 Addressing Memory via Registers in the CPU

In this example, the memory addresses of the two operands are
placed in registers RO and R1. Therefore, when the CPU retrieves and
executes the ADD instruction, these two registers effectively “point” to
the memory locations containing the operands. Because each register
holds one computer word, it can usually accommodate enough address
bits to directly address any location in main memory.

Some computers are designed so that these registers can be used
for purposes other than to address operands. For example, each regis-
ter may be used as an accumulator. This allows the central processor to
operate directly on the contents of a register. The CPU may be directed
to increment or complement a value held in one of the registers, or to
add the contents of one register to the contents of a second register.
When these registers are used for many different purposes, they are
called general purpose registers (GPRs).

Memory Pages

Frequently, main memory is divided into smaller, more easily
addressable segments called pages (see Figure 7). The size of each
page is chosen so that the CPU can directly address any location within
a given page. For example, if there are only 7 address bits in the oper-
and field of the instruction, then the page size is 128 words (27 = 128).
With a page size of 128 words, 4K of memory could be divided into 32
separate pages or (4096 + 128 = 32).

32 PAGES

ONE
PAGE

4K 128

MEMORY A, WORD
\\ LOCATIONS

VNI N4

Figure 7 Memory Pages

1S 20

Whenever memory pages are used, the CPU must have some way to
determine which page is being referenced. One approach uses a special
register (page register) to keep track of the page currently in use. This
page register always contains the starting address of the current page.
In the following example (Figure 8), the page register contains the
starting address of page 1 (0200). To obtain the actual memory
address of the operand, the CPU automatically adds the contents of the
page register to the address contained in the operand field of the
instruction.

0000
PAGE
PAGE REGISTER 0
0200
0200
0307 [operanp | PAGE
OP 107 0400
CODE PAGE
INSTRUCTION 2
Figure 8 Use of a Page Register
SAME PAGE
If a page register is not used, another approach INSTRUCTION

is to store the instruction and the operand that it
is referencing in the same page. Of course, this
means that only a small portion of memory can
be directly addressed.

OPERAND

Indirect Addressing

field of the instruction points directly to the memory location containing
the operand. On the other hand, if indirect addressing is used, the oper-
and field points to a memory location that contains the address of the
operand. The CPU must first retrieve this address from memory. Then it
uses the address to retrieve the operand. Thus, memory must be refer-
enced at least twice when indirect addressing is used. Remember that
indirect addressing is necessa ry whenever the instruction and the oper-
and are stored in different pages.

DIRECT INDIRECT
ADDRESSING ADDRESSING
{SAME PAGE) (DIFFERENT PAGES)
ADD 277 . ADD 277
277 OPERAND 277 1300
1300 OPERAND

Figure 9 Direct Addressing Vs Indirect Addressing

Is 22

The CPU must be told when it is to use indirect addressing to
retrieve an operand. A special bit in the instruction word is usually
reserved for this purpose. If the bitis a 1, it signifies indirect addressing.
Conversely, if the bit is a 0, it signifies that direct addressing is to be
used.

When we are writing programs, we will use the following symbol to
designate indirect addressing:

INDIRECT
ADDRESSING

ADD I 277

If the “I" is omitted, it signifies that direct addressing is to be used.

IS 23

EXERCISES

1. How many memory locations can be directly addressed if the oper-
and field of the instruction word holds 7 address bits?

2. If the size of the operand field is increased to 10 address bits, how
many memory locations can be directly addressed?

3. Specify the maximum number of memory locations that can be
directly addressed by the following multiple-word instruction:

FIRST
WORD OP CODE
SECOND
ADDRESS
WORD locations
16
bits

4. In a minicomputer, the word size is typically 12 or 16 bits. This word
size places a limit on the maximum number of memory locations
that can be directly addressed. Describe three techniques that may
be used to overcome this addressing limitation.

IS 25

SOLUTIONS

1. How many memory locations can be directly addressed if the oper-
and field of the instruction word holds 7 address bits?

128

2. If the size of the operand field is increased to 10 address bits, how
many memory locations can be directly addressed?

1024

3. Specify the maximum number of memory locations that can be
directly addressed by the following multiple-word instruction:

FIRST

WORD OP CODE
SECOND
WORD ADURESS 65536 locations
{E
bits

4. In a minicomputer, the word size is typically 12 or 16 bits. This word
size places a limit on the maximum number of memory locations
that can be directly addressed. Describe three techniques that may
be used to overcome this addressing limitation,

a. Multiple-word instructions (2- or 3-word instructions) may be
used instead of single-word instructions. This technigue usually
provides enough address bits in the operand field of the instruc-
tion so that any location in main memory can be directly
addressed.

b. Special registers in the CPU may be used for addressing memo-
ry. Because each register holds one computer word, it can usual-
ly accommodate enough address bits to directly address any
location in main memory. Sometimes these registers are used for
other purposes besides addressing memory. In such cases, they
are usually called general purpose registers (GPRs).

c. Main memory can be divided into smaller segments called
pages. The size of each page is chosen so that the CPU can
directly address any location in a given page simply by using the
available address bits in the operand field of the instruction.

IS 26

EXERCISES

b e T
300 1200
5. The diagram at the right specifies the 301 1202
contents of various memory locations.
The table below lists several instruc- 302 1201
tions that reference these memory loca-
tions. Some instructions call for direct X
addressing; others call for indirect —
addressing. For each instruction, specify 1200 1600
the operand address and the accom- 4501 0200
panying operand. a5 e
Addressing Operand
Instruction Method Address Operand
ADD 300 Direct 300 1200
ADD | 300 Indirect
ADD | 301 Indirect
ADD 302 Direct
ADD 301 Direct
ADD | 302 Indirect

IS

27

SOLUTIONS

e
300 1200
5. The diagram at the right specifies the 301 1202
contents of various memory locations.
The table below lists several instruc- 302 ey
tions that reference these memory loca-
tions. Some instructions call for direct e
addressing; others call for indirect 1500 1600
addressing. For each instruction, specify
the operand address and the accom- 1201 0200
panying operand. 1202 0277
Addressing Operand
Instruction Method Address Operand
ADD 300 Direct 300 1200
ADD | 300 Indirect 1200 1600
ADD | 301 Indirect 1202 0277
ADD 302 Direct 302 1201
ADD 301 Direct 301 1202
ADD | 302 Indirect 1201 0200

IS 28

EXERCISES

6. Explain when it is necessary to use indirect addressing.

7. Match each term in the left-hand column with the appropriate
description in the right-hand column. There may be more than one
description for some terms.

a.

b.

Direct Addressing
Indirect Addressing

Multiple-Word
Instruction

General Purpose
Register

Page

Page Register

(

(

(

(

IS 29

) A smaller segment of main
memory that is directly
addressable.

) Used to keep track of the
page currently being
referenced.

) The operand field of the
instruction points to a mem-
ory location that contains the
address of the operand.

) The operand field of the
instruction points to a mem-
ory location that contains the
operand.

) Used as an accumulator or
for addressing operands
stored in memory.

) Memory must be referenced
two or more times to retrieve
one complete instruction.

) ADD 1 177.

SOLUTIONS
6. Explain when it is necessary to use indirect addressing.

Indirect addressing must be used whenever an instruction is
stored in one memory page and the operand referenced by
the instruction is stored in a different page.

7. Match each term in the left-hand column with the appropriate
description in the right-hand column. There may be more than one
description for some terms.

a. Direct Addressing (e} A smaller segment of main
memory that is directly
b. Indirect Addressing addressable.
c. Multiple-Word () Used to keep track of the
Instruction page currently being
referenced.
d. General Purpose
Register (b) The operand field of the
instruction points to a mem-
e. Page ory location that contains the

address of the operand.
f. Page Register
(a) The operand field of the
instruction points to a mem-
ory location that contains the
operand.

(d) Used as an accumulator or

for addressing operands
stored in memory.

(e} Memory must be referenced
two or more times to retrieve
one complete instruction.

(b) ADD I 177.

IS 30

Typical Instruction Set

OBJECTIVES

1. Given a simple mathematical expression and several known
factors and restrictions, be able to write the steps of a simple
program to solve the given expression. The program must
include the known factors and abide by the restrictions given.

2. Given a simple mathematical expression and several known
factors and restrictions, be able to write the steps of a simple
program to solve the given expression. The program must
include the known factors, a program loop, and must abide by
the restrictions.

3. Given a complete program and five mathematical expres-
sions, be able to select the expression that is solved by the
program.

4. Given five program control statements, be able to label those
statements that refer to conditional instructions and those
that refer to unconditional instructions.

SAMPLE TEST ITEMS

1. Write a simple program that adds A, B, and C and then stores
the answer (X) in memory location 333.

Known Factors: A is stored in location 330.
B is stored in location 331.
C is stored in location 332.

Restrictions: Use only the instructions defined in the
lesson “Typical Instruction Set.” Use
200 as the starting address of the pro-
gram.

1S 31

SAMPLE TEST ITEMS

2. Write a program that multiplies 73 by 265 and then stores
the answer in memory location 214. Use a program loop in
your solution.

Known Factors: The operand 73; is stored in memory
location 212; the operand 26z is
stored in location 213.

Restrictions: Do not use a multiply instruction; use
only the instructions that are defined in
this lesson. The starting address of
your program should be 200.

3. Circle the letter of the mathematical expression that is solved
by the following program.

200 CLA Answers

201 ADD 218

202 CMA a(2+A*B)+cC
203 |AC b.(2*A+C)+8B
204 STR 216 c.{2*B*C)+ A
205 ADD 215 d{2*A*B)+C
206 ISz 216 e. 2" A+ B)+cC

207 JMP 205
210 STR 215
211 ADD 215
212 ADD 215
213 ADD 217
214 HLT

215 A

216 B

217 C

IS 32

SAMPLE TEST ITEMS

4. Indicate that each of the following statements refers to a con-
ditional instruction (C) or an unconditional instruction (U) by
writing the correct letter in the space provided.

Statement Instruction Type

If y is negative, branch to 277.

Branch to location 215 if x = 0.

Skip the next instruction in the
sequence if A is positive.

Skip the next instruction in the
sequence.

N

Jump to location 307.

IS 33

Mark your place in this workbook and view Lesson 3
in the A/V program, “Instruction Sets.”

The audio-visual program defined a typical set of instructions and
explained how the instructions are used to construct some simple com-
puter programs. We began our discussion with the following
instructions:

* Clear Accumulator
* Add

* Store

¢ Halt

Let’s briefly review the functions of each of these fundamental
instructions.

Clear Accumulator CLA

The Clear Accumulator instruction is identified by the mnemonic
CLA. This instruction causes the central processor to reset (or clear) the
contents of its accumulator to all zeros. Because the CLA instruction
operates directly on the contents of the accumulator, it does not refer-
ence memory and, therefore, does not contain an operand field.

Add Instruction ADD XXX

The Add instruction consists of two elements - the mnemonic ADD
and the accompanying operand field. This instruction directs the CPU
to retrieve the operand from memory location XXX and add the oper-
and to the contents of the accumulator. After the addition is performed,
the resulting sum appears in the accumulator — destroying the original
contents. However, the operand stored in memory is not changed.

Store Instruction STR XXX

The Store instruction also consists of two elements - the mnemonic
STR and the operand field. When the central processor executes this
STR instruction, it transfers the contents of the accumulator into mem-
ory location XXX and then clears the accumulator to all zeros.

IS 35

Halt Instruction HLT

HLT instruction Stops computer operations, it is usually the last instruc-
tion in a program. Note that the Halt instruction does not operate on
data and, therefore, does not contain an operand field.

Program Examples

using the instructions CLA, ADD, STR, and HLT, Take the necessary
time to study and work through these sample programs, They should
help to reinforce your understanding of instructions and basic program-
ming techniques. Later in this workbook we will ask you to develop
some simple programs using the same set of instructions.

Sample Program No. 1

Problem: The operands A and B are stored in memory locations
205 and 206. Our job is to write a short program that will allow the
computer to solve the equation X = A + B and store the answer in
memory location 207.

a. First, we construct a flowchart.

“ ADD B

TOAC

STORE
SUM

ADD &
TOAC

IS 36

b. Then we convert the flowchart into a computer program and
assign memory locations to the instructions in the program.

Instruction
Address | or Data Explanation
200 CLA Clear contents of AC.
201 ADD 205 Add A to contents of AC.
202 ADD 206 Add B to contents of AC.
203 STR 207 Store sum in location 207.
204 HLT Stop operations.
205 A
206 B Data (operands)
207 X

Sample Program No.2

Problem: Write a program to solve the equation Y = A+B+C
and store the result in memory location 303.

a. In this example we have chosen not to construct a flowchart
since the solution is similar to the one used in the preceding
problem.

b. We begin by writing a basic program and assigning memory
locations to the instructions.

200 CLA
201 ADDA
202 ADDB
203 ADDC
204 STRY
205 HLT

c. Note that the operands A, B, and C must be stored in memory
before our program can be executed. Therefore, we assign each
operand to a separate memory location and modify the program
to reflect these memory assignments. The resulting program is
shown on the next page.

IS 37

Instruction

Address | or Data Explanation
200 CLA Clear contents of AC.
201 ADD 300 Add A to contents of AC.
202 ADD 301 Add B to contents of AC.
203 ADD 302 Add C to contents of AC.
204 STR 303 Store Y in location 303.
205 HLT Stop operations.
300 A
gg;_ g Operands
303 Y

IS 38

You've had an opportunity to study examples of two relatively
simple computer programs. Now it's your turn to write a program that
uses the CLA, ADD, STR, and HLT instructions.

Problem: Construct a flowchart and then write a program to solve
the equation X = A + (3 * B). The operand A is stored in memory
location 206; the operand B s stored in location 207. The starting
address of your program is 200.

a. First construct a flowchart and compare it against the solution
on the next page.

IS 39

Solution: Construct a flowchart and then write a program to solve
the equation X = A + (3 * B).

a. Flowchart

START

ADD B
TOAC (3% 8
3ITIMES

‘

ADD A
A+ [3® B)
70 AC (3

‘IIIIHHIIII’

IS 40

b. If your flowchart is correct, convert it into a program and then
Compare your program against the solution on page IS 40.

IS 41

Solution: Write a program to solve the equation X = A + (3 * B).

b. Program
Instruction

Address | or Data Explanation
200 CLA Clear contents of AC.
201 ADD 207 Add B to contents of
202 ADD 207 AC 3 times (3 * B).
203 ADD 207
204 ADD 206 Add A to (3 * B).
205 HLT Stop operations.
206 A Operands
207 B P

We've now examined three simple computer programs using the
instructions CLA, ADD, STR, and HLT. If your program is correct, you
are ready to learn about some additional instructions. However, if you
had difficulty with this program, consult your course manager.

IS 42

Additional Instructions

We are now going to add two more instructions to our basic instruc-
tion set:

Complement Accumulator
* Increment Accumulator

Complement Accumulator CMA

The Complement Accumulator instruction is identified by the mne-
monic CMA. This instruction directs the central processor to replace
the value held in the accumulator with its ones complement. In other
words, each 1 is replaced with a 0, and each O is replaced by a 1. Since
the CMA instruction does not reference an operand stored in memory,
it does not contain an operand field.

AC Before
Execution

101 000 110 101 J

010 111 001 010
AC After I

Execution

Increment Accumulator IAC

The Increment Accumulator instruction is assigned the mnemonic
IAC. This instruction causes the CPU to increment (add one) to the
contents of its accumulator. Note that the IAC instruction does not
reference an operand stored in memory and, therefore, this instruction
does not have an operand field.

AC Before
Execution

100 000 000 110
100 000 000 111
AC After T

Execution

IS 43

Negative Numbers and Subtraction

The CMA and IAC instructions allow the computer to express a
negative number as the two’s complement of the positive value and to
perform subtraction using two’s complement addition. The following
example illustrates how subtraction is implemented using the CMA and
IAC instructions,

Contents of AC After
Instruction Instruction Is Executed
Address or Data Binary Octal
200 CLA 000 000 000 000 | 0000
201 ADD 301 000 000 000011 | 0003
202 CMA 111111111100 | 7774
203 IAC 111111111101 | 7775
204 ADD 300 000 000 000 100 | 0004

In the above example the number to be subtracted (subtrahend) is
first brought into the accumulator using the ADD 301 instruction. Next,
the number in the accumulator is complemented (one’s complement)
and incremented by one to form the two’s complement. The minuend
(0007) is then added to the contents of the accumulator and the differ-
ence (0004) is obtained.

IS 44

Sample Program No. 3 - Subtraction

Problem: Develop a program that will allow the computer to solve
the expression D = A - B and store the answer in memory location
211. The operand A is stored in location 207; the operand B is stored

in location 210.

a. Draw a flowchart.

START

LoAD B
INTO AC

:

CONVERT TO
MINUS B8

1

ADD A
TOAC

1

STORE

ANSWER

b. Convert the flowchart to a program and assign memory locations
to the instructions

Instruction
Address | or Data Explanation
200 CLA Clear contents of AC.
201 ADD 210 Load B into AC.
202 CMA Form 1's complement of B.
203 IAC Form 2's complement of B.
204 ADD 207 Add A to -B.
205 STR211 Store differenceinlocation211.
206 | HLT Stop operations.
207 A
210 B } Operands
211 D

STOP

Program Loops, Tallys, and Branches

At some point in a program it may be necessary to repeat a
sequence of instructions many times. Instead of writing the same
instructions over and over again, we can use a very common program-
ming technique called a program loop.

A program loop is constructed so that the central processor jumps
back to an earlier part of the program and repeats the same sequence
of instructions until a predefined condition is satisified. Once the pre-
defined condition is met, the CPU simply exits from the loop and goes
on to the next instruction in the program.

PROGRAM
Ralaly

WO

YES

IS 46

When we use a program loop, we must incorporate the following
steps into our program:

Set up a tally (or count) that specifies the number of program
loops to be performed.

Update the tally (add 1 or subtract 1) each time the central
processor makes one pass through the program loop.

Test the updated tally so that the central processor can decide
when it is time to exit from the program loop.

SET
— TALLY
TO 20

OTHER
INSTRUCTIONS

lﬁ

" OTHER
INSTRUCTIONS

SUBTRACT LOOP
—_ 1 FROM
TALLY

YES (exn from loop)

IS 47

In addition to program loops, it is often necessary to include sepa-
rate paths (branches) in our programs. For example, suppose that we
are writing a program for processing customer invoices. If any invoice is
greater than $1000, the central processor must execute one set of
instructions. On the other hand, if an invoice is equal to or less than
$1000. a different set of instructions is required. Our program must be
written so that the CPU can decide which branch of instructions is to be
executed. This decision is based on the dollar amount of the customer

invoice. This programming technique is called branching.

INVOICE
GREATER THAN
$1000

YES WO

INSTRUCTIONS FOR INSTRUCTIONS FOR

PROCESSING INVOICES PROCESSING INVOICES

GREATER THAN 31000 EQUAL TO DR LESS
THAN 51000

Program Control Instructions
1

The central processor normally executes instructions sequentially in
the same order that they are stored in main memory. However, when
we incorporate loops or branches into our programs, we must divert the
CPU from the normal instruction sequence. This can be accomplished
by using a special category of instructions called program control
instructions.

IS 48

The two most common forms of program control instructions are
branches and skips. A branch instruction alters the normal instruction
sequence by redirecting the CPU to another point in a program. In the
example below, the branch instruction causes the CPU to get its next
instruction from memory location 202,

202 NEXT INSTRUCTION -

203

204
205

206 BRANCH 202
207

On the other hand, a skip instruction simply causes the CPU to skip
the next instruction in the program.

204

205

206 SKIP

207

210 =

IS 49

Branch and skip instructions can be further divided into conditional
and unconditional instructions. A conditional branch or skip instruction
diverts the CPU from its normal program sequence only if a prescribed
condition has been met.

In the example at the right, =

the CPU will skip the next
instruction if X equals 0. How- e
ever, if the condition is not
satisfied (i.e., X # 0), then the NEXT =
CPU simply proceeds with the STHLICHON

i i 4 IN SEQUENCE
next instruction in the l.

1P

sequence.

Unconditional branch and skip instructions, on the other hand,
always divert the CPU from its normal instruction sequence. There is no
prescribed condition that has to be met before the branch or skip oper-
ation can take place.

In the audio-visual portion of this lesson we defined and used two
program control instructions:

s Jump
¢ |ncrement and Skip If Zero

Jump Instruction JMP XXX

The Jump instruction consists of 2 elements — the mnemonic JMP
and the operand field. This JMP instruction is nothing more than an
unconditional branch instruction. It causes the central processor to
retrieve its next instruction from memory location XXX.

IS 50

Increment and Skip If Zero

The Increment and Skip If Zero instruction also consists of 2 ele-
ments — the mnemonic ISZ and the operand field. This ISZ instruction
causes the central processor to perform the following sequence of

operations:

1. Increment (add 1) to the contents of memory location XXX.
2. Test the incremented value.

3. If the value is O, skip the next instruction in the sequence. If the
value is not O, ignore the conditional skip and go to the next

instruction.

Additional Program Examples

In the examples that follow, we will write some simple programs

ISZ

XXX

using the program control instructions JMP and ISZ.

51

Sample Program No. 4

Problem: Write a program that will allow the CPU to multiply 47,
times 23 and store the answer in memory location 352. Memory loca-
tion 350 contains the operand 47; location 351 contains the operand
7755 (which is equivalent to -23g).

a. Since we do not have a multiply instruction, the CPU must add
475 to the contents of its accumulator 23 times. The most
efficient way of accomplishing this is to set up a tally and use the
following program loop:

START

ADD 47

TOAC
INITIALLY THE ADD 1 TO
TALLY 15 EQUAL NEGATIVE
TO -23; OR 7755 TALLY

NO

STORE
ANSWER

STOP

;

IS 52

b. The flowchart is then converted to the following program:

Instruction I
Address | orData Explanation
200 CLA Clearcontentsof AC.
201 ADD 350 Add 47 tocontents of AC.
202 ISZ351 Increment tally; skipiftallyis Q.
203 JMP201 Otherwise,go back toadd
instruction.
204 STR352 Store answerin location 352,
205 HLT Stopoperations.
350 0047 Operand
351 7755 (-23) | Tally.
352 (Answer) Productof47g * 23;.
| -

¢. Additional comments:

* |n the above example, the TALLY is -23 (or 7755 in two’s
complement notation).

e The ISZ instruction adds one to the TALLY each time the CPU
makes one pass through the program loop (7756 ... 7757 ...
7760 . .. etc.).

¢ |f the incremented TALLY is not O, the JMP instruction sends
the CPU back to the start of the program loop.

¢ Finally, when the TALLY is incremented to O, it signifies that
the required number of additions (loops) have been per-
formed. As a consequence, the ISZ instruction redirects the
CPU to the STR instruction so that the answer can be stored
in memaory.

IS 53

Sample Program No. 5

Problem: Write a more general program that allows the CPU to
multiply any two numbers (represented by the variables A and B) and
then store the answer in location 302. Assume A is stored in memory
location 300 and B is stored in location 301.

a. The following flowchart includes an additional initialization step
for setting up a TALLY (-B):

START

SETUP
TALLY TO
-8

ADD A
TOAC

1y

ADD
TOTALLY

NOD

TALLY =0

YES

STORE
ANSWER

IS 54

b. The flowchart is then converted to the following program:

Instruction
Address | orData Explanation

200 CLA Clearcontentsof AC,
201 ADD301 LoadBinto AC.
202 CMA I Form 1's complement of B.
203 IAC Form2'scomplementof B.
204 STR 301 Store —B back into memory:
I clear AC.
205 | ADD 300 | Add Ato contents of AC.
206 ISZ301 Increment —B; skip if tally is 0.
207 JMP205 Otherwise,go back to add
instruction.
210 STR302 Storeanswer.
211 HLT Stopoperations.
300 Operand.
301 Tally.
(Answer) Productof Atimes B.

c. Additional comments:

* The purpose of the instructions ADD 301, IAC. and STR 301 is
to set up a TALLY that is equal to -B (the two's complement of
B).

* When this TALLY is incremented to zero, the 1SZ instruction
forces the central processor out of the program loop.

Summary

The following charts summarize all of the instructions that have been
defined in this lesson.

Instructions with a Single Operand Field

Symbolic Octal
Instruction Code Code Description

Add ADD XXX 1XXX Add the contents of loca-
tion XXX to the contents of
the AC. Place the sum back
into the AC.

Increment and ISZ XXX 2XHXK Increment the contents of
Skip If Zero location XXX and skip the
next instruction if the
incremented value is 0.

Stare STR XXX MK Store the contents of the
AC in location XXX and
then clear the AC.

Jump JMP 30K B3O Jump unconditionally to
location XXX for the next
instruction.

IS 56

Instructions with No Operand Field

Symbolic Octal

Instruction Code Code Description

Increment AC 1AC 7001 Increment (add 1) to the
contents of the AC.

Complement AC CMaA 7040 Complement the contents
of the AC (1's comple-
ment).

Clear AC CLA 7200 Clear the contents of the AC
to all zeros.

Halt HLT 7402 Stop all processing opera-
tions.

IS 57

EXERCISES

1. Convert each statement in the left-hand column to the appropriate
instruction. Use only the eight basic instructions that were defined
in this lesson. Note that one of the statements requires two
instructions.

a. Clear the contents of the accumulator to all
zeros. CLA

b. Add the operand stored in location 300 to the
contents of the AC.

c. Transfer the contents of the AC to memory
location 301 and then clear the AC.

d. Increment the tally stored in location 350, test
if the updated tally is O, and skip the next
instruction if tally = 0.

e. Jump unconditionally to the instruction stored
at memory location 227.

f. Convert the number held in the AC to its one’s
complement.

g. Add 1 to the contents of the AC.

h. Convert the number held in the AC to its two's
complement.

i. Stop all processing operations.

IS 59

SOLUTIONS

1. Convert each statement in the left-hand column to the appropriate
instruction. Use only the eight basic instructions that were defined
in this lesson. Note that one of the statements requires two
instructions.

a,

Clear the contents of the accumulator to all
zeros.

Add the operand stored in location 300 to the
contents of the AC.

Transfer the contents of the AC to memory
location 301 and then clear the AC.

Increment the tally stored in location 350, test
if the updated tally is 0, and skip the next
instruction if tally = 0.

Jump unconditionally to the instruction stored
at memory location 227,

Convert the number held in the AC to its one’s
complement,

Add 1 to the contents of the AC.

Convert the number held in the AC to its two's
complement.

Stop all processing operations.

IS 60

CLA

ADD 300

STR 301

ISZ 350

JMP 227

CMA
IAC

EXERCISES

. Write a simple program that adds 7 to 5 and then stores the answer
in memory location 302.

Known Factors: Value 5 is stored in location 300.
Value 7 is stored in location 301.

Restrictions: Use only the instructions that have been defined
in this lesson. Use 200 as the starting address of
your program.

Instruction
Address orData

IS 61

SOLUTIONS

2. Write a simple program that adds 7 to 5 and then stores the answer
in memory location 302.

Known Factors: Value 5 is stored in location 300.
Value 7 is stored in location 301.

Restrictions: Use only the instructions that have been defined
. in this lesson. Use 200 as the starting address of
| your program.

Instruction
Address orData Explanation
200 CLA Clear ACtoall zeros.
201 ADD300 Add 5tocontentsof AC.
202 ADD 301 Add 7 tocontentsof AC.
203 STR302 Storesuminlocation 302.
204 HLT Stopall processingoperations.
300 5 Operand.
301 7 Operand.
302 Sum.

IS 62

e EXERCISES

3. Write a program that subtracts 5 from 7 and then stores the differ-
ence in memory location 302

Known Factors: Value 5 is stored in location 300.
Value 7 is stored in location 301.

Restrictions: Use only the instructions that have been defined

in this lesson. Use 200 as the starting address of
your program.

IS 63

SOLUTIONS

3. Write a program that subtracts 5 from 7 and then stores the differ-
ence in memory location 302.

Known Factors: Value 5 is stored in location 300.

Value 7 is stored in location 301.

Restrictions: Use only the instructions that have been defined
in this lesson. Use 200 as the starting address of
your program.

Instruction
Address orData Explanation
200 CLA Clear ACtoall zeros.
201 ADD 300 Load 5into AC.
202 CMA Convert 5toits 1's complement.
203 IAC Convert 5toits 2'scomplement.
204 ADD 301 Add 7 to -5.
205 STR302 Store differenceinlocation 302.
206 HLT Stopall processing operations.
300 5 Operand.
301 7 Operand.
302 Difference.

IS 64

EXERCISES

4. Write a program that solves the mathematical expression X = A +
B - C and then stores the answer in memory location 213.

Known Factors: Operands A, B, and C are stored in memory loca-

Restrictions:

tions 210, 211 and 212, respectively.
Confine your choice of instructions to those that

have been defined in this lesson. The starting
address of your program should be 200.

IS 65

SOLUTIONS

4. Write a program that solves the mathematical expression X = A +
B - C and then stores the answer in memory location 213.

Known Factors: Operands A, B, and C are stored in memory loca-
tions 210, 211, and 212, respectively.

Restrictions: Confine your choice of instructions to those that
have been defined in this lesson. The starting
address of your program should be 200.

Instruction
Address orData Explanation
200 CLA ClearACtoallzeros.
201 ADD212 LoadCinto AC.
202 CMA ConvertCtoits 1's complement.
203 IAC ConvertCtoits 2's complement.
204 ADD211 Add B to -C.
205 ADD210 AddAto(B-C).
206 STR213 Storeanswerinlocation213.
207 HLT Stopall processing operations.
210 A Operand.
211 B Operand.
212 C Operand.
213 X Answer(A+ B-C).

IS 66

EXERCISES

5. Refer to the statements below and indicate if they describe a condi-
tional or an unconditional program control instruction by checking
the appropriate box.

Conditional Unconditional

Instruction Instruction

O O Branch to location 215 if X = 0.

O O Skip the next instruction in the
sequence.

O O Skip the next instruction in the
sequence if A is positive.

O O Jump to location 307.

O O If Y is negative, branch to loca-

tion 277.

IS 67

SOLUTIONS

5. Refer to the statements below and indicate if they describe a condi-
tional or an unconditional program control instruction by checking
the appropriate box.

Conditional Unconditional

Instruction Instruction
E'H/ O Branch to location 215 if X = Q.
O E/ Skip the next instruction in the
sequence.
g 0 Skip the next instruction in the

sequence if A is positive,

g Jump to location 307,

A O
O

If Y is negative, branch to loca-
tion 277,

IS 68

EXERCISES

6. Circle the correct answer. The instruction |1SZ 300 causes the central
processor to:

a. Skip to memory location 300 for its next instruction.

b. Increment the value 300 to 301 and then skip the next instruc-
tion in the sequence.

c. Increment the contents of location 300 and skip the next instruc-
tion in the sequence if the incremented value is O.

d. Increment the contents of location 300 and skip the next instruc-
tion in the sequence.

7. How many times will the central processor execute the following
program loop?

204 ADD 277 —
205 ISZ 300 s B
206 JMP 204 .
277 0176
300 7767
IS 69

SOLUTIONS

6. The instruction ISZ 300 causes the central processor to:

a. Skip to memory location 300 for its next instruction.

b. Increment the value 300 to 301 and then skip the next instruc-
tion in the sequence.

Increment the contents of location 300 and skip the next instruc-

tion in the sequence if the incremented value is 0.

d.

Increment the contents of location 300 and skip the next instruc-

tion in the sequence.

7. How many times will the central processor execute the following
program loop?

204
205
206

277
300

ADD 277

1SZ 300 Number of - e —
JMP 204 loops 4
L]

.

0176

7767

IS 70

EXERCISES
answer in memory location 214. Use a program loop in your

solution.

Known Factors: The operand 67g is stored in memory location
212: the operand 425 is stored in location 213

Restrictions: Do not use a multiply instruction: use only the

instructions that are defined in this lesson. The
starting address of your program should be 200.

IS 71

SOLUTIONS

8. Write a program that multiplies 67s by 425 and then stores the
answer in memory location 214. Use a program loop in your
solution.

Known Factors: The operand 67g is stored in memory location
212; the operand 425 is stored in location 213.

Restrictions: Do not use a multiply instruction; use only the
instructions that are defined in this lesson. The
starting address of your program should be 200.

Instruction
Address or Data Explanation

200 CLA Clear AC to all zeros.

201 ADD 213 Load 42 into AC.

202 CMA Convert 42 to its 1's comple-
ment.

203 IAC Convert 42 to its 2's comple-
ment.

204 STR213 Store -42 (7736) in location
213; clear AC.

205 ADD212 Add 67 to contents of AC.

206 1SZ2213 Increment tally; skip next
instruction if tally = 0.

207 JMP 205 Otherwise go back to the add
instruction.

210 STR214 Store answerin location 214.

211 HLT Stop all processing opera-
tions.

212 00867 Operand.

213 0042 Tally.

214 Answer.

Is 72

Take the test for this module before beginning an-
other module.

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038
	Scan0039
	Scan0040
	Scan0041
	Scan0042
	Scan0043
	Scan0044
	Scan0045
	Scan0046
	Scan0047
	Scan0048
	Scan0049
	Scan0050
	Scan0051
	Scan0052
	Scan0053
	Scan0054
	Scan0055
	Scan0056
	Scan0057
	Scan0058
	Scan0059
	Scan0060
	Scan0061
	Scan0062
	Scan0063
	Scan0064
	Scan0065
	Scan0066
	Scan0067
	Scan0068
	Scan0069
	Scan0070
	Scan0071
	Scan0072
	Scan0073
	Scan0074

