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ABSTRACT

In the fall of 1977 the Institute of Electrical and Electronics Engineers
commissioned working group 754 to draft a standard for binary floating-point
arithmetic. It was intended to prevent the proliferation of disparate arith-
metics in the new microprocessor industry. At that time there were so many
different flavors of arithmetic available on mainframes and minicomputers
that the cost of reconciling their differences in numerical software had
become, and remains, staggering. Now, more than five years later, draft 10.0
of the proposed standard has been voted out of the working group for IEEE

approval.

This thesis consists of a set of *'footnotes” to the prop'osed standard.
The first of them, an implementation guide published in January 1980, served
as a working draft of the standard for over a year. The remaining chapters
unfolded as the proposed standard did. They include an analysis of gradual
underflow, the most controversial feature of the standard; an exhaustive dis-
cussion of radix conversion, which has been specified in the proposed stan-
dard only up to a worst-case error bound; and a revised version of the arith-
metic test suite which has been available in machine-readable form from the

working group.
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CHAPTER 1

Introduction

**‘Most numerical analysts have no interest in arithmetic.”
B. N. Parlett (1979)

The lack of interest abounds. Professor Parlett’s claim applies to com-
puter designers as well as users. And it is usually the speed of arithmetic
that incites what interest there is. Yet a proposed IEEE standard for binary
floating point arithmetic is in the last stage of approval before that body’s
Standards Board, and, despite that the proposal is hard to implement, it has
become already a de facto standard among several of the largest micropro-

cessor manufacturers. Why?

Calculator and computer users are familiar with the fact that the quo-
tient 1/3 must be rounded in order to be representable on a binary or
decimal machine. But rounding is not to blame when 1/3 differs from 9/27.
Such a capricious discrepancy can cause a perfectly reasonable program to
fail mysteriously, arousing dismay, not interest. Also daunting is the pros-
pect of developing software to run across the dozens of diverse arithmetics
in use today, a number that will increase with the rise of the microprocessor
industry.

This thesis is about the proposed IEEE standard 754 for binary floating
point arithmetic. The thesis developed alongside the standard itself, as a set
of clarifications and elaborations of the terse 754 document; it is an aid to
implementors, and a demonstration that the implementation is feasible.

Because of the care taken in the specification of proposed standard 754, and
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because of its rising support within the industry, there is hope for an end to
the dismay caused by bad arithmetic. In a sense, it is the best arithmetic

that arouses the least interest among users.

1. ABrief History of IEEE Working Group 754

In the fall of 1977, working group 754 of the IEEE Computer Society
Microprocessor Standards Committee was convened to draft an industry
standard for floating point arithmetic on microprocessors. It was known that
Intel Corporation was pursuing high-quality arithmetic for its family of pro-
ducts. The orginal intent of the working group was simply to fix a set of com-
mon data formats so that binary data could be transferred between different
microprocessors. The first meetings of the working group were attended by
microprocessor enthusiasts, including Bob Stewart and Tom Pittman, as well
as John Palmer of Intel and W. Kahan of the University of California at Berke-

ley, then consulting to Intel. Richard Delp chaired the meetings.

Due chiefly to the leadership of Kahan, the scope of the working group
quickly expanded from data formats to a thorough specification of arith-
metic. In early 1978 Kahan enlisted the support of Harold S. Stone, then
visiting Berkeley, and the author to draft a proposal whose key ideas were
drawn from Kahan's years of experience on machines ranging from main-
frames to pocket calculators. Kahan estimated that the project would
require ‘“one hard man-month of effort’’. He underestimated. Over the next
three months, drafts of the so-called Kahan-Coonen-Stone proposal were
presented to the monthly meetings of the working group. Throughout this
period of refinement, Palmer and others at Intel were developing a major

VLS] implementation of the proposal.
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By late 1978 the working group included members from National Sem-
iconductor, Motorola, Zilog, Meonolithic Memories, Apple Computer, Tektronix,
and Digital Equipment Corporation. There was a certain irony about the
standardization process — on the one hand the working group was chartered
to develop an industry standard, while on the other hand its work was sup-
posed to be uninhibited by the kind of partisan politicking that arises natur-
ally among competing manufacturers. At that time, the proposal was embo-
died in an implementation guide prepared by the author; this paper, finally

published in January 1980, appears as Chapter 2.

Over the subsequent year several competing proposals were presented
to the working group. Mary H. Payne and William Strecker of DEC proposed
what could be thought of as enhanced VAX-11 arithmetic. Steve Walther and
Robert Fraley of Hewlett-Packard Laboratories proposed what they thought
of as a “*safer'’ scheme, with special symbols for underflowed and overflowed
values. Robert Reid, working independently, developed an idea that arises
occasionally in the literature, varying the width of a number's exponent field
dynamically, widening it (while narrowing the significand) in order to accom-
modate extremely large or tiny magnitudes. A subcommittee of Pittman,
Palmer, Kahan, and the author was cornmissioned to cast the prevailing pro-
posal in a form suitable for an IEEE standard. David K. Stevenson later joined
the group; and subsequently he was voted chairman of the entire working
group.

Draft 5.11 of the proposed standard stood without change for over a
year. It was revised up to draft B.0 in preparation for the March 1981 issue of
IEEE Computer magazine, of which an entire section was devoted to floating

point standardization. Discussions in the working group continually bogged
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down on the issue of underflow — by far the most controversial aspect of the
proposed standard. In an attempt to present the issues on paper, for surely
resolution seemed beyond hope, the author prepared the paper which, as

published in that issue of Computer, appears as Chapter 5.

Shortly after publication of draft 8.0, the working group voted to developi
that proposal, to the exclusion of the others. One last round of changes was
due. Over mid-1981 two features were removed from the proposal, the pro-
jective mode interpretation of infinity and the warning mode interpretation
of the denormalized numbers. In lively debate within the working group it
was decided that the modicum of safety bought by these modes was not
worth the known complexity of implementing them and explaining them to
users. Today, almost seven years since the working group first met, draft
10.0 of proposed standard 754 has reached the last level of approval, the
IEEE Standards Board. A slightly abbreviated version of the draft appears as
Appendix A.

2. Design Goals — User Friendly Floating Point Arithmetic?

Although common data formats were the goal when the 754 working
group was chartered, three simple design principles evolved: ensure that
most existing programs would run at least as well on standard systems as
they had on earlier machines with comparable range and precision; provide
the most robust arithmetic possible with 1880's technology; and include

features to enhance software development by experts.

In order to preserve the substantial investment in existing software, the
proposal has to be as least as good as any other arithmetic available. This
turns out not to be a significant constraint, and is really subsumed by the

desire to build the best possible arithmetic. But old software could be
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undermined by excellent arithmetic with features unknown to the original
programmer. Since most of the innovations in 754 apply when exceptions
arise, they aflect old programs only when some exception, for example
overflow or division by zero, occurs. In such cases an earlier machine would
probably stop execution anyway. The situation with the comparison operator
is different; here a mechanism was included specifically to defend old pro-

grams and programmers. This is the subject of Chapter 6.

Who could determine just how much arithmetic could be implemented
on a chip in the current technology? In order to bound its efforts, the work-
ing group required some measure of feasibility. This came from two arenas.
As mentioned before, Intel was well into the design of the iBO87 coprocessor
to the 8086/8088 CPUs. They stretched the limits in die size and yield. At
the same time, George Taylor, a Berkeley graduate student, was designing a
set of circuit boards implementing 754 which could replace the VAX-11/780
floating point accelerator boards. Taylor [9] showed that, with care, the cost
and complexity of 754 could be reduced to that of the more ordinary VAX,

whose arithmetic is in fact very good already.

In the next section we will survey what the standard does include. It is
appropriate to discuss here what was deliberately excluded. From the start,
754 was a binary standard. Although decimal arithmetic has obvious advan-
tages for most end users (in contrast to computational advantages of
binary), it was deferred to a later standard [2]). The elementary functions,
although implemented on chip by Intel and others, were deemed beyond the
scope of a standard intended for simple control devices as well as general
purpose computers. Alsp, just the standardization of transcendental func-

tions is complicated by the discussion of allowable errors. {Chapter 7, on
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binary-decimal conversions, typifies the kind of analysis involved.) Finally,
interval arithmetic was omitted despite its potential for computing and
reporting error bounds. However, the standard requires the implementation
of modes of rounding that support the economical implementation of interval

arithmetic in software.

Adding features to a system is always easy. In the case of 754, to its
credit, the experts' features arose naturally from the base design, which is
surveyed below. The availability of special rounding modes, such as just
mentioned, error flags to check for the occurrence of an exception that
would otherwise be dispatched in a specified fashion, or special functions,
such as recommended in the appendix to 754, all support the development of
bhigh-quality codes.

The point of the 754 design is to provide the most robust arithmetic pos-
sible while limiting *‘error messages” to those times when the bounds of its
capability have been surpassed. This is a delicate line to walk. Cry *‘Wolf!"
too often, such as on every occurrence of underflow, and the message will be
ignored. Let a computation run amok with no indication, all the while substi-
tuting, say, O for overflowed values, and inevitably some user of another’s
software will be misled. In the parlance of human engineering, 754 is user
friendly since anyone doing ordinary calculations benefits without knowledge
of the sometimes arcane underpinnings. Only when necessary, must a user

be faced with the more elaborate aspects of the system.

3. An Overview of Proposed Standard 754

The brew is surprisingly straightforward. Start with single and double
data formats of 32 and B4 bits, respectively. Suggest somewhat wider single-

extended and double-extended formats for use in expression evaluation to
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alleviate intermediate overflow and underflow. Specify a complement of
rational arithmetic operations, and include square root, remainder, and
binary-decimal conversion. Finally, specify the machine arithmetic to be
closed under all operations on all operands. These ideas are expanded in the
rest of this section. Chapter B gives a top-down specification of the arith-

metic from the implementor’'s point of view.

The data formats are quite ordinary. Single has the range and precision
of the PDP-11 float format; double has the range of CDC 8000 class single for-
mat (a B0-bit word), which is widely used for scientific computing. The
extended formats have roots in the IBM 709x and Univac 1108 extended accu-
mulators; their widths in range and precision have been chosen to aid in

binary-decimal conversion and the computation of the exponential X7Y.

Square root is required by the standard because of its utility in certain
calculations, such as least squares, and because it is known to be just a
minor variation of division. Remainder is harder to implement, because so
many steps of division may be required before the dividend is reduced to half
the magnitude of the divisor. But remainder is vital to the argument reduc-
tion required for the elementary functions. Binary-decimal conversion, his-
torically in the province of the systems programmers or language implemen-
tors, is included so that tight error bounds can be specified, in lieu of correct
rounding which may be infeasible due to cost. Chapter 7 is an extensive
analysis of the bounds stated in 754. Appendix D shows a correctly-rounded
conversion implemented in Pascal. Other operations required by 754 are
means to access and modify the stafe of the arithmetic engine, for example,

the rounding modes and error flags.
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It is arithmetic closure that gives 754 its true flavor. ToAcope with
overflow and computations like 1/0, signed = symbols were added to the
number system. And the sign of ~ was made to interact with the sign of zero
in the ordinary way, so that 1/ -~ = —0. The cost of this is a sign on zero
(unlike the real number system) which is sometimes misinformation when it
must be assigned arbitrarily, as with the result of 3.14 — 3.14. To cope with
underflow, the controversial denormalized numbers were added at the bot-
tom of the number range. Simply put, these values ensure that a difference
x —y is nonzero just when £ =v; on most current machines, the difference of
two tiny values will be flushed to zero if it falls below a certain threshold.
Chapter 5 discusses this issue in detail. Contention notwithstanding, arith-
metics with infinities and denormalized numbers had been implemented
before, for example on the CDC 8000 class machines and the Dutch Electrolo-

gica X8, respectively.

Closure of invalid operations like 0/ 0 and V-5 required a new kind of
symbol, for Not-a-Number. The so-called NaNs are a true innovation within
the standard. Although they are numerically trivial, since they propagate
unchanged through arithmetic, the NaNs have a considerable impact on the
overall architecture of a system, as mentioned with language issues below
and in Chapter 6. NaNs have already found use not only as diagnostic aids
but as placeholders for missing or unavailable data in spreadsheets and sta-
tistical applications. The key to the NaNs' utility is their propagation
through arithmetic operations; the “indefinite’’ operands in the CDC 6000
class computers and the *‘reserved’” operand in the DEC PDP-11 and VAX-11
computers trigger a (typically fatal) exception each time they are encoun-

tered, rendering them useless for carrying information.
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4. Yet Another Standard — B54

When the 754 standard effort was nearing completion, a second standard
was launched under the chairmanship of William J. Cody [2]. What started as
a radix- and wordlength-independent standard devéloped into a binary-and-
decimal standard, with suggestions about the balance between the range and
precision to be provided in a given wordlength. The B854 standard was con-
strained to be upward compatible from 754. In fact, the drafts were
developed by simply medifying 754 in a text editor. The principal difference
is in the area of binary-decimal conversion, which is even more obscure when
the binary range and precision are not given specifically. Tables of inequali-

ties specify bounds for the allowable errors.

5. Axiomatic Attempts

"*Of course, if [the axiomatization of rounded floating-point arithmetic] is to
be useful, the axioms should be simple enough for each comprehension (sic).
I am afraid this goal has not yet been achieved.”

R. Mansfield (1984)

While standards 754 and 854 maintain essential backward compatibility
with arithmetics of the past, their main thrust is toward a future of greater
commonality among machines. A coincident development has attempted to
make numerical sense of the machines we must program for today. W. Stan
Brown characterizes a machine's arithmetic according to a set of parame-
ters [1]. The parameters describe the range and precision of the machine's
values that satisfy the criteria for Brown model numbers. On many machines
only a subset of the representable values, such as those not too huge or tiny,
or those with one or more trailing zero digits, are model numbers satisfying
constraints like commutativity of multiplication. Brown can confirm a

machine's parameters by running a crafty test program in portable FORTRAN
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developed by Norm Schryer [8].

Brown’'s attempt to unify current arithmetics sheds further light on the
current state of affairs, but falls short of real utility for numerical program-
mers. First, since Brown stated as a design goal the development of axioms
pertinent to every major computer in use in the Free World, his axioms in a
sense inherited the worst properties of all the machines. They are subtle
indeed. It has been shown, for example, that because of a certain class of
division algorithms, one cannot infer from the model that the inequality
0 <z <y implies that z/y < 1. Problems like this will be nightmares for
programmers who would guarantee robustness [4]. Chapter 4 suggests FOR-
TRAN procedures for interrogating a system about parameters relative to

both Brown's model and the proposed standards.

By itself Brown's model is no more than further research into the
behavior of computer arithmetics, but when taken as the standard charac-
terization of arithmetic from which programmers must work, it can actually
hinder advances like the 754 and 854 proposals from taking effect by sfcrip-
ping their advanced features which, of course, don't fit into the "‘least com-
meoen denominator’” model. A step in this direction has been taken by the Ada
standards group, which has incoporated the ideas of the Brown model in the
Ada specification of arithmetic. Fortunately, the use of Ada packages per-
mits the incorporation of other arithmetics such as 754 and B54, albeit

inconveniently [5].

Brown’s is just the most computationally oriented of several attemnpts at
axiomatization. In 1966 A. van Wijngaarden uttered 32 rules for arithmetic,
introducing a tolerance operator to describe the deviation of machine arith-

metic from real arithemtic [10]. More recently, R. Mansfield has listed 45
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axioms for computer arithmetic in order to prove that a qualifying arith-
metic is in fact rounded from an ordered field [7]. As he testifies in the

quote that opens this section, such a blizzard of axioms is incomprehensible.

6. An Algebraic Approach

Another recent development in arithmetic is worth brief mention in con-
trast with the 754 and 854 efforts. The latter have been dauntlessly prag-
matic. Most of what has been written, and this thesis is a prime example, has
centered on implementation details and the use of the arithmetic to solve
well-known problems. A much more formal approach has been taken by
Ulrich Kulisch and Willard Miranker as described in their book Computer
Arithmetic in Theory and Practice [6]. Their ultimate goal is a machine ana-
log to the algebra of vectors and matrices over the complex domain. The key
is the ordinary inner product calculation Z a; b;, which they specify to be
correctly rounded for all machine o; and b; except when overflow or
underflow intrude. That is, they implement the inner product as an atomic

operation through special hardware or software.

What detracts from the Kulisch-Miranker scheme for general use is the
cost of implementing the inner product algorithm. It requires what amounts
to a fixed-point buffer to hold the intermediate results of an inner product
lest there be massive cancellation, promoting tiny addends to the final
result. This buffer is as wide in radix digits as the extent of the exponent
range; applied to a format like the 754 double, it would be over 2000 bits
wide, virtually infeasible for VLSI implementation today. Moreover, their
scheme is sufficient to perform reliable computation, aided by devious algo-
rithms; there is no evidence that their scheme is necessary, nor that the

deviousness of their algorithms is unavoidable.
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7. The Less Mathematical Alternative

Despite their appearance of mathematical rigor, the schemes described
in the last two sections miss the true goal of computer arithmetic — robust
calculations at a price users can afford. The important mathematical idea is
closure of the arithmetic system, for it is closure that leads to predictability
when the inevitable exceptional cases arise. Alas, it is here that the
mathematical purity fades and engineering appears, for deciding feasible
responses to exceptions involves design tradeoffs. This thesis demonstrates
that robust computer arithmetic is feasible in the current technology. The
underlying mathematical principle, closure, is clear from the start. The
difficulty lies in the careful analysis of all the boundary cases encountered

enroute.

B. Arithmetic and Languages — Future Directions

The substance of this thesis, implementation aspects of proposed stan-
dard 754, is just part of the story. What has really been specified in 754 is a
programming environment. Even after all these years, incorporation of the
full standard into programming languages has barely started. Chapter 3

touches on some of the issues, but there are many more.

The extended formats are strongly suggested by the standard, and are
known to be quite useful, but should they be made available in all languages?
Pascal, for example, specifies only one type, real, though enthusiasts would
extend the language by adding further ones. Arithmetic in C is based on the
PDP-11 float and double types. In C, it is natural to have the 754 extended
format play the role double did for the PDP-11, yet one wants both single and
double 754 types for data storage and exchange. The prospects for FORTRAN

have been discussed by R. J. Faternan [3].
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Sometimes language extension to incorporate 754 features causes
conflict between two standards; for example, the BASIC standard specifies
that underflows should be flushed to zero, prohibiting the more useful gra-
dual underflow of 754. Cases like this led to the plea in Chapter 3 that
numerical issues be lifted from language standards and left to the domain of
numerical enthusiasts. However, some cases are not so clear. The details of
comparisons involving NaNs lie totally in neither camp, so some cooperation

will be required.

There is work in progress now to bring the full features of 754 and 854 to
people not only in high-speed numerical engines but in commodity calcula-
tors and computers as well. Attempts to expand the scope of the working
groups to include those responsible for languages have not been too success-
ful, partly because the number of people involved is much greater than the
few interested in arithmetic itself. When the 754 effort was begun, the stan-
dard was to have stood for twenty years. Now, seven years later, through the
cooperation of design, language, and systems people, the ideas spawned in
the working group are finally on the verge of dissemination among millions of

users.
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CHAPTER 2

The Original P754 Implementation Guide

The following paper, reprinted from Computer magazine with the
publisher’s permission, served as a P754 subcommittee working document
until its publication in January 1980. Although nominally a monograph, this
implementation guide reflected the many hours of debate about the form of
the ultimate proposed IEEE binary floating point arithmetic standard. As
published, the implementation guide was compatible with draft 5.11 of the
subcommittee’s formal proposal; an errata sheet at the end brings the guide

up to date with draft 8.0, as published in Compufer in March 1981.

This implementation guide grew out of an earlier document prepared in
collaboration with Harold S. Stone and W. Kahan. This author was primarily
responsible for an appendix consisting of tables specifying the details of the
operations. When it became clear that one inch sgquare table entries would

not suffice to describe the arithmetic, the current paper was launched.

Although every attempt was made to represent subcommittee decisions
in this implementation guide, it was inadequate for the subcommittee's pur-
poses. Most important, it did not satisfy the stylistic requirements for pro-
posed standards, set forth in the IEEE ‘‘blue book''. So work was begun on an
official version of the proposed standard. W. Kahan, John F. Palmer, Tom
Pittman, this author and, later, David K. Stevenson worked on this draft. This
implementation guide was published after the proposal had stabilized at
draft 5.11.

2.1
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Draft 10.0 of proposal P754, as voted out of the floating point subcoms-
mittee, is fundamentally simpler than draft 8.0 as published in Computer
magazine and described here. The two principal changes to draft 8.0 were
the removal of the projective mode interpretation of = and the warning mode
interpretation of denormalized numbers. Draft 10.0 specifies only what were
known as the afline and normalizing modes for interpreting = and denormal-
ized numbers, respectively. Among the smaller changes to draft 8.0 were a
minor modification to the definition of underflow, a decoup!ling of the overflow
and underflow error flags from their respective traps, and a response to
overflow when rounding toward O that parallels the response when rounding

toward +e or —e«, according to the sign of the overflowed result.

The specifications of draft 10.0 are reflected in the pseudo-code descrip-
tion of the the standard in chapter B. This chapter presents the
specifications of draft 8.0; it is one of the few articles describing the pro-
posed standard as it stood for nearly two years (drafts 5.11 to 8.0 were essen-

tially identical), and as it was built in early implementations.
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This guide to an IEEE draft standard provides practical
algorithms for floating-point arithmetic operations and suggests
the hardware/software niix for handling exceptions.

» SPECIAL FEATURE
An Implementation Guide to a
Proposed Standard
for Floating-Point Arithmetic

Jerome T. Coonen
University of California at Berkeley

This isan implementation guide® to a draft stan-
dard before an IEEE subcommittee whose goal is to
standardize binary floating-point arithmetic for
mini- and microcomputers. The purpose of the stan-
dard is to assure a uniform floating-point software en-
vironment for programmers. It may be implemented
entirely in hardware or software or, as is most likely,
in a combination of the two. This document provides
reasonable algorithms for the arithmetic operations
and suggestions for the hardware/software mix in
handling exceptions.

Except for its additiona! discussion of quad, this
guide is in concordance with Draft 5.11 of the pro-
posal titled, “A Proposed Standard for Floating
Point Arithmetic,” IEEECS Task P754/D2, by John
Palmer, Tom Pittman, William Kahan, David
Stevenson, and J. T. Coonen.** W. Kahan made
substantial contributions throughout the develop-
ment of this document, and Harold Stone prepared a
first draft in April 1978. J. Palmer discussed several
features of this standard in late 1977.#** Comments
may be sent to

Jerome T. Coonen
Department of Mathematics
University of California
Berkeley, CA 94720

“This is & much revised version of *‘Specifications for a Proposed
Standard for Floating Point Arithmetic,” Memorandum No.
UCB/ERL M78/72. This work was partially funded by Office of
Naval Research Contract NO0O14-76-C0013.

#2J. Coonen, W. Kahan, J. Palmer, T. Pittman, D. Stevenson, ‘A
Proposed Standard for Floating Point Arithmetic,”” SIGNUM
Newsletter, Special Issue, Oct. 1979, pp. 4-12. Aveilable from
SIGNUM, c/o ACM, 1133 Avenue of the Americas, New York, NY
10036.

¢®®J. Palmer, “The INTEL Standard for Floating Point
Arithmetic,” Proc. COMPSAC 77, pp. 107-112.

The standard precisely describes its data formats
and theresults of arithmetic operations; it must do so
to be of use to the producers of microprocessor hard-

~ware and software, who cannot afford to provide the

support software and personnel to perform conver-
sions between systems conforming to a less rigid
standard. It allows for future developments such as
interval arithmetic, which provides a certifiable re-
sult despite roundoff, Over/Underflow, and other ex-
ceptions. And it allows the use of reserved operands

* to extend the numerical data structure, with complex

infinities, say, or with pointers into heaps of numbers
with extended range and precision.

Programs which now run in higher-level languages
like Fortran should be portable to a system with the
new standard arithmetic at the cost of a modest
amount of editing and a recompilation, and then
should execute with results almost certainly noworse
than before, though programs which used to give in-
correct results might now give diagnostic messages
instead.

1.0 Narrative description of the standard
arithmetic

1.1 Sketch of the standard floating-point system.

Combinations of floating-point formats: one of
(A) single

{B) single and single-extended

(C) single and double

(D) single, double, and double-extended

(E) single, double, and quad.

Arithmetic operations:

Add, Subtract, Multiply, Divide, Remainder,
Square Root, Compare, Round to Integer, Con-
version between various floating-point and in-




teger formats, Binary-Decimal conversion.
Rounding modes:

(A) Round to Nearest, or optionally
(B) Round—to Nearest, toward 0, toward -+,
toward —eo,

Rounding precision control:

(A) Allow rounding of an extended result to the
precision of any other implemented format,
while retaining the extended exponent.

(B} When &ll operands have the same precision,
allow rounding of the result to that precision.

Infinity arithmetic:

(A) Affine mode: —o< 4o,
{B) Projective mode: —wo= 400,

Denormalized arithmetic:

(A) Warning mode
(B) Normalizing mode {optional).

Floating-point exceptions, with sticky flags and
specified results. The default responseis to proceed; a
trap to user software is optional.

(A} Invalid-Operation
(B} Overflow

(C) Underflow

(D) Division-by-Zero
(E) Inexact-Result.

1.2 Basic floating-point formats. Any nonzero real
number may be expressed in “normalized floating-
point’ form as * 2¢*f, where e isthe signed integer ex-
ponent and the significant digit field f satisfies 1 € <
2. The standard describes a machine representation
of a finite subset of the real numbers based on this
floating-point decomposition, and prescribes rules
for arithmetic on them.

There are three basic formats, single, double and
quad (See Table 1), to be implemented in one of the
combinations shown in Section 1.1. Single is required
since it is useful as a debugging precision and is effi-
cient over a wide range of applications where storage
economy matters.

A normalized nonzero number X in the single for-
mat (see Section 2 for double and quad) has the form

X = (—1)5#2E127%(1 F) where
sign bit
8-bit exponent biased by 127
=X's 23-bit fraction which, together with anim-
plicit leading 1, yields the significant digit field
S
The values 0 and 255 of E are reserved to designate
special operands discussed in later sections; one of
them, signed zero, is represented by E = F = 0. Nor-
malized nonzero single numbers can range in
magnitude between 2-126%1 000.. .00 and
2'27%1.111. . .11, inclusive.

The number X above is represented in storage by
the bit string

S
E
F

[ s ] E F
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This encoding has the special property that the order
of floating-point numbers coincides with the lex-
icographic order of their machine counterparts when
interpreted as sign-magnitude binary integers,
facilitating comparisons of numbers in the same for-
mat.

1.3 Extended formats. To perform the arithmetic
operations on numbers stored in the single and dow-
ble formats, & system will generally unpack the bit
strings into their component fields S, E, and F.
Moreover, the leading significant bit will be made ex-
plicit, and perhaps the bias will be removed from the
exponent.

The standard provides a way to exploit this un-
packed format by admitting the optional single-
extended and double-extended formats (See Table 2).
If implemented at all, only one extended format
should be provided, single-extended in systems with
single only, and double-extended in systems with
single and double only.

Table 1.
Basic floating-point formats.
SINGLE DOUBLE QUAD
Fields and widths in bits:
S = Sign 1 1 1
E = Exponent 8 11 15
L = Leading bit [&D] (1) 1
F = Fraction 23 52 111
Total Width (1)+32 (1)+64 128
Sign: + /- represented by 0/1 respectively
Exponent: biased integer
Max E 255 2047 32767
Min E 0 0 0
Bias of E 127 1023 16383
Normalized numbers: (quad may be unnormalized)
Range of E (MinE + 1)t0o (Max E - 1)
Represented _ 138 » oE-Bas «
number (=17"e h
Signed zeros:
E Min E Min £ Min E
L (0) (0 0
F 0 0 0
Reserved operands:
Denormalized numbers:
E Min £ Min £ Min £
L (0} (0) 0
F nonzerc nonzerc nonzero
Represented Swnf - Buse
number (=1PT28 B LE)
Signed o's:
E Max E Max E Max
L {0) (0) 0or1
F 0 0 0
NaNs
E Max E Max E Max £
L (0) ()] Oort
F nonzero nonzero nonzero

F = system-dependent. possibly diagnostic, information
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Double-extended format (see Section 2 for single-
extended) consists of the following fields:

S=gign bit

E +B=biased exponent. E is a signed integer
spanning at least therange—16383 to 16384; the
bias B may be zero

L.F=a leading integer bit L followed by a frac-
tion F of at least 63 bits.

‘A number X is then given by X=(—1)5*2E-B¥(L_ F),

The case E = maximal-value is discussed in later sec-

_tions. Two possible implementations of E = minimal-

value are described below (Section 1.12, Denormal-
ized and unnormalized numbers); signed zeroisrepre-
sented by E = minimal-value and L.F = 0.0. Zerois
sometimes referred to as “‘normal zero” to distin-
guish it from the “unnormal zeros with E > minimal-
value and L.F = 0.0. The latter behave much as
nonzero numbers in the arithmetic operations.

To match the exponent range of quad the unbiased
double extended exponent must range between
—16383 and 16384 as indicated above. This suggests
that the exponent be represented in 15 bits by its
negative in two's complement, biased by 16383 asin
the basic formats, or biased by —1. The choice of the
exponent representation impacts the use of the
nonzero numbers at the bottom of the exponent
range.

Table 2.
Extended formats.

SINGLE-EXTENDED DOUBLE-EXTENDED
Fields and widths in bits:
S = Sign 1 1
E = Exponent 1 15
L = Leading bit 1 1
F = Fraction > 31 63
Total width > 44 B0
Sign: + / — represented by 0/1 respectively
Unbiased exponent: (may be stored with a bias)
Max E 3 1024 16384
MinE< ~1023 — 16383
Numbers:
Range of E (MinE + 1)to (MaxE - 1)
Represented number (—1)5*28(L.F)
Bottom of the exponent range:
E Min £ Min E
R Dor1 Dori
Represented number (- 1)5*28+R*(L F)
Signed zeros: use special indicator bits, or else ..
E Min E Min E
LF 0.0 0.0

Reserved operands:

Signed ='s: use special indicator bits, or else. ..
|3 Max E Max E
L Q0or1 o bort
F 0 0

NaNs: use special indicator bits, or else. ..
E Max E Max E
L Oort BDor1
F nonzero nonzero

F = system-dependent, possibly diagnostic, Information.

2.6
Extendeds are assumed to be few in number. The

first implementations of this standard will probably
allow access to extended entities only in assembly
language. High-level languages will use extended (in-
visibly) to evaluate intermediate subexpressions,
and later may provide extended as a declarable data
type.

The presence of at least as many extra bits of preci-
sion in extended as in the exponent field of the basic
format it supports greatly simplifies the accurate
computation of the transcendental functions, inner
products, and the power function YX. Infact, to meet
the accuracy specifications for binary-decimal con-
versions, some extended capability must be
simulated by system software if an extended format
is not implemented; this is discussed in Section 2.

Another way to obtain most of the computational
benefits of an extended format is to use the next
wider basic format. Indeed, quad is included in this
document as an alternative for those not wishing to
implement double-extended. In most implementa-
tions extended will be as fast as the basic format it
supports, as compared to a factor 2 or 4 loss in speed
suffered by the next wider basic format, if im-
plemented.

1.4 Arithmetic operations. The standard provides a
notably complete set of arithmetic operations (see
Section 1.1) in an attempt to facilitate program por-
tability by guaranteeing that results obtained using
standard arithmetic may be reproduced on different
computer systems, down to the last bit if no extended
format isused. SQUARE ROOT and REMAINDER
are included as primitive operations because they ap-
pear so often, for example in matrix calculations and
range reduction. REMAINDER is preferable to the
MODULO function because REMAINDER is com-
puted without rounding error. Consider, for example

0.01 MOD (—95} vs0.01 REM (~95)

on a 2-digit machine. MODULO yields the result
round (—94.99) = —95 for a complete loss of ac-
curacy, while REM AINDER yields the correct result
0.01. The standard’'s specification of minimal re-
quirements for binary-decimal conversions is an at-
tempt to allow comparison of data from different
systems at the decimal output level rather than via
hexadecimal dumps.

All operations except conversions between dif-
ferent data formats are presumed to deliver their
results to destinations having no less exponent range
than their input operands. This constraint avoids un-
necessary complexity in the implementation and
simplifies the responses to Over/Underflow. The rare
operation

double ® double ~ single
is required to function exactly as

double ® double ~ double
MOVE (round) double ~ single,

to assure identical results in all sequences of opera-
tions performed in the basic formats only.



Rather than prohibit mixed-format operations, the
standard is designed to encourage the provision of
some such operations. The sequence

(single * single = double) + double ~ double

ought to be available without the overhead of pad-
ding the single operands to double.

1.5 Accuracy and rounding. If the infinite precision
result of an arithmetic operation is exactly represen-
table within the exponent range and precision
specified for the destination, then it must be given ex-
actly. Otherwise the result must be rounded as
follows. Let Z be the infinitely precise result of an
arithmetic operation, bracketed most closely by Z1
and Z2, numbers representable exactly in the preci-
sion of the destination, but whose exponents may be
out of range. That is, Z1 < Z < Z2, barely. '
Round to Nearest(Z) = Unbiased Round (Z)
= the nearer of Z1 and Z2 to Z; in case of a tie
choose the one of Z1 and Z2 whose least signifi-
cant bit is 0.
Round toward Zero(Z) = Chop(Z) = smaller of
Z] and Z2 in magnitude. :
Round toward +(Z) = Z2.
Round toward ~«(Z) = Z1.

The latter two modes, the *'directed roundings.” are
intended to support interval arithmetic. Round
toward Zero is useful in controlling conversions to in-
tegers in accordance with conventions embedded in
programming languages like Fortran.

An implementation of the standard may support
either Round to Nearest only, with Round toward
Zero available for Round to Integer, or all four round-
ing modes. Round to Nearest shall be the default
mode for all operations. Calculation of Round to
Nearest requires the so-called sticky bit, as shown in
Section 2. Once the sticky bit is implemented, the
directed roundings may be supplied at very little ex-
‘tra cost, the bulk of which lies in the mechanism, say
mode bits or extra opcodes for exercising the choice of
rounding mode. While the standard leaves this
mechanism up to the implementor, the mode bits are
usuvally preferable. For example, an interval
arithmetic computation of upper and lower bounds,
performed by executing the same instructions round-
ing up during one pass ard down the next, is greatly
expedited if flipping a pair of bits changes rounding
modes.

In a system which delivers all floating-point results
except format conversions in the widest format sup-
ported, the user needs control over the precision to
which a result is rounded. Such a system would en-
courage the evaluation of long expressions in the
widest available format, with just one serious round-
ing error at the end when the expression's value is
stored in a narrower destination. But the standard’s
specifications for roundoff control are burdened by
the current programming languages which prohibit
mixed-precision calculation, and by the need to mimic
systems not providing an extended format. Round-
ing precision control is specified at the end of Section
2.14.

2.7

1.6 Exceptions. Once the data formats and opera-
tions are determined, there remains the specification
of responses to exceptional conditions. The standard
classifies the exceptions as Invalid-Operation,
Underflow, Overflow, Division-by-Zero and Inexact-
Result. They are discussed in the following sections.

The default response to any exceptionis todelivera
specified result and proceed. However, an implemen-
tation may provide optional traps to user software on
any of the exceptions. If available, the choice to trap
should be exercised at execution time via a trap-
enable bit. :

Associated with each of the exceptions is a
“sticky" flag which is guaranteed to be set on each oc-
currence of the corresponding exception when there
is no trap. The flags may be tested by a program and
may be cleared only by the user’s program. When the
end of & job is obviously at hand, a humane operating
system may draw the user's attention to flags still
set.

Since the sticky flags need not be set when a trapis
to be taken, an implementation may use them to in-
dicate which exceptions have just occurred. A trap
handler could determine which exception(s} arose on
the aborted operation by checking which have both
their sticky and trap-enable flags set, and would then
clear those flags at the end of the operation.

To deal effectively with traps, programmers need

~ certain vital information, such as what exceptions oc-

curred, where in the program, and what the operation

“and operands were. In response, the programmer will

normally either depart from the offending block of
code, fix up the aberrant result and resume execution,
or reinterpret the aberrant operands and recompute
theresult. The trap handler might be passed informa-
tion by value, with the option to *‘return’’ a result to
be inserted to the offending operation’s destination.
Orne might dispense with some of the above informa-
tion, for example when the correct result is available
in encoded form as in Over/Underflow.

1.7 Invalid-Operation. The Invalid-Operation excep-
tion arises in a variety of arithmetic operations on er-
rors not frequent or important enough to merit their
own fault condition. Some samples of Invalid-
Operations are:

(A} V=5

(B) (49} — (+) (See Section 1.8.)

(C) 0%,

One class of reserved operands, the Not-a-Number
symbols, or NaNs, are specified as the default results
of Invalid-Operations. In single, double, and quad
formats, with the format

[s] ¢ ] F ]
NaNs are characterized by
S = gign bit (which may be irrelevant)

E =111...11
F #0.

In extended format NaNs have the most positive ex-
ponent. The leading significant bit in extended and




quad may be 0 or 1. The sign bit S participates in the
obvious way in the execution of statements like
X=-Yand Z=X—Y=X+{—Y)without loss of infor-
mation in the event that Y is a NaN with a numerical
connotation.

The nonzero fraction field F of a NaN will contain
system-dependent information. For example:

(A) A distinguished class of NaNs may be used by
an operating system to initialize storage. The
fraction of such a NaN may be a name or a
pointer to the region where the NaN is stored.

(B) A NaN generated by an invalid arithmetic
operation on numeric data, for example 0 * <o,
may be a pointer to the offending line or block of
code.

(C} When complex arithmetic is implemented, it is
often useful to think of « as a line rather than a
point in the projective plane. A distinguished
class of NaNs may be used in pairs to provide

the relative sizes and signs of the real and im- .

aginary parts of numbers tending to « along a
fixed ray emanating from the origin. )

(D) Sometimes an operation could generatearesult
acceptable but for its inability to pack that
result correctly into the intended destination
(see the discussion of Over/Underflows). In
such & case, a NaN could be supplied, with a
fraction pointing to an extended field or a heap
where the correct result may be found.

{E) Sometimes a subroutine may encounter data
for which only a partial result can be delivered
in the time available. The rest of the result can
be replaced by NaNs pointing to a piece of the
program which will resume execution of that
subroutine only if that undelivered portion of
the result is really needed. :

(F) List-oriented systems like LISPmay use single
format NaNs to point to double numerical data.

As the list above shows, there are two distinct
types of NaNs. The Nontrapping NaNs, as in (A) and
{B), propagate through arithmetic operations

. without precipitating exceptions. If two such NaNs
are picked up as operands, the result is one of the
operands, according to a system-dependent
precedence rule. On the other hand, the Trapping
NaNs would be useful in situations (C} through (F),
where an Invalid-Operation trap to user software is
required to perform arithmetic on the special
operands; when the trap is disabled, a Nontrapping
NaN results. The two types of NaNs might be
distinguished by the leading bits of their fractions.

1.8 Underflow. Because of thecare takeninthe treat-
ment of Underflows, the range of normalized
numbersin single, double, and quad formats has been
chosen to diminish slightly the risk of Overflow com-
pared with the risk of Underflow. This was done by
picking the exponent bias and alignment of the
binary point in the significant digit field in sucha way
that the product of the largest and smallest positive
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normalized numbers is roughly 4 in each of the basic
formats.

Underflow occurs if the exponent of a result, tested
before or after rounding at the implementor’'s option,
lies below the exponent range of the destination field,
or if the rounded extended or quad result of a
MULTIPLY or DIVIDE with nonzero. finite
operands is normal zero. Note that a product or quo-
tient of grcssly unnormalized numbers may have a
zero significant digit field; the test above prohibits
such a result from masquerading as a normal zero
when the operand exponents fortuitously add to the
format’s minimum,

Because of the restrictions on arithmetic opera-
tions presumed in Section 1.4, the exponent can be
out of range by at most a factor of 2, except for the
MOVE instruction which is discussed in Section 2. If
the Underflow trap is enabled, the exponent is
wrapped around into the desired range with a bias ad-
Just specified in Section 2, and the resulting value is
delivered to the trap handler. The exponent wrap-
around is chosen so that the result, while related in a
simple way to the Underflowed value, lies somewhere
in the middle of the numerical range of representable
numbers. This diminishes the risk that a computa-
tional response (like scaling) to Underflow will en-
counter almost immediately a rash of consequent
Overflows. The analogous statement holds for
Overflows.

If the Underflow trap is disabled. the result is
denormalized by right-shifting its significant digit
field while the exponent is incremented until it
reaches that of the smallest normalized number
representable in the destination. Then the result is
rounded to fit into the destination.

Note that denormalization is performed before
rounding, to avoid double-rounding problems. If the
Underflow test is made on a rounded result, that
result must be ‘“unrounded” before undergoing
denormalization. The difference between testing
Underflow before and after rounding is that the
Underflow threshold (i.e. the largest infinite preci-
sion number that Underflows) is the higher in the lat-
ter case by one quarter of a unit in the last place of the
smallest normalized number; however, both im-
plementations yield exactly the same numerical
values.

In terms of the format

[s] & ] F

a nonzero denormalized single number X (see Section
2 for the other formats) is encoded as

S =signbit
E =0
F = X’s 23 significant bits (at least one of which
must be nonzero) to the right of the binary point.
X is reconstructed via the formula
X = (—1)5%2 1820 F) |

observing that E is not the true biased exponent in
single format. Comparing this formula with its



analog for normalized numbers, one sees that, when
unpacking a denormalized number, the 1-bit that
would have gone to the leading bit of the significant
digit field for a normalized number is instead added
into the unbiased exponent E—127+1.

The denormalized numbers and signed zeros are
the reserved operands corresponding to a biased ex-
ponent of zero. The values +0 are obtained just when
F=0 above. Zero may result from an Underflow,
depending on the rounding mode, when the
Underflow is so severe that all nonzero bits are
shifted out of the significant digit field.

1.9 Overflow. 1f the exponent of a rounded result of
an arithmetic operation overflows the range of the
destination, then the Overflow exception arises. ex-
cept when Invalid-Operation intcrvenes because a
single or double result is not normalized. Hatrapisto
be taken, then the exponent is wrapped around as
discussed in Underflow {Section 1.8), except that the
bias adjust is subtracted rather than added.

H notrapis to be taken, then the result depends on
the rounding mode and the sign of the result, as
discussed in Sectior; 2. One possibleresult is =, which
in single, double, and quad formats with the bit pat
tern

Ls[ ¢ ] F l

is encoded as

S = signbit
E =111 11
F =0.

Inthe extended formats E = maximal-valueand F =
0. The explicit leading bit L in extended and quad
may beOor1.

The ='s are given two interpretations. In Affine
mode

—o <{real numbers} < 4+,

which is appropriate for most engineering calcula-
tions involving exponentials or disparate time con-
stants or = 's generated by Overflows. The sign of = is
ignored in Projective mode, which is useful for real
and complex rational arithmetic. for continued frac-
tions, and for ='s generated by division by zeros not
generated by Underflows. Systems shall provide an
Affine/Projective mode bit so that the choice can be
made under program control. Projective mode is the
default because it is less likely to be abused unwit-
tingly.

1.1¢ Division-by-Zero. The Division-by-Zero excep-
tion arises in a division operation when the divisor is
normal zero and the dividend is & finite nonzero
number. The default result is e with sign according
to convention.

1.11 Imexact-Result. The Inexact-Result exception
arises when a roundoff error is committed in an
arithmetic operation. It is intended for essentially in-
teger calculation as in Cobol and to facilitate
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multiple-precision calculation. The default result is
the correctly rounded number.

1.12 Denormalized and unnormalized numbers In
this document an unnormalized number is one whose
leading significant bit, whether implicit or explicit. is
zero. Denormalized numbers, nonzero unnormalized
numbers in a given format whose exponents arc the
format's minimum, were introduced as the deisult
results of Underflows. They are designed not so much
to extend the exponent range, but rather to allow tur-
ther computation with some sacrifice of precision in
order to defer as long as pussible Lhe need to deciac
whether the Underflow will have significant conse
quences.

While in extended and guad formats. with their ex-
plcit leading bits, unnormalized nuisters LAY FabLg
over the entire exponent range, the only unnormal-
ized numbers that may be represented in stnglc and
double formats are denormalized.

Section 2 specifies the results of arith.i tic opela
tions on unnormalized operands; in each case the
algorithms are essentially the same as for norsasiized
operands. The only unnormalized result possible wiin
normalized operands is a denormalized number on
Underflow.

The usual mode of arithmetic on unnormalized
numbers. which may be called Warning mode
recognizes operands’ unnorn.alized character. Bus
the standard allows an optional Normahzing node 1
which all results are computed as though all deno
malized operands had first been normabized. In
system that offers both, Warning mod( shall be the
default, and selection of modes shall be exercised via
a single-mode bit accessible to programmers.

Normalizing mode precludes both the creation of
any unnormalized numbers other than denormalized
numbers. and Invalid-Operations due to the inability
to store an unnormalized result in a single or double
destination. 1t might be used by a programmer who
has given some thought to Underflow, since. in most
cases. the error due to denormalization on Underflow
is no worse than that due to roundoff. Normalizing
mode sacrifices the diagnostic capability of the un-
normalized numbers for the predictability of nor
malized arithmetic. But if unexpected unnormalized
{but not denormalized) operands are somehow picked
up in that mode, they are operated on as in Warning
mode.

Because it is so often desired, Normalizing mode 15
recommended for all systems, especially those
without an extended format to hold unnormalized in-
termediates. In fact, the Normalizing mode is op-
tional primarily to free the high-performance pipe
lined array processors from the extra normalizing
step at the start of each operation; such systems will
probably compute their intermediates in extended.

Another way to perform unnormalized arithmetic
in extended format is according to the rules of
significance arithmetic. This would be regarded as an
{expensive) enhancement of the standard. 1f quad is
implemented, then unnormalized arithmetic should



be performed as significance arithmetic to take ad-
vantage of the extravagant word size.

As mentioned in the discussion of the extended for-
mats, the standard does not exactly specify the inter-
pretation of the nonzero numbers whose exponents
are the format’s minimum. One natural implementa-
tion simply extends the exponent range one unit, in-
terpreting a number with the format’'s smallest expo-
nent as it would any other nonzero number. A prob-
lem arises since normal 0 can be the unexceptional
product or quotient of grossly unnormalized or denor-
malized numbers. To protect against this anomalous
situation, the standard specifies that such a product
or quotient be marked as an Underflow. The extra
test for normal zero is required after a product or quo-
tient of nonzero numbers.

An alternative encoding of denormalized numbers
in extended and quad formats uses a redundant expo-
nent to permit numbers denormalized by Underflow
to be distinguished from unnormalized numbers at
the bottom of the exponent range which are the
results of operations on unnormalized operands. Ina
scheme with biased exponent, with the notation in-
troduced earlier,

(A) The nonzero normalized numbers with E=0
have exactly the same numeric connotation as
their counterparts with E=1.

(B) The nonzero nonnormalized numbers with
E =0 and F#0 have the same numeric connota-
tion as the corresponding numbers with E=1.
Those with E=0 are denormalized while those
with E=1 are unnormalized. '

(C) The numbers with E=L=F=0 are the signed
normal zeros. The numbers with E>1 and
L=F=0 are unnormal zeros.

In this representation normal zero can never be the
product or quotient of nonzero operands unless expo-
nent Underflow occurs (i.e., biased exponent less than
1), simplifying the test for Underflow. Also, in
systems which implement Normalizing mode, there
is a distinction between denormalized numbers and
unnormalized numbers at the bottom of the exponent
range. Another advantage, for those who implement
the standard in hardware that traps to system soft-
ware in ell exceptional circumstances, is that
E=maximal-value and E=minimal-value are the
conditions for a hardware trap on “exceptional
operand.”

1.13 Hardware vs user traps. The standard specifies
the trap options for exceptions independently of
whether the implementation is in hardware, soft-
ware, or a combination of the two. These are system
traps to software that the user has either written or
invoked from a system library. They are to be dis-
tinguished from hardware traps in the arithmetic
unit.

One possible hardware/software implementation
would provide a hardware trap to system software on
every Over/Underflow. The system software would
then test the trap option flag and either deliver the
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specified result and proceed, or trap touser software.
In this case the exceptions’ sticky flags and trap-
enable bits could be in software. It is important to
note that if the hardware trap provided the correctly
rounded result with an extended exponent, then the
system software would require sufficient informa-
tion to “unround’’ the number in case a denormalized
result is to be delivered on Underflow; otherwise a
second rounding could occur during denormalization,
in violation of the standard.

The Invalid-Operation and Division-by-Zero excep-
tions could be handled by similar hardware/software
combinations.

Inexact-Result requires more care. Because this ex-
ception will arise (and be ignored) so frequently in
floating-point computations, it is impractical to have
a hardware trap executed on every occurrence. If the
Inexact-Result exception is to be handled by a hard-
ware trap and system software, then that trap should
be maskable. In one possible implementation:

(1) The trap would be masked off until . . .

(2) enabled by the library routine invoked by the
user to clear the Inexact-Result sticky flagor to
ensable the user trap, and . . .

(3) on the first occurrence of a rounding error, the
hardware trap would set the sticky flag. The
user trap would be invoked if enabled; other-
wise the system software would disable the
hardware trap and resume execution. leaving
the sticky flag as an indication of a rounding er-
ror.

A possible hardware trap on denormalized operand
was mentioned at the end of the last section. A
system implementing the Normalizing mode of com-
putation would have software test the Warning/Nor-
malizing mode bit and normalize the denormalized
operand if necessary, handling the details of extend-
ed exponent range required to represent the operand
as normalized.

2.0 Specifications for a conforming
implementation of standard arithmetic

2.1 Fioating-point formats. Single, double, and quad
are the basic floating-point formats. A standard
system shall provide single only, both single and dou-
ble, or all three basic formats. In addition, either of
the first two systems above may provide the extend-
ed format corresponding to the wider basic format
supported. The formats are described in Tables 1 and
2.

2.2 Data types. This standard defines the following
floating-point data types: normalized numbers,
denormalized numbers, unnormalized numbers
(available only in extended and quad), the normal
zeros (+0), £ and the NaNs. They are described in
detail in Tables 1 and 2.

A standard system must produce denormalized
numbers as the default response to Underflow: un-



normaslized numbers are their descendants in extend-
ed or quad. A system may optionally allow users to
normalize all denormalized numbers when they ap-
pear as input operands in arithmetic operations. This
shall be called Normalizing mode in contrast to the
default, Warning mode. The choice of Normaliz-
ing/Warning modes shall be made via a single bit ac-
cessible to users.

Signed =’s are produced as the default response to
Division-by-Zero and certain Overflows. Systems
shall provide = arithmetic as specified. Users must
be able to choose, via a single-mode bit, whether +
will be interpreted in the Affine or Projective closures
~ of the real numbers. The sign of « is respected in Af-
fine mode and ignored in Projective, the default.

NaNs are symbols which may or may not have a
numeric connotation. Nontrapping NaNs are intend-
ed o propagate diagnostic information through
subsequent arithmetic operations without triggering
further exceptions. Trapping NaNs, on the other
hand, shall precipitate the Invalid-Operation excep-
tion when picked up as operands for an arithmetic
operation. Systems shall support both types of
NaNs. In the event that two Nontrapping NaNs oc-
cur as operands in an arithmetic operation, the result
is one of the operands, determined by a system-
dependent precedence rule.

2.3 Arithmetic operations. An implementation of
this standard must at least provide:

(A} ADD, SUBTRACT, MULTIPLY, DIVIDE,
and REMAINDER for any two operands of the
same format, for each supported format, with
the destination having no less exponent range
than the operands.

{B) COMPARE and MOVE for operands of any,
perhaps different, supported formats. :

{C) ROUND-TO-INTEGER and SQUARE ROOT
for operands of all supported formats, with the
result having no less exponent range than the
input operands. In the former operation, round-
ing shall be to the nearest integer or by trunca-
tion toward zero, at the user’s option.

(D) Conversions between floating-point integers in
all supported formats and binary integers in
the host processor.

(E) Binary-decimal conversions to and from all
supported basic formats. Section 2.21
describes one possible implementation.

2.4 Exceptions. One or more of five exceptional con-
ditions mey arise during an arithmetic operation:
Overflow, Underflow, Division-by-Zero, Invalid-
Operation, and Inexact-Result.

The default response to an exception is to deliver a
specified result and proceed, though a system may of-
fer traps to user software for any of the exceptions.
These traps shall be enabled via bits accessible to pro-
grammers.

A system providing a trap on an exceptional condi-
tion should give sufficient information to allow cor-
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rection of the fault and allow processing to continye
at the point of the error or elsewhere, at the option of
the trap handler. The correct result may be encoded in
the destination’s format (or even in the destination)
orin a heap pointed to by a NaN. On the other hand. if
no numeric result can be given, the opcode and aber-
rant operands must be provided: the trap handler
should be able to return a result to be delivered to the
destination.

Associated with each of the exceptions is a sticky
flag which shall be set on the occurrence of the cor-
responding exception whenno trapis tobe taken. The
flags may be sensed and changed by user programs,
and remain set until cleared by the user.

2.5 Specifications for the arithmetic operations. For
definiteness the algorithms below specify one con-
forming implementation. Single, double, and double-
extended formats are implemented; the exception
flags are set on every occurrence of the corresponding
exception; the extended exponent is biased by 16383,
There are many alternative conforming implementa-
tions. Those arithmetic operations, except Decimal
to Binary conversion, which deliver floating-point
results rather than strings or binary integers are
broken into three steps:

{0) If either operand is a Trapping NaN, then
signal Invalid-Operation and proceed to Step 2.
Otherwise, if the Normalize bit is set, then nor-
malize any denormalized operands.

(1) Compute preliminary result Z and, if numeric,
round it to the required precision and check for
InvalidiOver/Underflow violations. This step
is peculiar to the specific operation.

{2) Set exception flags, invoke the trap handler if
required, and deliver the result Z to its destina-
tion. The second step is the same for all opera-
tions except REMAINDER and MOVE; the
minor differences are noted.

The following table is used in the specification of
Step 1 of the operations with two input operands. It
singles out the cases involving special operands.

Y
Xopy +0 w *+w NaN
*0 a b c \
X w d e 1 A
EXS 5 h i Y
NaN X X X M

W is any finite number, possibly unnormalized but
not normal zero. While X and Y refer to the input
operands, the entry M indicates that the system's
precedence rule is to be applied to the two Nontrap-
ping NaNs.

Preliminary numeric results may be viewed as:

T T O N A S A AR

where V is the overflow bit for the significant digit
field, N and L are the most and least significant bits,




G and R are the two bits beyond L, and S, the sticky
bit, is the logical OR of all bits thereafter.

2.6 ADD/SUBTRACT. For subtraction, X~Y is
defined as X +(—Y).

a:  Zis 40 in rounding modes RN, RZ, RP, or if
both operands are +0; Z is —0 in mode RM or
if both operands are —0.

Z=Y.
Z=X.

b,d,e: (Note thatin cases b and d, a narrow rounding
precision may cause the result to differ from
the nonzero input operand.) Compute:

(1) Align the binary points of X and Y by un-
normalizing the operand with the smaller
exponent until the exponents are equal.

_ Note whether either of the resulting
significands is normalized for (3) below.
Add the operands.

Addition of magnitudes: If V=1, then
right-shift one bit and increment exponent.
During the shift R is ORed into S.

{3} Subtraction of magnitudes:

(8) If all bits of the unrounded significant
digit field are zero: Set the signto '+ "
in rounding modes RN, RZ, RP, and set
the sign to *‘—"" in mode RM. Then, if
either operand was normalized after
binary point alignment in (1), the expo-
nent is set to its minimum value, i.e.,
the result is true zero.

Cef

gh

(2

{b) Otherwise: If, after binary point align-
ment in (1), neither operand was nor-
malized, then skip to (4). Otherwise,
normalize the result, i.e., left-shift the
significand while decrementing the ex-
ponent until N=1. S need pot par-
ticipate in the left shifts; zero or S may
be shifted into R from the right.

{4) Check Underflow, round, and check Invalid
and Overflow.

i: In Affine mode (+) + (+)~ (+=)and (—=) +
{—o0) = (—e), In Affine mode on (+) + (—)
and (—=) + (4}, and in all cases in the Projec-
tive mode, signal Invalid-Operation, and if &
result must be delivered, set Z to NaN.

2.7 MULTIPLY.
a,b,d: Z=0 with sign.

c.g: Signal Invalid-Operation. If & result must be
delivered, set Z to NaN.

¢: If either operand is an unnormal zero, proceed 88
in c; otherwise, compute:

(1) Generate sign and exponent according to
convention. Multiply the significands.

{2) 1f V=1 then right-shift the significand one
bit and increment the exponent.
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{3) Check Underflow, round, and check Invalid
and Overflow.

f.hi: Z=o with sign equal to the Exclusive-Or of
the operands’ signs.

2.8 DIVIDE.

a,i: Signel Invalid-Operation and if a result must be
delivered, then set Z to NaN.

b,c.f: Z=0 with sign. Exception: if X is an unnor-
mal zero, proceed as in a.

d: Z== with sign. Signal Division-by-Zero.
Exception: if X is an unnormal zero, proceed as
in a.

e: If Y is unnormalized, proceed as in a; other- -
wise, compute:

(1) Generate sign and exponent according to
convention. Divide the significands.

(2) If N=0, then left-shift significand one bit
and decrement exponent. S need not par-
ticipate in the left shift; a zero or S may be
shifted into R from the right.

{3) Check Underflow, round, and check Invalid
and Overflow.

g.h: Z=o with sign.

2.9 REMAINDER. Form the preliminary result Z =
remainder when X is divided by Y, with integer quo-
tient Q. Q does not participate in Step 2 of the opera-
tion unless an exception is raised there, in which case
if Z is set to NaN, then Q is assigned the same value.
The sign of Q is the Exclusive-Or of the input
operands’ signs. The standard does not require the
quotient Q.

a,d,gh,i: Signal Invalid-Operation. If results must
be delivered, then set Z and Q to NaN.

b,c: If Y is unnormal zero, proceed as in a; other-
wise Z=X and Q = 0.

e: I{ Yisunnormalized, proceed as in a. Otherwise,
normalize X and compute:

{1) Set Q to the integer nearest X/Y computed
to as many bits as necessary to round cor-
rectly: if X/Y lies halfway between two in-
tegers, set Q to the even one. If Q contains
more significant bits than its intended
destination (the number may be great if
X>>Y), then discard the excessive high-
order bits.

{2) Set Z to the remainder, X—(Q*Y). Nor-
malize Z, check Underflow, round, and
check Invalid and Overflow. There is no
rounding error if the destination precision
is no narrower than X's and Y's.

. Q=0and Z=X.

210 ROUND-TO-INTEGER. Set Z to X if X is +0,
+ o, or NaN; otherwise, compute Z: If X 'sexponentis
so large that it has no (zero or nonzero} significant



fraction bits, then set Z to X; else:
(1) Right-shift X's significand while incrementing
the exponent until no bits of the fractional part
of X lie within the rounding precision in effect.

{2) Round Z. The user must have the option of
rounding by truncation as well as to the nearest
integer.

If all of the significant bits of Zare 0, then set Z
to normal zero with the sign of Z; otherwise,
normalize Z. S, which was set to zero afier round-
ing in (2), need not participate in the left shifts
of normalization; zero or Sis shifted into R from
the right.
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2.11 SQUARE ROOT. Z=yX. If X is =0 or NaN,
then set Z to X. If X is unnormalized or —, then
signal Invalid-Operation and if a result must be
delivered, set Z to NaN. If X is +o, then in Affine
mode set Z to X and in Projective mode proceed as for
—C0

If X is positive, finite, and normalized, compute
Z=\/¥ to the number of bits required to get a correct-
ly rounded result, and round Z. Only two bits of Z
‘beyond its rounding precision are required, if that
precision is no narrower than the precision of X.

If X is negative, finite, and normalized, signal
Invalid-Operation. If a result must be delivered, set Z
to NaN.

212 MOVE. MOVE X — Z (convert between dif-
ferent floating-point formats) is an operation whose
destination may have shorter range and precision
than its source operand, in which case it performs an
arithmetic operation. If X is +0, =, or NaN, set Z to
X. Otherwise, check X for Underflow, round to the
precision of the destination, and check for Invalid
and Overflow.

On Over/Underflow with the corresponding trap
enabled, the exponent may be more than a factor of 2
(i.e., one bit) beyond the range of the destination, so
the exponent wrap-around scheme will not work. One
way to cope is to deliver to the trap handler the result
in the format of the source, or in the widest format
supported, but rounded to the precision of the
destination. Another way involves a heap onto which
is put the rounded value whose exponent lies beyond
the range of the intended destination; into the
destination would go a NaN pointing to that value in
the heap.

2.13 Detection of Underflow. If the exponent of the
nonzero preliminary resuit underflows the intended
destination, then signal Underflow and, if the
Underflow trap is disabled, denormalize it as follows.
Shift the significant digit field right while increment-
ing the exponent until it reaches its most negative
allowable value. During each right-shift the R bit is
ORed in to the S bit, itself not shifted. If the trap is
enabled then, except for the MOVE operation, theex-
ponent is wrapped around &s described under Bias
Adjust {Section 2.16).
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Another instance of Underflow, tested after round-
ing, is & normal zero extended or quad product or quo-
tient of operands neither of which is normal zero. This
special case is precluded by the redundant exponent
scheme discussed in Section 1.12.

2.14 Rounding. Four rounding modes are described
by the standard:

RN — Round to Nearest

RZ — Roundtoward Zero
RM — Round toward —
RP — Round toward + .

An implementation of the standard may support
either RN only, with RZ for Round to Integer, or all
four rounding modes. RN shall be the default mode
for all arithmetic operations. The rounding mode may
be specified by, say, preset mode bits, rounding mode
options in each instruction, or rounding instructions
which can follow the operation whose result is re-
rounded, but not double-rounded.

The preliminary result Z, to be rounded, may be
viewed &s in Section 2.5. S, the sticky bit, assures a
result rounded as though first computed to infinite
precision. From Z determine Z1 and Z2, the numbers
representable in the desired rounding precision that



most closely bracket Z. Since Overflow is not checked
until after rounding, the exponent of Z1 or Z2 or both
may be overflowed.

If Z1=2=22, there is no rounding error and
RNI(Z}=RZ(Z)=RP(Z)=RM(Z)=Z. Otherwise, signal
Inexact-Result, and

RN(Z)=the nearer of Z1 and Z2 to Z; in case of a tie
choose the one of Z1 and Z2 whose least signifi-
cant bit is 0.

RZ(Z) = the smaller of Z1 and Z2 in magnitude.

- RM(Z)= Z1.

RP(Z)= Z2.

When a system supports an extended format, it
must provide users with the option of rounding to &
shorter basic precision a result intended for a wider
extended destination. Also, when all operands in an
operation are of the same format, it shall be possible
to round the result to the precision of that format.
The specification of that option will require at most
two bits of information: one enables precision control;
one specifies whether rounding to single or double
precision, effective only when precision control is
enabled.

2.15 Detection of Invalid and Overflow. If an unnor-
malized, but not denormalized, number is destined
for a single or double destination, the Invalid-
Operation exception arises. Otherwise. . .

1fZ's exponent overflows the intended destination,
then signal Overflow and., if the corresponding trap is
enabled, adjust the exponent bias as specified under
Bias Adjust (Section 2.16).

On Overflow with the trap disabled, signal Inexact-
Result. Then set Z to e with the sign of Z if the round-
ing modeis RN, RZ, RP and Zis positive,or RM and Z
is negative. Otherwise, if Z is normalized, set Z to the
largest normalized number representable in the
destination field, with the sign of Z; and if Z is not nor-
malized. simply set Z's exponent to that of the for-
mat's largest normalized number.

2.16 Bias Adjust. On Over/Underflow, with the cor-
responding trap enabled, the exponent of a rounded
result Z is wrapped around into the required range of
the destination. Compute A = 192 in single, 1536 in

double, 24576 in quad, and 3*2"2 in extended, where -

n is the number of bits in the exponent. On Overflow
subtract A from Z's exponent; on Underflow add A to
Z’s exponent.

This scheme works only when the Over/Under-
flowed exponent exceeds its destination’s range by a
factor no larger than 2. The only exception in this im-
plementation is discussed under MOVE (Section
2.12).

2.17 Step 2 of arithmetic operations. Preliminary
result Z was developed in Step 1.

(1} In modes RP and RM, ‘‘undo” any Over/
Underflow signals whose traps were enabled.

(2} If the Invalid-Operation exception was sig-
naled, produce a diagnostic Nontrapping NaN
as the preliminary result Z.
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(3} Set the sticky exception flags corresponding to
the exceptions signaled. Trap if any exception
has been signaled whose corresponding trap is
enabled, allowing Z to be modified before
delivery to the destination.

(4) Deliver Z to its destination.

2.18 FLOATING-TO-INTEGER. This instruction
converts a floating-point number X into a binary in-
teger of the host processor. If X is a NaN or o, then
leave the destination unchanged and set the Invalid-
Operation bit, trapping if the corresponding trap is -
enabled.

For finite X, replace X by ROUND-TO-INTE-
GER(X). Convert X to an integer in the desired for-
mat and write the result into the destination. 1f X
overflows the destination field, then truncate ex-
cessive high-order bits and signal Integer-Overflow
in the host processor, if it recognizes such an excep-
tion; otherwise, set the Invalid-Operation sticky flag
and trap if enabled.

219 INTEGER-TO-FLOATING. Map the binary in-
teger X in the host processor into a floating-point in-
teger. If X cannot be represented exactly, then round
as described in Rounding and set the Inexact-Result
bit, trapping if the corresponding trap is enabled.

2.20 COMPARE. A floating-point comparison can
have precisely one of four possible results (condition
codes): <, =, >, and unordered. When the result is
reported as the affirmation or negation of a predicate,
the following implications determine that response:

= affirms €, =, and 2, and denies <, >, and un-
ordered.

< affirms < and € and denies =, 2, >, and un-
ordered.

> affirms > and > and denies <, €, =, and un-
ordered. .

unordered affirms unordered and denies <, €, =,
#,and >.

When two values that are unordered are compared
via the predicates <, €, 2, >, or their negations, then,
in addition to the response specified, the Invalid-
Operation flag is set and the trap invoked if enabled.

The following table specifies the compare opera-
tion. Unnormalized (and denormalized) operands are
treated as though first normalized.

- . -+ ©o oo |
Xvsy Atine Finite Affine  Projective Nak
-—0

Affine = < < N/A 3

Finite > b < a a

-+ oo

Affine > > N/A E]

o

Projective N/A a N/7A = 2

NaN a ] a a a




a: unordered.

b: The result is based on the result of X~Y. The
subtraction may not have to be carried out com-
pletely, and the possible Underflow and
Inexact-Result exceptions are suppressed.

2.21 Radix conversion. A system must provide stan-
dard conversion to and from its basic formats. The
specifications are a compromise designed to ensure
that conversions are uniform and in error by less than
one unit in the last place delivered, at & nearly
minimal cost. The scheme below meets the re
quirements for single and double.

The particular decimal character code and format
are unspecified. The decimal field widths are:

single: up to 2-digit exponent and up to 9
significant digits.

double: up to 3-digit exponent and up to 17 

significant digits, with the option of using up to 19
digits in decimal-to-binary conversion.

Two functions perform conversions between
binary floating-point integers and character strings
consisting of a sign followed by one or more decimal
digits. BINSTR converts a binary floating-point in-
teger X, rounded to the nearest integer, to a signed
decimal string. STRBIN converts a signed decimal
string with at most 9 digitsin single, and 19 in double,
to a binary floating-point number X whose value is
that of the decimal integer the string represents.

The function log,, is required and may be com-
puted from the formula

log,(X) = log, (X) * log,,(2).

It need be computed only to the nearest integer for
this celculation. Log,(X) may be approximated by
X’s unbiased exponent. Within the conversion pro-
cess, arithmetic must be done with at least 32 signifi-
cant bits for single and 64 bits for double.

Powers of 10 not exactly calculable in the stated
precision shall be procured from tables. The following
tables require minimal storage:

(A) Systems with single precision only: 103 can be
represented exactly with 32 significant bits. To
cover the range up to 10%, a table with the
gingle entry 1026 suffices.

(B) Systemswith both single and double precisions
only: 1027 can be represented exactly with 64
significant bits. To cover the range up to 1038,
atable of 10%4, 10!% and 1026 suffices.

Binary-floating-to-Decimal-floating. Given binary
floating-point number X and integer k with 1< k< 9
for single precision and 1< k € 17 for double precision,
compute signed decimal strings I and E such that I
has k significant digits and, interpreting I and E as
the integers they represent,

X=1*10E+1-k = gd ddddddd * 10F

where 5 is the sign of X and the d's are the k decimal
digitsof 1.

(1) Specialcases: If X is 40, —, or NaN, delivera
nondecimal string, for example, ++, ——, ..,
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respectively. If X is zero, then return +0 or ~0
as appropriate. Otherwise . . .

{2} Set X toits absolute value, saving its sign.

{3) Hf Xis normalized, compute U=log, (X); other-
wise let U=log, (smallest normalized number).

(4) Compute V=U + 1—k, rounded to an integer
in mode RZ. :

(5) Compute W=X/10", rounded to an integer in
mode RN,

(6) AdjustW:

IfW210%+1, then increment V and go to (5).
1f W=10%, then increment V, divide W by 10
(exactly), and go to (7).

If W€104-1—~1 and X was normalized in (3),
then decrement V and go to (5).

{7) Return I=BINSTR(W with sign of X} and
E=BINSTR(V).

Decimal-floating-to'Binary-ﬁoatihg: The decimal
floating-point number X has the form X=sddddd.
DDDDDDD * 10F, where leading zeros are not
counted as significant digits. The following are given:
(A) signed decimal string E
(B} signed decimal string I= sdddddDDDDDDD
{C) integer P indicating how many digits of I are to
the right of the decimal point so that X can be
written
X=1*10"P*]0E,
{1) Compute U=STRBIN(I).
(2) Compute W=STRBIN(E).
(3} Compute result X =U*10%-F, &
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Errata—

“An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic”

The changes to Jerome T. Coonen’s article in the January
1980 issue of Compurer (pp. 68-19) are of two types. Those
marked (E) correct errors, while the others, marked (U), bring
the guide up to date with the most recent draft of the proposal.

(U) Introduction, para. 2, line 2: Replace Draft 5.11 with
Draft 8.0. Also update the footnote ** to refer to the
March 1981 issue of Computer.

(U) §1.1, under Rounding Modes: Delete line (A) and the
tabel **(B)"’ since all rounding modes are required now.

(E) Table 1: In the formula for represented denormalized
numbers the exponent of 2 is incorrect. The correct for-
mula is

(—1)5 x 2E-Bas¥d x (LF) .

U) §).5, paragraph beginning An impiementationof . . ..
“That first sentence should be shoriened Lo An implemen-
tation of the standard shall support all four rounding
modes.

| U) §1.12: Readers should note that the implementation

guide uses unnormalized in its traditional sense, that is,
describing any number whose leading significant digit is
0; thus denormalized numbers are simply those unnor-
malized numbers whose exponent is the format’s
minimum. On the other hand, Draft 8.0 restricts the word
wnnormalized to apply only to pumbers whose leading
significant bit is zero but which are not denormalized.
(E) §2.7: The special case test

If either operand is an munnormal zero then proceed as in
¢; otherwise.

should be removed from §e and inserted at the beginning
of §f,h.i. Thus §e begins simply Compute:.

(E)  §2.8: The Exceptionclause of §b,c.fshould bechanged to
Exception: [f inb, Y is unnormal zero, proceed as in a.

(E) §2.9:1n§b,creplace unnormal zero by unnormalized. To
§f append Normalize Z. and check for underflow.

(U) £2.14, para. 1: The sentence beginning An implemenia-
tionof. . .should be shortened to Animplementation of
the standard shall support all four rounding modes.

(€)  §2.17: Thelast word of clause (1)should be changed from
enabled 1o disabled.
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CHAPTER 3

Numerical Programming Environments

The body of this chapter is an article by W. Kahan and this author as
published in the book *'The Relationship between Numerical Computation and
Programming Languages”, edited by J. K. Reid. It is reprinted here with the

permission of the publisher, North-Holland Publishing Company.

Although the proposed arithmetic standards are intended to specify the
total numerical programming environment, they address only indirectly
many of the language issues that arise in actual implementations. This
chapter is an attempt to defuse some of the conflict between numerical
requirements and existing language standards with an argument for the
“near” independence of numerical (semantic) and language (syntactic)
domains. It is believed that proper partitioning of responsibility for the

design of a programming system will lead to the best implementations.
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The Near Orthogonality of Syntax, Semantics, and
Diagnostics in Numerical Programming Environments

¥W. Kahon and Jerome T. Coonen

Mathemaeatics Department
University of California
Berkeley, California 84720
U.S.A.

We can improve numerical programming by recognizing that three aspects of the
computing environment belong to intellectually separate compartments. One is the
syntax of the language, be it Ada, C, Fortran or Pascal, which gives legitimacy to
various expressions without completely specifying their meaning. Another might be
called “arithmetic semantics™. It concerns the diverse values produced by
different computers for the same expression in & given languege, including the
values delivered after exceptions like over/underflow. The third compartment in-
cludes diagnostic aids, like error flags and messages; these too can be specified in
languege-independent ways. However imperfect, this decoupling should spell out
for all concerned the nature of arithmetic responsibilities to be borne by hardwere
designers, by compiler writers and by operating system programmers.

“Another of the great advantages of using the axiomatic
approach is that axioms ofler a simple and flexible technique for
leaving certain espects of a language wundefined. for
example...accuracy of floating point... This is absolutely essen-
tial for standardization purposes...”

- C. A. R. Hoere (1889)

Professor Hoare's attitude toward floating point semantics reflects the anarchy
that befell commercial floating point hardware early in the 18560's [1], and wor-
sened in the 70's. That anarchy confounded attempts to characterize all floating
point arithmetics in one intellectually manageable way. Now there is hope for the
1860's. A new standard for binary floating poinl arithmetic has been proposed
before the IEEE Computer Society, and a radix-independent sequel is in the works.
Since the binary standard has been adopted by a broad range of computer
manufacturers, including much of the microprocessor industry, we expect numeri-
cal programs to behave more nearly uniformly across different computers, and
perhaps across different languages as well A dreit of the binary standard, along
with several supporting papers, may be found in the March 1881 issue of Computer
[2-5].

Starting in the 1880's programming language designers came to be the
arbiters of most aspects of the programming environment. With control of the pro-
grammers’ vocabulary, language designers could control fundamental features
such as the number of numeric data types available and the extent of run time
exception handling. The langusge even limited the numeric values available by
constiraining the literals in the source text. This is not to sey that language
designers acted capriciously. They were disinclined to mention any cepability not
available on all computers. In this respect computer architects have laid a heavy
hand on the computling environment. Languages must refiect the least commen
denominator of available features, and so they tend to vague oversimplifications
where floating point is concerned. An extreme case is the new language Ada which,
by incorporating W. Stan Brown's very general model for floating point computation
[6]. pretends that the difference between one computer's arithmetic and another’s
is merely a matter of a few environmenital parameiers. But somelimes the
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programmer must know his mechine’s arithmetic to the last detail, especially when
trying to circumvent limitations in range or precision. These details, dangling
between language designers end computer architects, too often receive short shrift
from both. Tying up these loose ends would improve the computing environment.

_ Of course the compuling environment inviles numerous improvements, to
graphics, file handling, detabase management and others, as well as floating point
end languages. But enhancements to which high-level languages deny access are
enhancements destined to die. Those of us working on the proposed IEEE floating
point standards have had to face this problem. We believe the solution is a proper
division of labor, rather than grand attempls to improve too many aspects of the
computing environment simultaneously: the latter way would require impractical
coordination. For example, to encourage independeni development of program-
ming languages end floating point hardware, we propose that language (syntactic)
issues be decoupled from arithmetic (semantic) issues to the extent possible. We
present our view of the inlerplay between syntax, sementics, and diagnostics as
parts o! the computing environment, and discuss how they interface with each
other. Given an ndequete interface discipline, we hope that responsibility for these
perts can be divided among language designers, numerical analysts, systems pro-
gremmers, and others. In the past this division has been unclear. Unfortunately,
when everybody is responsible, or when nobody is responsible, then everybody can
be irresponsible.

Portability

We regard the programming language as just one layer of the computing
environment, dissenting from a more traditional view that the language is the
environment. Whet does this mean for program portabilily? Until very recently,
portability of numerical progrems was considered io be a qualily of source code
thet could be compiled and run successfully without change on & variety of com-
puters. The issues appeared largely syntactic. For example, programs like the
PFORT verifier {7] were developed to check Fortran codes for adherence to a stan-
dard for "‘portable Fortran", their principal task being to weed out various quirks
of dialect. Nowadeys, we acknowledge that the portability issues go deeper than
differences among Fortran dialects. They entail the (semantic) subtlelies of
over/underflow and rounding that, if ignored, can cause ostensibly portable pro-
grams that function beautifully on one machine to {ail on another. Programming
languages that lack the vocabulary required to address these issues aren't very
helpful here. If we cannot "'mention’ these issues how can we resolve them?

Ideally, the variation of floeting point arithmetic from one machine to another
should be describable with a few parameters [8] which portable programs could
determine through system-dependent environmental inguiries [8]. This scheme
works satisfactorily for many programs that do not depend critically upon the finer
points of the erithmetic. However, any such parameterization must be based upon
an absiract model encompassing simultaneously all current arithmetic engines,
some of them disconcertingly anomalous {1, 10]). To insist that this model! underlie
portable programming is to dump upon programmers the onus to discover and
defend ageinst all mishaps the model permits, some of them mere artifacts of gen-
erality. This in turn would burden programs with copious tests against subtle (and
ceriainly machine-dependent) thresholds to avoid problems with idiosyncratic
rounding and over/underfiow phenomena. A programmer who shirks his responsi-
bility to produce robust code obliges the user of his program, possibly another pro-
grammer, to unravel a more tangled web. Ultimately, the buck may be passed to
users who find either their programs or their computers to be inexplicably unreli-
able. We doubt that any semantic analog of the PFORT verifier will ever be able to
test for robust independence of the underlying arithmetic. Computer arithmetics
are too diverse to allow every potentially useful numerical algorithm to be pro-
grammed straightforwardly in a fashion formally independent of the underlying
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machine.

Portability at the source code level is nice when inexpensive. When not, we are
content with “transportability”, whereby algorithms can be moved from one
environment to another by routine text conversion, possibly with some aid from
automation. An algorithm may depend critically upon the underlying arithmetic
semantics and upon a system'’s ability to communicate error reports between sub-
programs. It is transportable to the extent that the dependencies can be commun-
icated in natural languege using mathematical terms, if not in Fortran. We ere not
advocating yet another programming language. We prefer that programmers
eccompany their codes with some documentation that explains, and can even be
used Lo verify, how the program handles its interactions with the underlying sys-
tem. Because computling environments are so diverse, we expecl some slgorithms
to be transporiable to only a few systems, not all; this does not undermine the
notion of transpertability. Essential to transportability is 8 manegeable corpus of
information about

¢ syntax — the programming language to be used,

* semantics — the arithmetic of the underlying computer, including the run-time
libreries of functions like cos(), and

* diagnostics — the system's facilities for error reporting and handling,

prelerably no more than can fit on e short bookshell, and yet enough to cover a
wide range of manufacturers’ equipments.

Syntax

In this peper, syntax refers to the expressions in & language — which ones are
legitimate and how they are parsed. Issues relevant to numerical calculations
include the number of data formats aveijlable, how they combine to form arrays and
structures, and the order of evaluation in unparenthesized expressions. Languages
vary greatly in their provision of numeric data formats, usually called “types'.
Both Basic and APL have just one numeric type, which is to be used for both integer
and floating point calculations; Pascal and Algol 80 have just one real type. Fortran
and C have single and double types, although in C all floaling expressions are of
type double. PL/I programmers may specily the precision of their floating point
variables, though they typically map into the single and double types supported by
the underlying system. The new language Ada provides syntactic '‘packages” in
which floating types may be defined to correspond to the host system's facilities,
but its strong typing prohibits mixing of different user-defined types in expressions
without explicit coercions, even if the underlying hardware types are the same.

Expression evaluation is just as varied. For example, in
1.0 + 3/2

most compilers would recognize the 3 and 2 as integers. Their ratio would be
evalusted as the real 1.5 or truncated integer 1 depending upon the strength of the
1.0 to coerce their types. Different Fortren compilers have disagreed in this situa-
tion. In Ada such an expression would be illegal unless the 3 and 2 were wrilien
with decimal points to indicate that they were real literals. What about the
unparenthesized expression

A*B +C 7

Most languages, like Fortran, evaluate it as i il were written (4°B) + €, but APL
evaluates A X B + C as if it were written 4 % (B+C). The situation gets more com-
pliceted when reletional and boolean operators are involved. In Pascal, the attempt
to simplily the language by keeping the number of levels of operator precedence
smell led Lo some surprises for programmers. For example, because the conjunc-
tion M has greater precedence than <, the expression
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<y nNy<z .
used for checking bounds on the variable y, has the bizarre interpretation

(z<yny) <z
which is illegal because of the appearance of the real ¥ as an operand to n.

Perhaps the widest syntactic h'berties are taken by standard C compilers.
Expressions of the form

a+b+c |

where a, b. and ¢ may be subexpressions, are evaluated 1n an order determined at
compile time according o the complexily of a, b, and ¢. This is so regardiess of
porentheses such as

(a+b)+c

Such a convention is disastrous in floating point where, say, (a+b) cencels to a
small residual to be added into the accumulation ¢. In such cases all accuracy may
be lost if (b+c) is evaluated first al the compiler’s whim. The cautious program-
mer who writes

(z -05)-05

to defend ageainst a machine’s lack of a guard digit during subtraction will always
be vulnerable, if not to a C compiler then to an optimizer that collapses the expres-
sion into the algebraically, though not numerically, equivalent form (z ~ 1.0).

To jump the gun a bit, it is clear {rom the examples above that syntax con-
stroins semantics. Syntax also constrains programmers who, C compilers notwith-
standing, are well advised to preclude any ambiguity in expression evaluetion by
inserting parentheses liberally.

Semantics

We concentrate here on arithmetic semantics. That is, after an expression has
been parsed — so the computer knows which operations to perform — what does its
evaluation yield? Flosting point semantics depends vitally on the underlying arith-
metic engine. The initieted reader realizes that this is where the real headaches
set in. For example, on machines such as programmable calculators where the
fundamentel constants n and e are available in a few strokes, we might expect

(nxe) - (e xm)

to evaluate to 0.0 since, semantically, we expect multiplication to be commutative
despite roundofl. Unfortunately, even this simple statement is not universally true.
Different Texas Instruments calculators yield different tiny values for the expres-
sion above; and it's not just & matter of machine size and economy. for early edi-
tions of the Cray-1 supercomputer exhibited similar noncommutativity.

Another well-known example of murky semantics is the expression
X - (1.0xX)

which is exactly X rather than 0.0 for sufficiently tiny nonzero values X on Cray
and CDC computers. On these machines (1.0xX) flushes to 0.0 for those tiny X. On
some other machines that lacked a guard digit for multiplication, the expression
above was nonzero whenever X's last significant digil was odd!

Hardware-related anomalies like these seem to predominate in any serious
treatment of arithmetic semantics. Such distractions are what led Professor Hoare
o despair about floating point in high-level languages. We will not dig further into
the lore of arithmetic anomalies. Interested readers can find an introduction in
[1]. The technical report [10] studies the overall impact of anomahes and com-
pares two approaches Lo improvement.
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Arithmetic semantics is not restricled to simple operations. In languages like
Basic that include matrix operations, assignments like ’

MAT X = INV(A)* B

are allowed. As users might expecl, most implementations evaluate (47!)*B
(approximately), following the strict mathematical interpretation of the formula.
However, more robust systems by Tektronix and Hewleit-Packard use Gaussian
elimination to solve the linear system AX = B for X, thereby obtaining a usually
more accurate X that is guaranteed to have & residual B — AX small compared
with {B] + |A|-|X]|. I{ A is close enough 1o singular, the subexpression JNV(4)
may be valid or nol depending upon good or bad luck with rounding errors ~ on all
machines except the Hewlett-Packard HP B5. All machines solve (4 + 44)X = B
with A4 comparable to roundoff in A though possibly differing from column to
column of X. The HP 85 further consirains A4 to guarantee that (4 + AA4)~! exists.
Thus it has no “SINGULAR MATRIX' diagnostic. Consequently, & program using
inverse ileration to compule eigenvectors always succeeds on the HP 85 but on
other machines is certain {o fail for some innocuous data. s such a program, using
a standard technique, portable or not? Who is to blame if it is not?

Arithmetic exceptions such as over/underflow and division by zero fit into our
informal notion of semantics when they are given ‘'values”. We take this view in
spite of a current trend among asuthors Lo consider exceptions under a separate
heading pragmatics. This trend is understandable, given the variety of exception
handling schemes across different hardware. Consider for example the expression
0.0/0.0 . When they are to contiinue calculation (i.e. without a trap) CDC, DEC
PDP/VAX-11, end proposed IEEE stenderd machines stuff a non-numeric error sym-
bo! in the destinalion field. This symbol is then propagated through further opera-
tions. Most other machines just stop, forcing program termination. At least one
will store the “‘answer' 1.0.

Dividing zero by itself is usually bad news within & program, so the diversity of
disasters that arise on various machines is not too surprising. A quite different
situation arises with the exponentiation operator in Y¥ . Since this is part of the
syntax of several languages, for example Fortran, Basic, and Ada, responsibility for
its semantics has been teken by language implementors. Of the many problems
that arise we will consider just one: what is the domain of Y¥ when both X and Y
are real variables? Consider the simple case (—3.0)“. which is:

~27.0 ...on very good machines,
~-26.999...8 ...on good machines,
TERMINATION ..on bad machines,
undefined ...on cop-outs,
+27.0 ...on very bad machines.

Why this bizarre diversity of semantics? Although for arbitrary X the expression Y*
may have no real value when Y is negative, the particular case above is benign
because X has an integer value 3.0. Thus restricting the domain of ¥ to nonnega-
tive numbers is unnecessarily punitive. We recommend that, should X be a floating
point Fortran variable with a nonzero integer value,

YeeX = Y **INT(X) .

This cannot hurt Fortran users, but will help the Basic programmer (and the
conversion of programs from Basic) because most implementiations of Basic, with
just one numeric data type, cannot distinguish the real 3.0 from the integer 3 in
the exponent. This recommendation cosis exira only when Y is negative. On the
other hand, if ¥ is 0.0 we distinguish Y°C, which is an error, from Y° = 1.0 which
mathematics makes obligatory. Note that none of these issues are language issues,
though until now they have been settled by language implementors. Ideally. these
responsibilities should be lifted from language designers and implementors, and




borne by people like the members of IFIP Working Group 2.5.

The point of this digression into the murk of pragmatics wes to indicate that
the current situation in exception handling is the result of a host of design flaws
rather than inherent difficulties. We object to the connotation *'pragmatics’ car-
ries with it of acquiescence to inevitable hazards. We prefer o capture all seman-
ties, including the anomalies, under one heading even if this entails a different
semantics for each different implementation of arithmetic. This exposes rather
than compounds a bad situation.

A notably clean and complete arithmetic semantics is provided by the pro-
posed binary floating point standard. The IEEE subcommitiee responsible for the
proposal set out to specify the result of every operation, balencing safety against
utility when execution must continue afier an exception. Even a cursory glance at
the proposa! indicates the extent to which exceplion handling motiveted the
design:
¢ Signed = for overflow and division by 0.0.
¢ Signed 0.0 to interact with =, eg +1.0/ 0.0 = —e.

*+ NaN - not a number — symbols for invalid results like 0.0/0.0 and V~3.

¢« Denormalized numbers — unnormalized and with the format's minimum
exponent — to better approximate underflowed values.

* Sticky flags for all exceplions.
*  Optional user traps for alternative exception handling.

These features promote comprehensible semantics for “'standard"” programming
systems.

Diagnostics

After syntax and semantics, the third aspect of the numerical programming
environment is the set of execution time diagno§tic aids. They may be roughly
divided into anticipatory and retrospective aids, and according to whether they find
use during debugging or during (robust) production use.

The principal anticipatory debugging aid is the breakpoint for control flow and,
when the hardware permits, for data too. Some systems can monitor control or
data flow according to compiler directives inserted in a program. Retrospective
debugging aids include the familiar warnings and termination eulogies, as well as
the more voluminous memory dumps and control tracebacks. Systems with sticky
error flags can list those still standing when execution stops — in a sense they sig-
nal unrequited events.

For the production program that would be robust, and perhaps even porteble,
the situation is not so clear. Because most current systems provide neither excep-
tion flags (such side eflfects are anathema to some language designers) nor error
recovery, & program — if il is not to stop ignominiously on unusual data — must
include precautionary tests to avoid zero denominalors and negative radicands,
and tests against tiny, but cerefully chosen, thresholds to ward off the effects of
underflow to zero. The lack of fiags can force the use of explicit error indicators in
subprogram argument lists to communicale exception conditions. The languages
Basic, PL/1, and Ada allow {or anticipatory exception handlers (e.g. ON <condition>
... in PL/1) but do not allow the exception handler to discover anything about the
exceplion beyond & rough category into which it has been lumped. thereby making
an auiomatic response by the program very cumbersome.

Another variety of anticipatory diagnostic aid is available through an option in
the proposed floating point standard. It is essentially an extension of the PL/I
“on-condition” excepl that it is outside any current languege syntax. This feature,
which might be called trap-with-menu, allows the programmer to preselect from a
small list of responses an alternative to the default response. By devising the menu
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carefully, we should be able to give the user sufficient flexibility without heving to
cope with & voluminous floating point 'state’” at the time of the exception.

The Syntactic~Semantic Interface

From the point of view of the numerical analyst, the semantic content of pro-
gramming languages is given by the following list.

* What are the numeric types, end what is their range and precision?

* Which numeric types are assigned to anonymous variables like intermediate
expressions, converied literals, arguments passed by value,...?

® Which numeric literals are allowed, and are they interpreted differently in the
source code than the 10 stream?

* Which basic arithmetic operations are available, and what is in the library of
scientific functions?

* Is there a well-understood vocabulary reserved for the concepts and functions
we need, and defended against collision with user-defined names®

* What happens when exceptions arise? How can error reports be communicated
between subprograms?

® Is there a way to alter the default options (for, say, rounding or handling of
underflow) by means of global flags?

These are among the knottiest issues in numerical computation. But, to a large
extent, they can be Ifreed from the more conventional language issues and thus
resolved within the numerical community. Only questions about data types and the
change of control flow on exceptions are necessarily tied to language syntax.

Consider a hypothetical language with only skeletal numerical features.
Assume that integer types and arithmetic and character strings are “fully’” sup-
poried. The language supports single and double real variables, pointers to them,
and allows real variables to be embedded in arrays and structures. There is also
provision for functions returning real values, and for real parameters passed either
by value or reference. But the only operation on real lypes is assignment of a sin-
gle value Lo a single variable, and of a double value to a double variable.

To be useful numerically, this hypothetical language would require a support
library providing the basic arithmetic operations as well as the usual complement
of elementary functions. But because each operation more complicated than a
straight copying of bits would result only from an explicit function call, the pro-
grammer would in principle have complete control of the arithmetic semantics (by
choosing a suitable library). As an example, consider the evaluation of the inner
product of the single arrays z[] and y{] using & double variable for the intermedi-
ate accumulation to minimize roundofi:

double_precision temp_sum;
ternp_sun := DOUBLE_LITERAL{ "0.0"" );
fortin 1..n do
temp_sum := DOUBLE_SUM( temnp._sum,
SINGLE_TO_DOUBLE_PRODUCT( z[1], y[1]}): od
inner_product := DOUBLE_TO_SINGLE( temp..sum );

Even this simple example exposes many of the questions that erise in numerical
programs. Would the constant 0.0 require a special notation (such as 0.0D0) to be
assigned to a double variable? In & more conventional rendition of the program the
inner loop would involve a statement of the form

temp_sum := temp_sum + z[i]*y[i];
Would the product be rounded to single precision before the accumulation into
temp..sum, destroying the advantage of double precision?
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Semantic Packages

The skeleton language above may be unambiguous, but it is clearly much too
cumnbersome for calculations involving complicated expressions. What we musl do
is bridge the gap between the handy syntactic expression z[il%[:] and the
semantically well-defined

SINGLE-TO.DOUBLE_PRODUCT( =[], y[i]) .
We propose to do this through so-called semantic packages.

It may be a sign of progress that the new language Ada comes very close to
suiling our needs. Although Ada incorporates the Brown mode! for arithmetic by
providing a sel of predefined attributes for each real type available to the program-
mer, this is in general insufficient for programs that would be robust. More impor-
tent for us, Ada allows the overloading and redefinition of the infix operators +, —,
etc. and in so doing provides the explicit connection between the operators and the
real hardware functions they represent. The semantic packages. corresponding
directly to the (syntaclic) packages constiruct in Ades, could contain exact
specifications of the arithmetic funclions (which are actually implemented in
hardware). Thus there would be a semantic package for each basic architecture,
for example IBM 370, DEC PDP/VAX-11, and the proposed IEEE binary standard.
Some semantic packages could be more general, encompassing several machines
whose sarithmetic is similar enough that a few environmental inquiries supply all
the distinction that is necessary for a wide range of applications. For example, one
such package might include IBM 370, Amdahl, Data General MV /8000, HP 3000, DEC
PDP/VAX-11 and PDP-10, relegating TI, CDC 6000, Cray 1 to another.

Cur attempt to force the gritty details of arithmetic semantics upon program-
mers may dismay readers who embrace the modern trend to elevate the program-
ming environment above machine details. Such an atlempt is made within Ada. by
means of a small set of predefined attributes associated with each real type. We
have elready explained that this is not enough; sometimes the program that would
be robust must respond to machine peculiarities that defy simple parametleriza-
tion. The report [10] on why we need a standard contains several examples.

An eflort to “'package’ arithmetic semantics within various programming
languages may seem impossible. For exarnple, the details of floaling point. espe-
cially in the proposed IEEE standards, involve global flags to indicate errors, and
modes to determine how arithmetic be done. In Fortran, such state variables may
be defined as local data within the standard library functions whose job is to test
and alter the flags, although the actual implementation involves collusion with the
hardware flags. This is not a complete formalization, since Fortran provides no way
to describe the connection between the flags and the arithmetic operations
Current trends in language design eschew error flags as side eflects of the arith-
metic operations (functions}. Modes and flags seem to violate the principle that all
causes and effects of expression evaluation should be visible within that expression.
Perhaps surprisingly, Ada again provides us with the desired facility — but without
excessive or expensive generality. In accordance with the Steelman requirements
of the United Stales Department of Defense, Ada permits side effects  limited to
own variables of encapsulations’. This is exactly our intention in using semantic
packages to describe arithmetic.

Optimization
Any treatment of floaling point semantics must deal with that favorite whip-

ping boy. the code optimizer. We considered a mos! extreme example above, in
which C compilers would calculate floating sums like

(e +b)+c ,

without regerd to the parentheses, in whatever order meakes best use of the regis-
ter file. This is simply a mistake in the language design
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Not all anomalies are so clear-cut. Some questions arise when. as in architec-
tures suggested by the proposed IEEE standard, extended registers with extra pre-
cision and range beyond both single and double types are used as intermediate
accumulators. Consider the typical code sequence

z:=no*b;
Yy =z /¢;

in which all variables are assumed to be of type single. If (z*b) were computed in
an extended register, should that value or the single value z be used in the evalua-
tion of y? Efficiency diclates the former, saving one register load and lessening
the risk of spurious over/underflow. Bul common sense dictates the latter, so that
what the programmer sees is what the programmer gets.

A similar situation arises in inner product calculations of the type discussed
above. Consider the loop

double_precision temp__sum;
temp_sum = 0.0;
foriin 1..n do
termp_sum := temp_sum + z[1}*y[i); od
mner—_product = temp_sum;

in which, like the earlier example, all variables are single except for the double
temp_sum. The fully "“optimized’ compiler might run this loop with just two
extended registers, one to compute the products z[1]*y[i} and one to accumulate
termp_sum, thereby avoiding (n-—1) register loads and stores by simply keeping
ternp_sum in a register. Alas, the programmer asked for a double precision inter-
mediate, not extended, so such optimization is precluded.

The moral of these examples is that declared types must be honored. Also, Lthe
type assigned by the compiler to anonymous variables must be deducible syntacti-
cally, or, better, it should be under the programmer’s control. The alleged optimi-
zations above were disparaged because named variables were replaced surrepti-
tiously by extended counterparts that happened to be in registers. This is nol to
say that extended evaluation is unhealthy; on the contrary, extended temporaries
can reduce the risk of spurious over/underflow or serious rounding errors, and
therefore should be used for anonymous variables. But the sdvantage of extended
is lost if langueges prevent programmers {rom requesting it for declared tem-
poraries. The expression

temp_sum + z{i]*y[1]

in the loop above would best be computed entirely in extended before the store
into femp_sum. These facilities for extended expression evaluation are not unique
to the proposed IEEE standard; the benefits of wide accumulation were realized in
the earliest days of computing. The Fortran 77 standard includes some intention-
ally vaegue language aboul expression evaluation in order not to prohibit extended
intermediates, and the Ada standard, which seems to avoid some problems by
strict typing and requirements for explicit type conversions in programs, uses a
so-called universal_real type (at least as wide es ell supported real types) for the
evaluation of literal expressions at compile time.

The use of an extended type for anonymous veariables is prone to one class of
problems. When real values or expressions may be passed by value to subprograms
there may be & conflict belween the implicit type of the expression and the
declared type of the target formal parameter. This problem arises in current
implementiations of the language C, which supports both single and double types
but specifies that all reel expressions are of type double. Suppose that a C pro-
gram contains the statement
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y:= fla%/c);
where all variables are of type float (single} and the function f() is defined by
fioat f(z)
float z;

How can the type of the expression (a% /c) be double while the type of the formal
parameter z is float? C resolves the discrepancy by silenily countermanding the
declaration of z and replacing float by double. Once egain, whal you see is not
what you get. This use of wider intermediates, exploiling the PDP-11 floating point
architecture, is exactly analogous to one use of extended registers. Though it is
eflicient and straightiorward to implement, it is not acceptable.

Conclusion

We have cited examples to show that progress in numerical computing has
been slowed by questionable decisions in the design of computing languages and
systems. We have suggested a rough division into three categories, syntax, seman-
tics and diagnostics, so that the difficult issues could be resolved by those most
qualified — end most profoundly impacted. IFIP Working Group 2.5 might well take
responsibility for the interfaces with semantlics. ldeally their efforts will lead to
fully specified environments {for which reliable numerical software can be derived,
possibly automatically, from algorithms expressed in a mathematical form if not
already in a programming language. Programming then becomes a three phase
translation involving the language (syntex) to be used, the underlying arithmetic
engine (semantics), and the host system (diagnostics). We acknowledge that these
calegories are not completely independent, and that the boundaries between them
cannot be drawn precisely, at least not yet. Nonetheless, we remain convinced that
those boundaries must be drawn il we are to bring the required expertise to bear
on the current morass.
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CHAPTER 4

Proposed Floating Point Environmental Inquiries in FORTRAN

This is a proposal for floating point environmental inquiries in Fortran.
It was drafted by W. Kahan, J. Demmel, and J. T. Coonen. In February 1982,
the authors presented it to the ANSI X3J3 Fortran Standards Committee on
behalf of IEEE Working Groups 754 and 854, which are developing binary and
decimal standards for floating point arithmetic. Although it is intended for
inclusion in the next Fortran standard, known for the moment as Fortran 8X,

the scheme is designed to be compatible with Fortran 77 implementations.

1. Portability

Fortran is usually associated with high speed computation on main-
frames and minicomputers. And numerical Fortran codes are considered
portable when they behave reasonably across this class of machines. Porta-
bility has been achieved by defining parameters that demarcate the boun-
daries of the various machines’ arithmetics. The Bell Labs PORT Library [4]
is just one significant effort. More recently, W. S. Brown has devised a model
of arithmetic [2] encompassing nearly all existing arithmetic engines. He
captures their diversity in an abstract, parameterized machine which is in
some sense the least common denominator of all existing machines. J. L.
Blue's program [1] to compute the Euclidean norm of a vector exemplifies
the programming style that goes with Brown's model -- and the difTiculty of

writing such universally portable codes.
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4.2

But the software situation is changing somewhat. Proposed IEEE stan-
dard P754 for binary floating point arithmetic [5] is gaining acceptance in
the computing industry. For example, significant hardware support for the
standard is already available from one microprocessor manufacturer (Intel)
and is expected soon from several others. What is important is that these
new processors will not be restricted to a few in-house systems. Rather, th‘ey
will be embedded in computer systems marketed by diverse companies, and
they will perform at the levels of today’s minicomputers. The P754 proposal,
and its decimal sequel PB54, provide features lacking in most previous
machines, features such as sticky exception flags for errors, a choice of
responses to exceptions like over/underflow, and a choice of direction of
rounding. To exploit these features programmers need access to them in
high-level languages. And the means of access must be standardized for
each language so that codes can, with minimal extra effort, be made port-

able across the entire family of “standard” systems.

2. Design Constraints

This proposal serves two rather different needs. Following the lead of
others who have worked in this area, notably W. S. Brown, W. J. Cody, S. 1L
Feldman, B. Ford, and B. T. Smith, it provides access to machine parameters
which permit programming in a style that defends against the peculiar ways
machines handle roundoff and exceptions like over/underflow. This facili-
tates the first kind of portability above. On the other hand, the 754 /854 pro-
posals are recognized as important enough to warrant functions to access

their features, even though those features are not universal.



4.3

The capabilities in this proposal are needed in Fortran 77 now. There-
fore the proposal has been devised, particularly in its syntax, to be compati-
ble with existing Fortran 77 systems. And, in order that the proposal be
implementable at low cost on a broad range of Fortran engines, it has been
designed to have negligible impact on compilers. For example, no new
reserved words like :HUGE. are used. Instead, all inquiries are made through
intrinsic functions in the same domain as mathematical functions like COS
and TAN. This concentrates both the effort and the responsibility where they

belong.

Ideally, an inguiry mechanism should be invisible to programrmers not
interested in it, and readily available to those who are. Since there is no sim-
ple “include’ mechanism in Fortran 77, no convenient way exists to reserve
a named COMMON area with numerous PARAMETERSs and variables related to
the environment. The prospect that programmers might enter the relevant
definitions without error (or complaint) is clearly hopeless. So the inquiries

cannot depend on predefined variables or values.

With function names restricted to six characters, and no protection for
the programmer whose names may collide with system routines, parsimony
is an issue. This proposal consists of a minimal yet useful set of functions
from which programmers may easily deduce all the commonly used parame-

ters.

Except for scaling by a power of the machine radix, which is deliberately
specified to be fast, environmental inquiries tend to appear not in critical
loops but at milestones before and after units of computation. Thus their
speed is not important, although in many cases “‘smart” compilers could

replace calls to environmental intrinsics with simple in-line code. Coupled
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with the speed issue is exception handling, since there is a price for checking
special cases. The inquiries specified here are intended to follow a system’s
overall conventions for exception handling. This is consistent with the
754,/854 philosophy, though it is more restrictive than, say, the proposal of

Brown and Feldman [3] which leaves some boundary cases undefined.

What makes this proposal more complicated than previous schemes is
its conscientious attempt to deal with boundary cases that jeopardize the
robustness and portability of programs. Three classes of funny numbers lie

beyond the frontier of Brown's model:

Many computers support a variety of tiny numbers that correspond roughly
to underflowed values. These might be denormalized numbers as in the
754/854 arithmetics, signed UN symbols that stand for the positive and nega-
tive intervals of numbers too small to represent, or even a whole range of
“partial underflows’” that behave like O in some operations but not in others,
as on the Cray-1 and the CDC 7600. Some systems can signal underflow,

some cannot. Underflow is discussed at length in [5 pp. 75-87].

Some computers support huge numbers that correspond roughly to
overflowed values. The numbers might be +e symbols or, as on the Cray-1, a
family of numbers that behave very much like += in some but not all opera-

tions. Systems differ as to when and how overflow will be signaled.

Many computers reserve a set of non-numbers to accommodate various
invalid operations and, sometimes, overflows and divisions by zero. Depend-
ing on the system, the non-numbers (or ‘‘NaNs" as they are called in
754/854) may either propagate through or trigger an exception in subse-

quent operations.
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3. Outline of the Approach

Nine intrinsic functions are put forward in the following sections. Those
that return floating point values are listed as generics: that is, their return
type is determined by their operands in the same way as for intrinsics like

COS and TAN. This intrudes very little into the compiler.

Several of the functions accept an argument that selects from among a
list of options. The ideal mechanism for this selection would be a compiler-
supported enumerated type. However, there is no such thing in Fortran 77,
and an artificial version using INTEGER variables is either too cumbersome
(for lack of predefinition) or too cryptic. So the functions use six-character

strings to specify choices in a reasonably mnemonic fashion.

Only two of the functions are specific to the 754 /854 proposals. They
concern modes (like the direction of rounding) and flags (to signal errors like
over/underflow), features of the 754/854 proposals that, while available in
some form or other on various older machines, have never been considered
part of the environment available to portable programs. The mode and flag
functions are designed to be extensible to other systems, which are accom-
modated by augmenting the list of arguments recognized by the intrinsics,
rather than by adding new names to the system library. On any given sys-
tem, meaningless intrinsics would be omitted from the library, so that an
attempt to use them would cause a fatal error during compilation. However,
meaningless arguments to legitmate intrinsics must be caught at execution
time. In any case, programmers will not be fooled about what the environ-

ment really is.
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4. Huge and Tiny Numbers

Functions HUGE and TINY return floating point values near the limits of

a machine’s range, according to a string parameter FLAVOR.

FUNCTION HUGE( X, FLAVOR)
real type X
CHARACTER*6 FLAVOR

X is a dummy parameter whose value is ignored but whose format deter-

mines the format of the return value.

FLAVOR return value

"MACH' biggest ordered value, possibly +0V symbol or +~ (even
though the machine may not permit the value to be used in
subsequent comparisons)

'THRESH' | biggest finite value that can be used in or result from some
arithmetic operations without triggering overflow, though it
may behave anomalously in some other operations

'MODEL’ biggest number that can be used safely in Brown’s model

Typically, the "MACH' and 'THRESH’ values would differ only on systems
that support symbols for values outside the range of finite representable
numbers. Some machines support signed =, or something very like it.
Another possibility is an overflow symbol OV that stands for the interval
strictly between = and the largest finite representable number. 'THRESH’
and "MODEL' values would differ only when the Brown model penalizes the sys-
tem some unijts of exponent range due to unseemly behavior. Three kinds of
HUGE may seem extravagant at first sight, but the faet is that the
corresponding return values from HUGE really do vary on some machines.
The following table gives the parameter values for the double formats of

three sample architectures.
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return value from HUGE(X, FLAVOR)
FLAVOR | P754 double | VAX-11 D-format Cray-1 double
"MACH’ ) 1.7x103%8 400
'THRESH' 1.8x 10308 1.7x10%8 28181x (1 — 2796) v 5 4x 102465
"MODEL’ 1.8x 10308 1.7x10%8 28180x (1 — 2784) ~ p 7x 10?465

FUNCTION TINY( X, FLAVOR)
real type X
CHARACTER*6 FLAVOR

As above, X is a dummy parameter whose value is ignored but whose format

determines the format of the return value.

FLAVOR

return value

"MACH’
'THRESH’

'MODEL'

smallest positive value, possibly a +UN symbol or a denor-

malized number

smallest positive value that can be used in or result from
some arithmetic operations without triggering underfiow,
though it may behave anomalously in some other operations
smallest positive number that can be used safely in Brown’s

model

This function is similar to HUGE. TINY(X, 'MACH') is the smallest

representable positive value in the format of X. It could be a symbol, UN,

that behaves arithmetically like the interval between 0 and the tiniest

representable magnitude.

On some systems, notably 754/854, TINY(X,

'MACH’) is the smallest of a family of tiny numbers, beneath the stated

underflow threshold, designed to make underflow gradual rather than abrupt.

As above, the difference between the 'THRESH' and 'MODEL' values depends

on the quality of arithmetic near the bottom of the exponent range. The fol-

lowing table gives the parameter values for the double formats of three sam-

ple architectures.
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return value from TINY(X, FLAVOR)
FLAVOR | P754 double | VAX-11 D-format Cray-1 double
"MACH’ 4.9x1073% 2.9x107% 278193 '~ 3 Ox 107?465
'THRESH' | 2.2x107508 2.9x107%8 278198 » 3 0x 1072465
"MODEL’ 2.2x 10308 2.9x107%° R8I0 ~ 4 7x 1072438

5. Successor Functions

The NEXT and NEXTM functions accept two floating point arguments and
return, respectively, the next machine or Brown model number after the

first argument toward the second.

FUNCTION NEXT{ SOURCE, TARGET) ...next machine number
FUNCTION NEXTM( SOURCE, TARGET) ...next model number
real type SOURCE, TARGET

The semantics of NEXT were introduced in the appendix to Draft 8.0 of propo-
sal P754. The result is well defined so long as SOURCE and TARGET are
ordered as <, =, or > (they aren’t numerically ordered if either is a NaN).
When they are equal, NEXT returns that value, and NEXTM returns the
nearest rhodel number, rounded according to machine convention. When the
values SOURCE and TARGET are unordered, the operations NEXT and NEXTM
are invalid, and a NaN is returned. Interestingly, NEXTM is the only function
strictly related to Brown’s model that had to be introduced into this system

in order to support his model fully.

6. Radix Logarithm

The function LOGB, when passed an argument of the form +b°d.ddd.. .d
where b is the machine radix and the d's are radix-b digits, returns the

integer value of the exponent e in the floating point format of the argument.
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FUNCTION LOGB{X)
reol type X

There are several special cases:

X LOGB( X)
+0 | ~HUGE(X, 'MACH’)
Foo +oo ...on machines with an = symbol
NaN X ...on machines with nonnumber symbols

When X is not normalized, LOGB returns the exponent of X if it'would be
treated as unnormaliz.ed in subsequent arithmetic, or the exponent of X as
though prenormalized if X would be prenormalized in subsequent arithmetic.
Because of the extreme and exceptional cases, and for convenience in some
approximations, the return value, although typically an integer value, is in

the floating format of X. In many contexts a programmer will use
INT( LOGB( X))

but this is not expected to appear in critical looping code, so the extra call to
INT is a negligible added cost. This also has the advantage of keeping the
messy exception handling of INT (at least, a conscientious rendition thereof)

from being duplicated in LOGB.

7. Scaling
The function SCALB is the companion to LOGB.

FUNCTION SCALB( X, FACTOR)
real type X
INTEGER FACTOR

It returns the value X x bFACT0R where b is the machine radix. The parame-
ter FACTOR is specified as an integer so that SCALB can be fast, since it is
often used in inner loops. Even so, SCALB is expected to conform to system

conventions for dealing with exponent over/underflow, which must not occur
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unless the final value lies out of range. Underflows are denormalized [5] on
systems that underflow gradually; some systems underflow to zero or TINY(X,
'MACH'); some systems also set an error flag. Overflows may be set to
HUGE(X, 'MACH’) or, as is more usual, may stop computation altogether;
there may also be an error flag. Note that because the INTEGER type may be

much wider than the exponent field of X, severe over /underflow is possible.

B. Classification

The function CLASS returns an integer indicating the ‘*‘character’ of the

floating point argument. This is helpful in filtering special operands.

INTEGER FUNCTION CLASS( X)
real type X

The sign of the returned integer indicates the sign of X, even if the sign has
no relevance (such as the sign of 0, usually taken to be +, on systems with no
-0, or the sign of NaNs). The magnitude of the returned value is defined

from the table:

magnitude X

Zero

finite, nonzero, normalized number

denormalized number, a la 754/854 proposals

unnormalized number, possibly with zero significand

guiet NaN -- propagates without exceptions

signaling NaN -- triggers exception on attempted use

UN symbol, or numbers between TINY(X, 'MODEL') and
TINY(X,"MACH")

OV symbol, or numbers between HUGE(X, 'MODEL’) and
HUGE(X,"MACH")

w0 OO WN -

The arbitrary breakdown above is intended to facilitate branching with a

case statement (computed GOTO in Fortran), or the IF-THEN alternative. The
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commonest cases appear at the top of the list. Although specified for a wide
class of numeric entities, a particular implementation of CLASS will return

only the values pertinent for the given machine.

8. Exception Flags

Some arithmetics, in particular 754/854, provide flags which are set
when the corresponding floating pobint exception arises, and which are
cleared only at the program’s request. The function FLAG gives a program-
mer access to such flags. It returns the current setting of the flag, and
allows the programmer the option of altering the flag. Thus, the exception
flags appear to the programmer as implicitly defined global variables,

although they can be accessed only through the function FLAG.

INTEGER FUNCTION FLAG( TYPE, VALUE)
- CHARACTER*6 TYPE
INTEGER VALUE

where TYPE is one of

TYPE exception flag affected
'UNFLOW’ | underflow
'OVFLOW' | overflow
'INVALD' | invalid operation
'DIVZER’ | (nonzero) / zero
'INEXCT" | inexact result

The return value of 0 indicates that the flag is off; and any nonzero value
indicates that the flag is on. A nonzero flag will typically contain some
system-dependent reference to what happened and where. Thus there are
only two portable uses of a value returned from FLAG: test whether or not it
is zero, and save the value for subsequent restoration. FLAG sets the

selected flag to VALUE unless the VALUE argument is omitted from the func-
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tion call, in which case the flag is not altered.

A program that deals with an exception such as underflow will use FLAG
with a VALUE of 0 to clear the "UNFLOW’ flag so as not to distract any follow-
ing code. It may use FLAG without the VALUE argument to simply test the
flag during its calculation. A subprogram that deals with its own exceptions
may use FLAG to save the setting of pertinent flags on entry and restore

them on exit.

10. Modes

Modes are provided by some systems as a way for a f)rogram to control
details, for example exception handling, in subsequent operations. The char-
acter function MODES allows the programmer to test and possibly alter arith-
metic modes in the host machine, in much the same way that FLAG handles

flags. All settings are given as six-character strings.

CHARACTER*8 FUNCTION MODES( TYPE, VALUE)
CHARACTER*6 TYPE, VALUE

where TYPE and VALUE are given in the following table, which has been

tailored for 754/854 systems.

TYPE VALUE
'ROUND’ | 'NEARST" 'ZERO® °PINF" 'MINF® C’KEEP

The VALUE 'KEEP’ allows the programmer to test a mode without alter-
ing it. The modes listed here pertain to the 754/854 standards. The four
options for rounding are to nearest, toward zero {chopping), toward +, and
toward —e., Many existing systems offer both chopping and rounding to
nearest (after a fashion) but usually they are controlled not by processor

modes but by extra “‘rounding” instructions; the use of MODES in such
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systems would amount to a compiler directive, if the use were allowed at all.

If user traps are to be provided they might be implemented as mode
settings, though the handler address and its input/output parameters
require further discussion. Since general traps are not expected to be port-
able constructs, even across 754/854 systems, this is not discussed further

here.

11. Relation to Brown's Model

This section relates the environmental inquiries presented here with
those Brown and Feldman proposed [3] in connection with Brown's model. On
a machine of radix b, Brown considers a system of model numbers consisting

of zero and all numbers of the form

x = fb®
where
F=x(f107 4 -+ fpd7P), fy =1, -, b1,
Fa o fp =00 b1,
and
eminS e < € max -

The following table gives the model parameters and the computational pro-

cedures of Brown and Feldman in terms of the present proposal.
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RADIX = INT( SCALB(1.0,1)) .. b
MODELEPSILON = NEXTM ( 1.0, 20 ) — 1.0 ...maximum relative spacing
in model
PRECISION = 1-INT ( LOGB ( NEXT (1.0, 2.0) - 1.0)) ..minimum
number of radix-b digits
MODELPRECISION = 1 - INT ( LOGB ( MODELEPSILON ) ) ..minimum
' number of radix-b digits, including a possible penalty
if rounding is strange
MODELHUGE = HUGE ( X, 'MODEL’ ) ...biggest number in Brown's
model, including a possible penalty if overflow is
strange
EMAX = INT ( LOGB ( MODELHUGE ) ) + 1 ...biggest exponent
MODELTINY = TINY ( X, 'MODEL' ) ...smallest number in Brown's
model, including a possible penalty if underflow is
strange
EMIN = INT 2 LOGB ( MODELTINY ) ) + 1 ...smallest exponent
ez'ponent(Xg = INT(LOGB (X)) +1
scale(X, E) = SCALB (X, E)
Jraction(X) = SCALB é X, —exponent( X ) )
synthesize(X, E; = SCALB ( fraction( X ), E)
a(X) = synthesize( 1.0, max ( EMIN, 1 - MODELPRECISION +
exponent( X)) ) ...if X is nonzero
= MODELTINY ...ifXis O
B(X) = synthesize( ABS ( X ), MODELPRECISION )
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CHAPTER 5

A Guide to Underflow and the Denormalized Numbers

""Good intelligence work, Control had always preached, was gra-
dual and rested on a kind of gentleness."
John Le Carre, Tinker, Tailor, Soldier, Spy

Perhaps it is appropriate to open this chapter with a quote from a spy.
Over the five years of the IEEE subcommittee meetings the gradual (some-
times called gentle) treatment of floating point underflow has been the
center of controversial arguments and its own share of intrigue. In fact, over
the first years of its activity, the subcommittee was not mentioned in the
computing press without some reference to the heated controversy. The
paper presented in this chapter was an attempt to explain and defuse the
arguments. It is reprinted here, with permission of the publisher, from the
March 1981 issue of Computer in which draft B.0 of the proposed standard
appeared. This paper remains an accurate microscopic view of the issues
surrounding floating point underflow, despite that the proposed standard
changed significantly from drafts 8.0 to 10.0. On a somewhat higher level,
James Demmel's treatment of the implications of gradual underflow for solv-
ing linear systems, reference [B] in the attached paper, has been substan-

tially updated and accepted for publication as of this writing.

This paper explains the now-defunct warning mode for handling denor-
malized numbers. However, the fact that there was a plausible mathematical
explanation for warning mode, along with a belief among some early imple-
mentors that the mode was at least feasible, did not stop the IEEE subcom-
mittee from voting the warning mode out of the proposed standard. Even

though warning mode could be made to fit into an arithmetic system with

5.1
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denormalized numbers, there was no simple, non-algorithmic explanation of
how warning mode worked. Expositions like the original implementation
guide in chapter 2 had the flavor of ““do as 1 do, not as 1 say.” Attempts to
specify warning mode without algorithms in draft 8.0 of the proposed stan-
dard led to almost incomprehensible subtleties. This defect ultimately killed
warning mode, by a nearly unanimous vote of the subcommittee. The pur-
pose of warning mode, as discussed in this chapter, was to provide some
defense for old programs written with the presumption that underflowed
values would be set to zero; however, the value of this warning was very hard
to gquantify, unlike the complexity of exposition, which was apparent to any-
one who read or attempted to improve upon the prose of draft 8.0. (This
same discussion applies to the disappearance of the projective mode for
interpretation of =. Although the projective mode was easy to describe and
only a minor nuisance to implement, its value as a protection for program-
mers trained on machines like the CDC 8000/7000 class was small relative to
its impact on a proposed standard expected to be in use for many years to

come.)

Another change to the proposed standard since the publication of this
paper is in the definition of underflow. This paper describes underflow as
arising when a result, computed as though with unbounded exponent range
and checked either before or after rounding to the target precision, falls
below a specified threshold. This is a very conventional specification, in view
of the computers built up to the 1980’s. However, the so-called threshold
test is pessimistic in an arithmetic with denormalized numbers. For exam-
ple, whenever a difference z-y falls below the underflow threshold, the
result is given exoctly by some denormalized number. So why signal

underflow? And in some systems the assignment z<+w between variables of




5.3

the same format is performed arithmetically, as opposed to a simple bit
copy. In this case the ‘‘result” stored into 2 will fall below the underflow
threshold whenever the source value w is a denormalized number. Should
underflow be signaled? The answer, according to section 7.4 of draft 10.0 of
the proposed standard, is NO. That section, using notation explained in
detail in this paper, ties the underflow signal to both threshold and rounding

phenomena.
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Although there have been misconceptions about it,
gradual underflow fits naturally into the proposed standard
and leads to simple, general statements about the arithmetic.

Underflow and

the Denormalized Numbers

L I LS
IE R R EREEOEGn

Jerome T. Coonen
University of California, Berkeley
Zilog, Inc.

In the spring of 1980, after meeting regularly for over
two years, a subcommittee of the IEEE Computer Soci-
ety Microprocessor Stancards Committee voted to en-
dorse a proposed standard for binary floating-point
arithmetic (see the proposed standard in this issue). The
ballot ended just the first phase of a continuing contro-
versy. Although diverse objections were raised within the
subcommittee, discussions usually drifted back to
gradual underfiow, the proposed response 10 exponent
underflow. The arguments even found their way into the
computing press, where most articles about the subcom-
mittee’s work focused on the “‘underflow issue’'—as if
that were all that divided the subcommittee.

This article explains gradual underflow, ranging from
its interaction with floating-point number systems 1o its
advantages for numerical software. The discussion is not
deep, but it is very detailed and would normally interest
only specialists in computer arithmetic. However, the
controversy surrounding the proposed standard has be-
come so entangled with misconceptions about under{low
that a study of underflow is now of interest to a broader
community.

In fact, underflow should not be an important issue.
The fundamental issues are the choice of numbers and
symbols to be included in the arithmetic, their encoding
in storage, and the specification of operations upon
them. To this foundation may be added features that
cope with exceptions such as over/underflow. The pro-
posed standard was developed this way. designed to be a
complete scheme for arithmetic, balanced between utility
and implementation cost. Ironically, gradual underflow
was expected 10 go unnoticed by most users, coming into
view only when potentially dangerous underflow errors
were flagged.

The interconnectedness of the proposed standard’s
basic features complicated attempts to oppose it. Early
challenges within the subcommitiee were not easily
focused on single aspects of the proposed number system
and its encoding, since so many of the design choices
were interconnected. These challenges ultimately ad-
dressed the proposal as a whole and, guite naturaliy,
tended to drift to its points of least resistance. Thus was it
possible for gradual underflow—one of the system’s less
compelling features-—~to become its most contentious.

I hope to show that gradual underflow fits naturally
into the proposal, leading to simple, general statements
about the arithmetic. What remain disproportionately
complicated are the arguments about why these state-
ments are more valuable than some others. The proposed
standard does not solve all underflow problems, but it
does provide many benefits for a small added cost to new
implementations. Unfortunately, the prospect of retro-
fitting existing systems with features such as gradual
underflow can be daunting, so manufacturers with prior
commitments are faced with a tough choice. For them,
gradual underflow is compelling only for systems all of
whose formats—Ilike the proposed single format—suffer
from a narrow exponent range. These problems of
retrofitting added to the controversy regarding
underflow within the subcommittee.

Floating-point number systems

Conventional implementations of normalized binary
floating-point arithmetic use a fixed number of bits to
represent numbers in each data format, with a predeter-
mined ‘‘boundary’’ between the exponent and signifi-




cant digit fields. For example, single format numbers in
the proposed standard are 32-bit strings of the form
shown in Figure 1. The fields S, E, and Fare 1, 8, and 23
bits long, respectively. Interpreting E as an unsigned in-
teger in the range 0 to 255, bit strings with ] € F € 254
represent what are called normalized numbers whose
values are decoded

(- 1)Sx2E-W x| F

Since the leading significant bit is known to be 1, it is not
explicitly stored.

The representable numbers group naturally into inter-
vals of the form [27, 27*']. We call these intervals
binades, the binary analog of decade. Within the
binades, numbers are spaced uniformly at a distance
equal 10 one unit in their last place. As the numbers ap-
proach zero, this absolute spacing decreases by a factor
of two across each binade. For example, consider an
analog of the proposed single format, restricted to six
bits of precision. The representable numbers would ap-
pear as ticks on a line, as shown in Figure 2. Approaching
zero from the right, each successive binade is half the
width of its right-hand neighbor, reaching half the re-
maining distance to zero. This is a property of all binary
floating-point systems.

Normalized arithmetic

Given the system of normalized numbers established
above, the nicest model for arithmetic is:

Compute a result as if with infinite precision and
range and then, if necessary, round it to the nearest
representable number in the destination format.

The proposed standard, as we will see later, conforms to
this model whenever the infinitely precise result is
mathematically defined and does not overflow. But, for
the moment, consider arithmetic suffering at worst only
rounding errors, in which case most current implementa-
tions correspond roughly to the model. (Some chop
numbers to the next smaller representable value; others
round correctly to the nearest value *‘almost always"’;
some are indescribable.)

In arithmetic conforming to the model above, the
roundoff error incurred by results is expressed by the for-
mula

(computed resuits) = (true result) + (roundoff)

'

L

Figure 1. Form of 32-bit string for single format number.

L

0 2-32-2

21 20 27

Figure 2. Analog of proposed single format, restricted to six bits of

precision.
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where roundoff € 4 ulp (unit in the fast place) of the
computed result. This error model parallels the earlier
discussion of the binades since the absolute uncertainty
of computed results decreases by a factor of two across
each binade, as did the absolute spacing between adja-
cent normalized numbers.

The roundoff error can also be expressed by the for-
mula

(computed result) = (true resulr) x (1 + 3]

Here ¢ indicates the relative uncertainty of the calcula-
tion. In rounded binary arithmetic carrying 1 bits of
precision £=2"'. An analogous formula with 2 re-
placed by 5x 10 applies to rounded t-digit decimal
arithmetic.

For a numerical example of the relative error formula,
consider the product

1.23456- 10712 % 6.54321-10*3 ~ 8.07799-10-°

in a six-digit decimal system. Written in the form of the
second formula above,

8.07799-10"%=
(8.0779853376- 10 %) x (1 + 0.00000057717. . )

which is well within the range
(8.0779853376- 10~ %) x (1 + 0.000005)
since the relative error is
0.00000057717. .. < 0.000005 = ¥4 ulp of 1.00000

The relative error formula implies what Figure 2 shows
clearly—that the gaps between neighboring represent-
able numbers never widen toward the origin. This has an
important consequence: in any calculation suffering only
one roundoff, the gap between a computed result and the
exact result need never exceed any of the gaps between
the computed result’s several representable neighbors.
For an illustration, consider the highly magnified picture
of our sample product shown in Figure 3.

This seemingly obvious statement about gaps underlies
many important properties of a robust floating-point
system. Consider the following three properties, valid for
calculations suffering nothing worse than roundoff:

(1) x#yimpliesx~y#0

() (x-¥+y=x towithina rounding error in the
larger of x and y

(3) 1/x# 0when xis a normalized number, and then
V(l/x)y=x

Failure to satisfy statements like (1)>-(3) can lead 10 in-
teresting and elusive anomalies in numerical programs.
Because it is our object 1o investigate the proposed stan-
dard, rather than review the past abuses that led to it, we
will not pursue here the consequences of violating (1)-(3).
Interested readers will find W. Kahan's survey! enter-
taining; refer to D. Hough? and Kahan? for more details.
Suffice it to say that the desirability of an arithmetic
system depends greatly upon its users’ ability 1o form a
simple vet accurate mental model of its capabilities.
Statements (1)-(3) are typical of the high-level properties
that permit a reasonable analysis of program behavior,
thus expediting the production of robust numerical code.



What is exponent underflow?

Until now, the presentation has been covered by a
disclaimer excluding all but normalized arithmetic suf-
fering only rounding errors. The discussion applied to
most current implementations of arithmetic. However,
there are other sources of error. Because a fixed number
of bits are allotted to each number's exponent, the
number system’s range is bounded. Some normalized
binade must be the *‘smallest,”” beyond which there are
no more normalized numbers. In the hypothetical six-bit
normalized number system illustrated in Figure 2, the
bottom of the exponent range would look like the
representation in Figure 4. We will call the smallest nor-
malized number A and say that a result whose magnitude
is less than A has underflowed. The question is how to
represent underflowed results when computation is to
continue without a *‘trap’’ to a user’s exception handler.

The proposed standard spans the gap from 0 to A with
a family of numbers whose absolute spacing is that of the
numbers in the last normalized binade, as shown in
Figure 5. These are the so-called denormalized numbers.
They may be thought of as elements of an extra binade
beyond i, but spread apart by a factor of two over their
expected spacing in order to reach 0 uniformly. The
response to underflow which uses the denormalized
numbers 1o represent under{lowed values is called
gradual underfiow.

Gradual underflow has several historical precedents.
Most often mentioned in the floating-point subcommit-
tee's meetings has been the Electrologica X8, a Dutch
machine. Using gradual underflow without even an un-
derflow error flag, it was, according to T. J. Dekker,
‘‘never confusing to naive (and other) users.’’ This is not
too surprising, however, since the X8 had a 12-bit expo-
nent providing a range of about 10*%%; it’s unlikely that
too many naive (‘‘and other'’) users ever even en-
countered underflow. The Burroughs B5500, DEC-10,
I1BM 7094,4 and 1BM 370 also support gradual under-
flow, although the user must provide brief software
routines to denormalize numbers since the hardware
delivers underflowed values normalized with their ex-
ponents ‘‘wrapped around’’ to within range.

The only other underflow handling scheme that re-
ceived broad support within the subcommittee is the one
provided in most current implemeniations of arithmetic.
Simplest of all the proposals, Store 0 would set all
underflowed values 10 zero, so that there be no represent-
able numbers in the gap between 4 and 0.

Another scheme dates back to work by K. Zuse in Ger-
many during the 1930’s* and work done independently
by Kahan in 1966.4 It would replace underflowed values
by a symbol *‘UN,’’ representing not any particular
number but rather the inrerval between 0 and A, which in
our example would be (0, 27!2%). R. Fraley and J. S.
Walther proposed such an UN Symbol schieme to the
floating-point subcommittee,® though none has ever
been implemented.

Yet another possibility would essentially change the
‘‘boundary’’ between the exponent and significant digit
fields of a number which has underflowed (or over-
flowed) in order to obtain some exponent expansion at

‘ EMPTY |_.L.l :J.JJI,J,’ tedbad e
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the expense of bits of precision. The dynamic position of
the boundary would be built into the encoding of the
numbers. R. Reid proposed this to the subcommittee,’
though the idea has been attributed by D. Knuth® to J.
Cocke. Although these schemes benefit from the ex-
panded exponent, their fluctuating precision incurs a
noticeable implementation cost and complicates error
analysis. 1 will not discuss them further; however, the
careful reader can adapt the arguments of this article to
determine that the expanded numbers do not enjoy the
simple properties to be attributed to gradual underflow.

Denormalized numbers and gradual underfiow

The way denormalized numbers fit into a normalized
number systemn can also be seen by listing the numbers
from the smallest binades, with their implicit binary
points aligned. Figure 6, from a six-bit analog of the pro-
posed single format, shows representative ‘‘numbers’’
beside their unbiased exponents. X may be 0 or 1. This
figure suggests a very natural representation of the de-

l

TRUE
{ —-i

T l I T T

COMPUTED—’ 8.07800-10-°9
Figure 3. Highiy magnified picture of sample product.

| A

0 A=2-12 2-l124

Figure 4. The bottom of the exponent range in the hypothetical system li-
lustrated in Figure 2.

DENORMALIZED
— NUMBERS -
||,,,.,l,,,i,,|‘ b |, e ,] )
|ﬂ‘,\!v1'|w|iﬂ|1p ™ URIR M,v'{ T
0 A= 212 2-125 2 - 124
Figure 5. The denormalized numbers sugment the number system shown
in Figure 4,
EXPONENT SIGNIFICANT BITS

- 120 TXXXXX

- 121 1XXXXX

- 122 1XXXXX

- 123 1XXXXX < NORMALIZED NUMBERS

- 124 TXXXXX

- 125 1XXXXX

- 126 1XXXXX

<= UNDERFLOW THRESHOLD =4 =2-1%

- 126 01XXXX

- 126 001XXX

-126 D001XX = DENORMALIZED NUMBERS

- 126 00001X

- 126 000001

(- 126) 000000 -~ ZERO

Figure 6. A six-bit analog of the proposed single format, showing

representative ‘numbers’’ beside their unbiased exponents.



normalized numbers in a floating-point system, since the
denormalized numbers are precisely the values taken by
all unnormalized numbers, of the given precision, whose
‘exponent is that of A. The single and double formats of
the proposed standard exploit this fact by means appar-
ently unknown before 1976. In the single format, for ex-
ample, numbers in the interval (1, 2A) are encoded with
the next-to-lowest biased exponent, 1. The lowest expo-
nent, 0, is reserved for the denormalized numbers and,
when all significant bits are 0, for floating-point zero.
Thus, the biased exponent 0 encodes two bits of informa-
tion about the denormalized numbers:

¢ They have the same effective exponent as the nor-
malized numbers, such as &, with the next higher en-
coded exponent, 1.

¢ Their implicit leading bit is 0 instead of 1.

This encoding fits the denormalized numbers into the
bottom of the exponent range inexpensively, using bit
patterns that on many current implementations are sim-
ply redundant representations of zero. The name denor-
malized distinguishes the underflowed values from the
usual unnormalized numbers that run across a number
system's entire exponent range. The single and double
formats of the proposed standard have no unnormalized
numbers in this sense. Instead, they obtain an extra bit of
precision over the normalized number range by assuming
an implicit leading 1 bit for all numbers greater than or
equal to A.

Gradual underflow satisfies the arithmetic model pre-
sented earlier since an infinitely precise result. whether or
not it is smaller than &, is simply rounded to the nearest
representable number. Although analogous statements
can be made about the other underflow handling
schemes, the striking difference is the extent to which the
schemes admit high-level statements like (1)-(3) pre-
sented above.

Examples of denormalization

Figure 7 shows three examples of gradual underflow in
a six-digit decimal system in which 4, the smallest nor-
malized number, is 107%. In (i), the otherwise exact
product underflows and must be denormalized by four
digits. The number then requires rounding which, in this
halfway case, is to the nearest representable number
whose least significant digit is even. Intermediate results
far below the underflow threshold will be denormalized
all the way to 0, as in (ii). This occurs quite naturally in
the proposed single and double formats, since signed Ois
represented as the ‘‘denormalized number”’ ali of whose
significant bits are zero.

Example (iii) illustrates how underflowed sums and
differences of numbers in the same format are always
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free from rounding error. This is simpler than the situa-
tion for underflowed products and quotients which must
be denormalized before rounding to ensure that their er-
ror bound is one-half unit in the result’s last place.
These examples suggest the following straightforward
implementation of gradual underflow. When a com-
puted result would have an unbiased exponent too
small—that is, too negative—to be represented, the
number is accommodated by right-shifting (denormaliz-

_ ing) the significant digit field while incrementing the ex-

ponent until the exponent is that of the smallest nor-
malized number. The number can then be rounded and
stored.

Example (iii) suggests a possible economy in addition
and subtraction, when the time required to denormalize
is most likely to be noticed. After a magnitude subtract,
the result need only be normalized until its exponent is
that of A, since further shifting would only be undone by
subsequent denormalization. Such a simple trick is possi-
ble only because the denormalized numbers fit so nat-
urally into the number system as a whole. It is typical of
the ways in which a careful implementor of gradual un-
derflow can achieve speeds comparabile 1o the **simpler”’
arithmetic systems, with little additional hardware or
microcode. '

Error properties of gradual underflow

The error formula describing model normalized arith-
metic expressed only the relative uncertainty ¢ due to
roundoff in a result free of other errors such as over/
underflow. When underflow occurs, the formula be-
comes

(compured result) = (true resuit) + ¢

The uncertainty & of the result depends on the underflow
handling scheme.

For purposes of discussion, we consider a hypothetical
floating-point system with underflow threshold &,
augmented in turn by three underflow handling schemes.
The bit patterns used for denormalized numbers could
provide an extra normalized binade in the Store 0 and
UN Symbol systems, thereby reducing A by a factor of
two. However, we will see that the analysis depends not
upon the size of &, but upon whether ¢ is negligible when
compared with A,

¢ Gradual Underflow: When underflow is gradual,
the error can be no bigger than half an ulp of A, so
E=¢d.

e Store 0: When all underflows are set to 0, the error
can be almost as large as the smallest normalized
number, so ¢=A.

© UN Symbol: When underflows are replaced by UN,
the error is the same as for Store 0, so £ = A. The dif-
ference is that UN is less prone to subsequent misin-

2.50000-10- 60 x 3.50000 10~ 43 = 8.75000-10- 193 — 0.00088 10~ % (i) lerpretation.
2.50300-10- 80 x 3.5000010-60 = 8.75000-10- 120 — 0.0 ()

5 67834-10-97 - 5 67812-10- 57 = 2.20000 10~ 101 — 00220010 - %9(ii} Comparison of ¢ for the various schemes indicates that

only the denormalized numbers permit underflowed
valuesto be represented with no more absolure error than
is tolerable among numbers in the smallest normalized

Figure 7. Three examples of gradual underflow in a six-digit decimal
gystem.



binade. In other words,

only with gradual underflow do the gaps between
representable numbers not widen near zero; instead
the gaps between computed and exact results are no
wider than the gaps between any pairs of neighbor-
ing representable numbers.

For an example in six-digit decimal arithmetic with
A=10"%, consider the underflowed product shown in
Figure 8. The Store 0 and UN Symbol schemes suffer an
error equal 1o the product itself, about 8/10 of 4, while
gradual underflow cuts the error to less than 2/10 ulp of
A, areduction by several orders of magnitude. Figure 9, a
highly magnified graph of the bottom of the exponent
range, shows the gaps between true and computed
results.

Mindful of the way that gaps around A and 0 depend
on the scheme for handling underflow, let us review the
three properties we considered earlier:

(1) x#yimpliesx~-y#0

(2) (x-y)+y = x to within a rounding error in the
larger of x or y

(3) 1/x# 0when xis a normalized number, and then
1/(1/x) = x

This time we will permit the calculations to suffer
underflow as well as roundoff errors. Aided by gradual
underflow, the proposed standard satisfies (1)-(3) with-
out a hitch for the same reason as applied to rounded
normalized arithmetic—that is, the gaps between repre-
sentable numbers never widen toward zero. This is the
sense in which

gradual underflow tends to make the errors due to
underflow commensurate with roundoff errors.

However, (1)-(3) may not apply to the other systems since
the gap between 0 and A is huge when compared to the
gaps between A’s neighbors, the tiny normalized
numbers. For example, a Store 0 system violates (1) and
(2) whenever x~ y underflows, and violates (3) whenever
1/x underflows. Whether the reciprocal of any number x
can underflow depends on the balance between the
largest and least exponents.
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The trade-off between safety and utility is reflected in
the specification of gradual underflow. We observed that
if x—y underflowed in (2), gradual underflow would
always be accurate, Store 0 could give a wrong answer,
and UN Symbol would give either a wrong answer or a
warning. All schemes would raise an underflow flag
upon computing x—y. However, experience with float-
ing-point computation shows that the underflow flag by
itself is not a reliable indication of serious error since
most underflows can be safely ignored. To be used effec-
tively, the flag must be interrogated after the delicate
phases of a calculation. As we will see below, figuring out
what should be tested represents a significant cost which
is often avoidable when underflow is gradual. This un-
dermines the perceived simplicity of the Store 0 scheme.

Proponents of the UN Symbol scheme emphasize its
unwillingness to deliver wrong answers due to underflow
when implemented conservatively. Alas, often when it
signals an error associated with its symbols, an accurate
answer could have been obtained using gradual under-
flow. And, as conservative as it may be, the UN Symbol
scheme only catches errors due to underflow; since
rounding errors are the source of most difficulties in sen-
sitive calculations, this conservatism is only nominal.

Normalizing mode

The simplest implementation of denormalized
numbers and gradual underflow, which has been as-
sumed so far, specifies that each operation be performed
without distinguishing denormalized numbers from
other numbers—that is, as though all denormalized
operands were first normalized. The proposed standard
calls this the *‘normalizing’’ mode of computation. Such
a uniform interpretation of nonzero numbers, regardless
of possible loss of relative precision due to underflow, is
appropriate when analysis shows that errors no bigger in
absolute value than a half ulp of the smallest normalized

1.23456-10-60 x §.54321-10- 40 == B 077985337610~ 100 {EXALT)

The UN Symbol scheme is more robust despite the fact -+ 0.80780-10-99 (GRADUAL UNDERFLOW)
that it ounds are the same as those of Store 0. =00 (STORE 0)
at its error bounds ose - UN (UN SYMBOL]

However, it entails several special cases. (1) is guaranteed
because UN retains the sign of underflowed x — y and has
nonzero magnitude. In the same way, when 1/x
underflows in (3) the quotient is nonzero, but then
1/(1/x) is OV, the overflow symbol, which is not = x. As
in Store 0, (2) fails once x - y underflows, in which case
(x—y)+y = UN+y - y. Toavoid this type of problem,
a systern bent on safety might deliver an invalid opera-
tion warning when UN (known only to lie somewhere be-
tween 0 and 1) is added to a tiny y; but, fooled or not, the
user still gets the wrong answer. d
The statements made here about the gaps are fun- F——STORE 0 ERROR"”""—/‘E
damental to floating-point error analysis. However, l . " | R [/‘\ !
obsession with tiny errors is not the point. Rather, we | L " i
would like our system to give reasonable results whenever 0 0.10000-10-%  0.80000-10-%  0.90000- 10~ % A=
possible, and a warning otherwise. In this way, we could 1.00000-10- ¢
worry about errors only when necessary and couid have
confidence in our results.

Figure 8. Comperison of the various schemes in six-digit decimal arith-
metic with A=10"%,

GRADUAL UNDERFLOW ERROR — |—
i

EXACT PRODUCT ———

Figure 8. Highly magnified graph of the bottom of the exponent range.



number are no more significant than other comparable
or larger errors due to roundoff. Most computations are
this way.

Since the normalizing mode deals in principle only
with normalized numbers, it follows essentially the same
rules for denormalized numbers as for normalized. The
only significant implementation cost is the prenormaliza-
tion step required when denormalized operands par-
ticipate in multiplication, division, and mixed-format
calculations. In addition and subtraction of numbers of
the same format, the prenormalization need not be car-
ried out; since denormalized numbers already have the
smallest exponent, they will be shifted right, if at all, for
binary point alignment. As in the implementation discus-
sion above, accompanying Figure 7, we see that the
careful implementor of gradual underflow can trim the
execution time cost of the denormalized numbers in addi-
tion and subtraction.

To see how gradual underflow works in a program, let
us consider an inner product expression common in
matrix calculation,

b+8F)/c =(b+ 2ay)/c

ix}

and the program loop to evaluate it:

sum:= b
FORi:=1TOn
result .= sum /¢

DO sum := sum+a,xy,

Suppose nothing worse happens than roundoff and
underflow. If underflow is gradual, then as long as bis a
normalized nonzero number, sum must be accurate to
within the uncertainty of an unexceptional vector inner
product with normalized numbers, namely a few ulps of
Hallx {7 |1+ |bl, wherel|X|| denotes the norm of the
vector X. Consequently, result will be about as accurate
as roundoff allows.

However, in a Store 0 system, a small but nonzero sum
could be plausible but wrong in nearly every digit because
of underflow. Figure 10 indicates how the two schemes
affect small sums in one step of the computational loop

DGITS LOST TO GRADUAL
DERFLOW WOULD LATER BE
LOST TO ROUNDOFF

|

| THESE DIGITS COULD BE
! WRONG IF UNDERFLOWS
i WERE SETTO 0
|
!

OLD SUM ]

NEW SUM ]

I ruese piciTs wouLD Be ‘;\

LOST IF UNDERFLOWS oo B = el = SMALLEST
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above. The accumulation sum and product a,y, are
represented as bit strings with their binary points aligned.
When all underflows are set to zero, the information to
the right of the vertical broken line marked ‘A"’ (the
underflow threshold) is lost—small sums can be seriously
contaminated. On the other hand, gradual underflow re-
tains enough information beyond A to ensure that any
sum greater than A will be about as accurate as if all
operands and products had been normalized to full preci-
sion.

Although this example is typical of those in which a
simple statement describes the behavior of gradual
underflow, it is not by itself a compelling argument for
gradual underflow, since a robust program would re-
quire scaling to guard against a variety of potential
nuisances—ranging from the special case b=0, 10
overflow in sum when ¢ is so large that the exact resulr
would be well within range.

A more interesting, yet complicated, example is the
calculation of the complex quotient

a+ixb:= m

F+ixs
Assuming [s| € ||, the procedure attributed to R. Smith
by Knuth® is to calculate

. P+ax() 9-px()
a+ixb:= S X 5
r+sx(p r+sx()
An analysis can be found in a subcommitiee working
paper by Hough.® The claim is that, despite roundoff,
the computed complex result differs from the correct
result by no more than if p+ix g and r+ixs had each
been perturbed by a few ulps of its modulus. This conclu-
sion is unchanged by underflow, if it is gradual, except
when both @ and b underflow, in which case the error is
bounded by a few ulps of |a+ i x b|. No comparably sim-
ple statement holds when all underflows are set to 0.
The complex quotient is fundamentally different from
the inner product above since Smith's algorithm pro-
duces a correct quotient unless intermediate overflow oc-
curs. Furthermore, the formula avoids intermediate
overflows when a+ix b is in range, unless |pl+lg! or
{rl+|s| would overflow. Since gradual underflow copes
with all problems at the bottom of the exponent range,
Smith’s algorithm is so robust that there is little tempta-
tion to introduce scaling and its associated complexity.

Much ado about nothing?

Some opponents of the proposed standard have
argued that programs which encounter gradual under-
flow in the normalizing mode would perform *‘about as
well” if all underflows were set 1o zero instead. We can
formalize the claim and a response as follows.

Figure 11 summarizes the notation developed through-

THRESHOLD=A" | WERE SET T0 0 - DENORMALIZED NUMBER

B L L S

out the discussion of the single format. We observed that
i is the absolute uncertainty of an underflowed result in
the Store 0 and UN Symbol schemes, and that a nor-

Figure 10. The effect of gradusl underflow and Store 0 on gmall sums in
one step of the cited program loop.



malized computed result x ' is related to an exact result x
by

x'=xx(ltg) = xtex

s0 that ex is a bound on the absolute error due to round-
off.

We consider programs which do not use special con-
tingency code 1o handle underflow. Of particular interest
is the class A of programs that succeed when underflow is
gradual but fail when underflows are set abruptly to
zero. These programs tolerate underflow errors bounded
by &=¢k because they are no more significant than
roundoff errors ‘‘ex’' of comparable or larger magni-
tude, but cannot tolerate underflow errors as large as A.
How many programs are in class A?

The size of class A is a measure of how many programs
benefit significantly from gradual underflow. If Store 0

were good enough for most calculations, as might be ex-

pected, the class A would be small, and then the extra
capability afforded by gradual underflow would be in-
consequential. However, the surprising fact is that many
of the standard techniques of numerical analysis are
known to fall into class A. This has been shown for linear
equaiion solving by J. Demmel’®; for polynomial equa-
tion solving by S. Linnainmaa®’; for numerical integra-
tion and convergence acceleration by Kahan'?; and for
complex division, as indicated in the previous section.

Once the extent of A is established, one may argue that,
with only slight amendments, programs in A can be made
sufficiently robust that they tolerate abrupt underfiow to
0. The reasoning is analogous to the motivation for
gradual underfiow in the first place: since the absolute er-
ror due to underflow can be as large as A when all under-
flows are set to zero, underflow error can seriously con-
taminate numbers of which 4 represents more than half
an ulp. This was illustrated by Figure 6. If in that six-bit
system all numbers below the indicated underflow
threshold were set 1o zero, the bound on the incurred er-
ror would exceed half an ulp of all the normalized
numbers less than 27 '%, Thus, numbers in the interval
{21236, 2-12%) would be suspect in a calculation incurring
underflow. In general, the number of contaminated
binades equals the number of bits of precision carried.
Thus, the threshold of suspicion for the proposed single
format would be

0= 2a/e =272 =2010"%

if underflow were not gradual. i
For a concrete application of 9, consider the calcula-
tion

n
sum:= b+ ¥ a,

=]

in the inner product example presented earlier. We noted
that setting all underflows to zero can ruin small sums.
More precisely, if underflow occurs in the summation
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malized numbers tend to preserve the granularity of the
number system down to the least significant bit of A.
When this threshold is crossed, the system raises the
underflow flag. The difference between thresholds ¢ and
A illustrates the complereness that gradual underflow af-
fords. In contrast, programs run with Store O—even if
they are augmented with tests to guard against con-
tamination by underflow-—won’t achieve good results
over so wide a range as simpler programs run with
gradual underflow. Rather, as in the inner product exam-
ple, their authors will be obliged either to explain the
thresholds like ¥ to their users, or to insert contingency
code, such as scaling, in order to eliminate artificial
boundaries.

Another argument against gradual underflow focuses
on numbers rather than programs. The claim is that the
class A is irrelevant since computations rarely encounter
underflows, and that when they do, the errors are nearly
always inconsequential. This reasoning forces a dilemma
upon purveyors of robust software for Store 0 systems,
since the cost of the code to handle the rare cases when
underflow does matter is out of all proportion to the
benefit in the typical case. On the other hand, gradual
underflow repays its slightly increased implementation
cost with accurate results over a wider range of problems
and data. And, as we will soon see, gradual underflow
has a buili-in warning system 1o lessen the chance that
consequential underflows overlooked by programmers
will be overlooked by users.

Old programs and the normalizing mode

Unfortunately, it is not reasonable for the proposed
standard 10 specify the normalizing mode of computa-
tion as the default way to compute with denormalized
numbers. Although the error £ due to underflow is often
negligible, the cases where it is not must be handled with
great care—especially in would-be robust portable pro-
grams. Currently, most machines set all underflows to
zero and most high-level languages lack a flag or name
for the underflow condition. Consequently, whenever
existing robust programs test for underflow in sensitive
calculations, they have no choice but to check for zero
results. These programs might be fooled by nonzero
values (and hence presumed not underflowed) which
have lost significance due to denormalization—especially
if these values are later scaled up away from the under-
flow threshold. To protect the robustness of such pro-
grams, the proposed standard must be specified on the
side of safety.

To see how arobust program could go wrong, consider
the following code fragment intended to avoid errors due

SMALLEST NORMALIZED NUMBER = 2-1%6= 12103

RELATIVE UNCERTAINTY OF A NORMALIZED RESULT = 2-2¢ = §0-10-¢

ed = ABSOLUTE UNCERTAINTY OF A DENGRMALIZED = 2-'5t= 7.0 10 *f
RESULT

above and |b| < 0 then sum is not trustworthy.

Testing critical intermediate results against 0 is really
just a poor man’s substitute for gradual underflow. In
the latter, the threshold of suspicion is the more natural
boundary, the underflow threshold, since the denor-

,.,
0o

Figure 11. Notation for discussion of proposed single format.



to underflow:

g:= (xxy)xz
IF ¢ = 0.0 THEN g:= xx(yxz)

In a system setting all underflows to zero, the test guaran-
tees a reasonable value for g unless overflow occurs.
However, if (x x y) underflows instead to a denormalized
nonzero number of only a few significant digits, and if
Jz| >> 1.0, then g may be well within range, though very
inaccurate. For a numerical example in a six-digit deci-
mal system with A= 10-% Jet

x = 4.78295-10~4
y = 1.22805-10-
7= 5.76623-10"%

Since (xxy) underflows gradually, the program pro-
duces

g:= (xxy)xz = (0.00059-10-%)x z
— 3.40208-10°12

whereas the intended result, correct to fully six signifi-
cant digits, is

gi= xx(yxz)= xx(7.08122-10%)
- 3.38691-10"12

The fragment above should ideally be translated to the
following more robust code in a standard environment,
in which over/underflow can be tested explicitly:

underflow-flag : = overflow-flag : = FALSE
g = (xXy)xz
IF (underflow-flag OR overflow-flag) THEN
BEGIN
underflow-flag : = overflow-flag : = FALSE
g = xx(yX%X3)
END

This fragment is typical of those designed to cope
automatically with what would otherwise be serious er-
rors caused by over/underflow. Although the actual er-
ror &, suffered when underflow is gradual, is several
orders of magnitude smaller than the possible error A
when all underflows are set to zero, the tiny error can
nonetheless be catastrophic. Running such programs un-
changed in the normalizing mode without further
analysis is reckless.

Warning mode

Reckless or not, users will run programs like the first
code fragment above, believing—perhaps wrongly—that
they will compensate for underflow errors as well in a
new environment as they did in the old. Thus, the pro-
posed standard has an obligation to defend such pro-
grams against misinterpretation of denormalized num-
bers. It prescribes the so-called *‘warning mode’’ as its
default mode of arithmetic on denormalized operands,
to be in effect unless a program contains an explicit re-
quest for the normalizing mode. For example, the
calculation above of ¢ failed to produce an accurate
result when the underflowed product (xxy) was nor-
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malized wholesale during its multiplication by z; in the
warning mode, the second multiplication wiuld be de-
clared invalid and a Not-a-Number symbol, NaN, would
be delivered in lieu of the dubious product. By inhibiting
indiscriminate normalization of results—thus limiting
the growth of relative error in results whose antecedents
underflowed—the warning mode protects programs
written with another scheme in mind as well as some pro-
grams written without any thought at all about under-
flow.

The warning mode differs from the normalizing mode
in that it incorporates a boundary between valid and in-
valid operations on denormalized numbers. Although
the boundary is arbitrary (a paranoid scheme might pro-
hibit any further arithmetic on underflowed results), the
boundary arises naturally in the proposed system, as we
will see below.

A calculation run in the warning mode can be expected
to achieve results at least as good as those gotten in the
past; but sometimes NaNs will appear, signaling a poten-
tial underflow problem. If indeed the invalid resulis
would have been junk, the user is better off with NaNs
until the program is repaired. However, analysis often
shows that underflow errors, when gradual, will not con-
taminate final results, as indicated earlier in the discus-
sion of class A. In this case, accurate results can be ob-
tained by a recalculation in the normalizing mode. The
point is that a user can run programs initially without do-
ing anything special about underflow. The warning mode
is intended to defer as long as possible the judgment of
whether an error £ figures significantly in a computation.

For an example of the safety provided by the warning
mode, consider the construction of a unit vector, u : =
x 7 |Ix1], by normalization of a given vector x. This is a
very common calculation. If x is of modest dimension, n,
and its elements are in no special order, then v may be
calculated in the obvious way with two loops:

sum :=0.0
FORi :=1TOn DO sum := sum+x?
norm = \/sum

FORi :=1TOn DOu,:= x;/ norm

If underflow is gradual, then as long as sum is a nor-
malized nonzero number, norm is accurate to within
about n/2 ulps, regardless of underflows in the x,;2; hence
u is about as accurate as roundoff allows.

However, if all the x? underflow, the computed sum
might be denormalized. Then in the normalizing mode,
norm would be a normalized number well above A, but
with relative uncertainty much larger than attributable 1o
roundoff alone. This could seriously degrade the com-
puted u. The warning mode prevents this kind of error
growth by declaring the square root of a denormalized

"number, like sum, to be invalid. In the extreme case that

all the x? underflow to zero, norm and sum would be
zero in both modes, and the second loop would be
marked by division-by-zero errors.

The simple code above has the property that, when run
in the default warning mode, it produces a result about as
accurate as roundoff allows, so long as no exception
besides underflow arises. Only in the rare case that
overflow, division-by-zero, or invalid-operation is



flagged will u contain only zeros, s and NaNs, and then
the programmer will reject & and revise the program.
This case is typical of the relative safety afforded naive
programs by the warning mode. Of course, a truly robust
program to compute u given any valid x, however unlike-
ly, would require scaling and some provision to suppress
roundoff when n is huge.

This example neatly illustrates how the warning and
normalizing modes are distinguished by their different
interpretations of the absolute uncertainty ¢ of denor-
malized numbers. The normalizing mode’s presump-
tion—that the error £ is negligible regardless of the asso-
ciated relative uncertainty—is replaced in the warning
mode by rules intended to restrict the relative uncertainty
of normalized numbers to what is expected because of
roundoff.

The warning mode accounts for £ by preserving the un-
normalized character of denormalized operands. Instead
of assuming an implicit prenormalization step at the start
of each operation, the warning mode is specified in the
proposed standard to be, as much as possible, a
byproduct of the implementation of the normalized
arithmetic, but allowing for a leading significant bit 0. In
fact, the sum or difference of operands of the same for-
mat has the same numerical value in both warning and
normalizing modes. This follows from the observation
made earlier that prenormalization could be avoided dur-
ing addition and subtraction in the normalizing mode. It
is a reflection of how naturally the denormalized
numbers augment normalized sums.

However, products and quotients involving denor-
malized numbers differ in the two modes. The distinction
is a matter of acceptable error bounds, and may be char-
acterized as follows. In the warning mode, a denormal-
ized number is considered marked with an uncertainty of
at Jeast half a unit in its last place. Thus, it is thought of
as an interval—like UN, though much narrower. The fol-
lowing fact, stated for products a x b, applies to quo-
tients a/b as well. It will be discussed in detail in the sec-
tions that follow. We use the subscripts W and N to in-
dicate the warning and normalizing modes, respectively.

Of a product a x b, suppose that b is known to be
normalized and presumed exact, and that a is finite,
perhaps denormalized, and uncertain by 1/2 ulp.
Then either:

(1) (axb), isnotinvalid, in which case it equals
(ax b)y and its error bound, 3/2 ulps, is the same
regardless of whether a was denormalized; or

(2) (@xb)y is invalid, in which case (axb). is
uncertain by at least 5/2 ulps, and possibly much
more.

That is, in the warning mode, the only tolerated errors
due to underflow are those attributable to the rounding
phenomena of arithmetic on normalized numbers.

Consider these statements applied to a recalculation of
g := {xxy)xz above, this time in the warning mode.
The second multiplication

(0.00059 10~ %%) x 5.76623-10* % = 0.0034020757-10°

would not be normalized and rounded to 3.40208 1012,
but would instead be flagged as an invalid result and
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replaced by a NaN. This would prevent the gross uncer-
tainty inherited from

((0.00059 + 0.000005)-10~% x 5.76623-10*%
= (3.40208+0.03)- 10~ 2

from being overlooked as though the same result
3.40208-107'? had been produced from relatively ac-
curate normalized operands:

((5.90000 + 0.000005) 10~ 19%) x 5.76623-10°%
= (3.40208 + 0.000008) 1012

In this example, normalization of the result would
have magnified the inherited uncertainty of haif a unitin
the sixth digit of the denormalized operandto athird of a
unit in the second digit of the normalized resuli—a ten-
thousand-fold increase. The warning mode permits no
magnification bigger than by a factor of two. It is in this
sense that the valid/invalid boundary is arbitrary, since
in some computations a growth as large as what occurred
above might be perfectly acceptable. The warning
mode’s magnification limit two was chosen because that
is as much as roundoff errors can suffer in one operation,
regardless of whether denormalized numbers were in-
volved. Furthermore, that limit is straightforward 1o im-
plement.

Valid results and the storage formats

A very important aspect of the error statements above
is that they correspond to a straightforward implementa-
tion of the warning mode. One consequence of cases (1)
and (2) is:

In the warning mode, valid products and quotients
are precisely those that can be stored in the destina-
tion format.

This connection between the floating-point formats and
the inherited uncertainty of computed results is tied into
the implicit leading bit of numbers above the underflow
threshold A, the subject of the next sections.

A binary floating-point product is computed internally
as

A.gaa...aaa x 2M
x B.bbb. .. bbb x 2~

CC.ccc. . .cceccc. . .ccc x2F

If either of the Cs is a 1, then the result can be rounded
and stored, and will be normalized unless over/under-
flow intervenes. However, when both Cs are 0, then the
result can be stored only if P=N+ M is no greater than
the destination format’s minimum exponent; otherwise,
it is invalid because it violates the error statement in the
last section.

Every product of a denormalized number and a factor
bigger than two will have an exponent above the format’s
minimum. But not every such product is invalid. In some
cases, the product of a number barely denormalized, say
0.1aa. . .aga, and a normalized factor 1.bbb. . . bbb will
carry outtoa product of the form 0l.ccc. . .ccecee. . . ccc.
Despite the appearance that the absolute error of a




relatively inaccurate factor is being magnified, such a
normalized result satisfies the error statement in the
previous section. This particular phenomenon of prod-
ucts involving denormalized numbers will be considered
in further detail later, in a different context.

From this discussion we see that the warning mode’s
principal impact upon implementations is the test to
detect the unnormalized character of the results pro-
duced from denormalized operands. The valid/invatid
boundary is maintained by a simple test to catch denor-
malized numbers that have been promoted to unnor-
malized numbers bigger than 4.

Analysis of a product

This section and the next explore the fine details that
underlie the earlier statements about the error bounds of
products and quotients in the warning mode. (The trust-
ing reader may skip to the section entitled *‘Further Im-
pact.”)

First we consider a product of operands in the same
floating-point format. Consider the calculation of

(Cx2P):= (Ax2M)x (Bx2Y)

where A, B, and C have the form X.xxx...xxx with
X=0or 1. Allow (A x2M) 10 be normalized or denor-
malized, so that 0 € A < 2; but assume that (Bx2") is
normalized, so that 1 € B< 2.

First, the exceptional cases: If the product underflows,
then the denormalized result is the same in both warning
and normalizing modes. This result does not satisfy the
relative error bound given below, but instead suffers an
absolute error bounded by ¢, as described earlier. The
warning and normalizing mode results also agree when
the product overflows, in which case both operands must
have been normalized.

The interesting cases are those whose results are within
range and whose only errors are rounding phenomena.
Since A is uncertain by half an ulp, the normalized prod-
uct takes the form

Cxy=2'x(Axe)xB ¢

with exponent P = M+ N~-]. Sorting this formula out
from left to right,

y is the error bound of the product, to be expressed in
ulps of C;

71 is the number of left shifts required in the normal-
izing mode and, when /= ~ 1, the one right shift re-
quired when the product of the significant digit fields
is greater than or equal 10 2;

¢ is half an ulp of 1.0—the leftmost ¢ expresses the in-
herited uncertainty in A, and the trailing ¢ bounds
the rounding error in the product.

We examine three cases to interpret the error bound
y=@2'B+1)xe.

= —1: The product of the significant digit fields is at
least 2, so one right shift is required, producing a nor-
malized result. This is possible only if both operands
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were normalized. Consequently, the warning and nor-
malizing results agree and

y=(B/2+)xe < lulpof C

I=0: The product of the significant digit fields is be-
tween 1 and 2, so the result is normalized and requires
no shifting. Hence the warning and normalizing mode
results agree. Whether A was normalized or not,

y=B+1)xe < 3/2ulpsof C

I>0: The product of the significant digit fields is less
than 1, so A must have been denormalized. The warn-
ing mode result is invalid and is replaced by a NaN.
The normalizing mode result requires at least one left
shift 10 produce a normalized result which satisfies

y=(2'B+1)xe < 2'+ W) ulpsof C

As noted, the first two cases, /=0 and - I, cover all
valid warning mode arithmetic, regardless of the oper-
ands. Even if the first operand were denormalized (0 € A
< 1), since the product carried our 1o a normalized result
falling into case /= 0, the error bound of the result would
be no worse than for normalized operands. However, the
case I > 0 points out an important fact alluded to earlier:

The gap between valid and invalid results in the
warning mode is noticeably bigger than a rounding
error, since the error bound of an invalid result ex-

" ceeds by at least an ulp what it would have been for
normalized operands.

In the previous section, we saw the close link between the
valid/invalid boundary and the single and double storage
formats. Now, it is clear that the boundary is not simply
an accident of the implementation nor an arbitrary
threshold drawn from a continuum. Instead, it is dicta-
ted by a jump in the error bound.

The case analysis above can be viewed in a different
way. Although B was introduced as a normalized num-
ber, presumed exact, the computed error bounds were
based on the worst case B = 2. When the analysis is re-
traced for any particular value ! € B < 2 the conclusion is
the same-—namely that y jumps from case /=0 to case
I> 0, even though the particular values of y are dif-
ferent, depending on B.

The case I =0 when A is denormalized was mentioned
in the last section, and will turn up again later. It received
considerable attention within the floating-point sub-
committee because of the apparent breachin the warning
mode's defense, permitting the absolute uncertainty of
denormalized numbers 10 be magnified. However, we
saw in the analysis above that the associated error bound
3/2 ulps of C applies to some normalized products as
well. In fact, this word ‘‘some”’ can be strengthened,
since there are normalized numbers with A’ = A and
B' = B such that

Cry=(A'+xe)xB' +¢

Thus, the perceived growth of the uncertainty of denor-
malized A is unexceptional, since nearby normalized
operands suffer the same error bound.




Does a quotient really differ?

The last three sections have discussed floating-point
products in considerable detail. All the statements about
error bounds apply as well to quotients. Given all the
assumptions about A, B, and C above, consider the
calculation of

(Cx2P) 1= (Ax2M)/ (Bx2")
The normalized quotient takes the form
Cxy=2/x(Axe)/B e

with exponent P=M —N—1. As with the product, three
cases determine the error bound y = (1+2/ / B)xg,
namely 7=0, 1, > 1. These correspond directly to the
cases = —1, 0, > 0 for products.

The offset of 1 in the cases of I reflects an important
difference between the two operations. Because B, which
is normalized between 1 and 2, is in the denominator, one
left-shift of the quotient might be required to normalize
C, even if A is normalized. (Divide 3 into 1 in binary, for
example.) So this one left shift is permitted of any quo-
tient. Though it may appear to be an extra shift, in the
sense that no such shift is allowed a product in the warn-
ing mode, quotients in cases /=0, 1 do satisfy the same
3/2 ulps error bound deduced for products. Quotients
satisfy the analogous bound (2/~'+ %4) ulps of C when
7> 1 and shifts beyond the first “‘free’’ one are required
in the normalizing mode.

A more complicated analysis is required for the calcu-
iation of

(Cx2P):= (Bx2V)/ (Ax2M)

Although the computed error bounds are similar, divi-
sion by a denormalized number is invalid in the warning
mode. This is another instance of the somewhat arbitrary
boundary between valid and invalid results—here, the
expense of building divide units capable of handling un-
normalized divisors was not considered worth the
dubious utility of dividing by tiny numbers in the warn-
ing mode.

The extra shift that quotients are permitted gives rise
to a curious difference between the product and quo-
tient:

(0.1aa. . .aaax 2M) x (1.000...00 x 2%)
and
(0.1aa. . .aaax2M) /{1.000...00x2"")

in the warning mode. Suppose that N > 0 and that Mis
the exponent of A, the smallest normalized number.
Thus, the left operand is a number denormalized by just
one bit, and the right operand is a power of two. Since
the product would be unnormalized, albeit exact, the
result is invalid. However, the quotient (C x2F) is the
normalized number 1.aaa...aa0x2M*¥-1,

This distinction between certain products and quo-
tients is an artifact of the measurement of error in ulps, a
phenomenon that will be discussed below. Were the
product above allowed one left shift then, as noted in the
last section, it would be possible to perturb the operands
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just slightly to get a result suffering an error of up to 5/2
ulps—an ulp more than could be gotten from normalized
operands.

Further impact

Now that the rationale behind gradual underflow has
been presented, it is appropriate to tie the scheme into the
proposed standard as a whole. This will provide some in-
sight into the nature of the arguments that occupied the
floating-point subcommittee for so long.

Until now, we have dealt with operations whose
operands and results were all single or all double. How-
ever, the proposed standard recommends wider exrended
formats for intermediate calculations, thus encouraging
mixed-format operations. As in any scheme of arith-
metic, these mixed-format operations somewhat compli-
cate the analysis. Also, since the optional extended for-
mats have an explicit leading bit, they permit unnor-
malized numbers over their entire exponent range. Thus,
the rules for normalized arithmetic with gradual
underflow must be expanded to accommodate extended
formats. This also complicates the analysis, but it is
beyond the scope of this article.

The specification of the single and double storage for-
mats is based on several good ideas. It is desirable that
the numbers retain their natural ordering when interpre-
ted as signed integers. This implies that when a floating-
point number is viewed as a bit string, its most significant
bit is its sign, followed by its exponent, and then by the
significant digit field. The leading bit of the latter field is
stored implicitly for the sake of added precision. This
ordering property implies that the exponent be biased so
that the value 0 of the biased exponent pertains to the
most negative true exponent. As suggested when the
denormalized numbers were introduced, the exponent 0
is used in the representation of floating-point zero and
the denormalized numbers.

Unlike underflow, which is gradual, overflowed re-
sults are set abruptly to signed =. No effective and eco-
nomical analog of gradual underflow is known for
handling overflow. However, abrupt overflow is
reasonable since calculations can be scaled or otherwise
transformed so that quantities that must transgress a sys-
tem’s limits will underflow gradually. For example, most
iterative procedures are designed to drive a residual value
to negligibility. When a residual underflows to zero
gradually, it is known to be negligible compared with
every normalized number.

The largest value of the biased exponent is reserved for
+ oo (when all significant digits are 0) and the NaNs
(otherwise). In this way, the finite numbers lie between
and the NaNs lie beyond . The specified signed =
allows an affine closure of the number set, although a
projective mode which effectively ignores =’s sign is
specified, too. So that + and — e have distinct recip-
rocals, floating-point zero is signed, though the sign can-
not be discovered except by taking zero’s reciprocal. The
specification of signed zero led to the important decision
to use the sign-magnitude ordering of floating-point
numbers as integers.



The choice of exponent bias exploits the gradual treat-
ment of underflows. To diminish slightly the risk of over-
flow, which is abrupt—though possibly at the cost of
greater risk of underflow, which is gradual—it favors
large numbers in the sense that

AxXA=4

where 4 and A are the smallest and biggest normalized
numbers. This means that if x is normalized, then com-
monplace expressions like 1/x, 2/x, 3/x, and n/x cannot
overflow to =; and if any underflows, it will lose two bits
of precision at worst.

The jaggles

Another argument against gradual underflow arises
from a graph of the so-called ‘‘jaggies.” As represented
in Figure 12, the graph is essentially a bit-by-bit account
of the case / = 0 as discussed earlier under **Analysis of a
product™ and alluded to in **Valid results and the storage
formats.'” Using the notation from the former section,
the normalized factor (Bx2") ranges across the
logarithmic horizontal scale, while the value of A,
assuming (A x 2¥) has the exponent of A, ranges across
the vertical scale.

The purpose of the graph is to show the jagged edge
between valid and invalid products in the warning mode.
The edge is the set of pairs A and Bsuchthat AxB=1,
with 0 < A< 1and 1< B<2. The product of (A x2Y)
and (B x 2") is valid unless M+ N exceeds the exponent
of Aand A x B < 1, in which case the result cannot be en-
coded in a format whose leading significant bit is impli-
citly 1. The claim is that, despite this simple description,
users will not tolerate such *‘jagged’’ behavior in their
arithmetic—that changing an operand slightly should
not make the difference between valid and invalid
results.

This argument falls short for several reasons. First, the
gist of the detailed analysis presented earlier is that,
despite the result of one or another particular product,
there is a powerful general statement describing the in-
herited error in products and quotients in warning mode.
And the jagged edge is not peculiar to gradual under-
flow; indeed. products and quotients were shown to in-
herit uncertainty with an equally jagged graph. Jagged
edges abound whenever calculations depend strongly
upon small differences that amount to rounding errors.

NORMALIZED A

DENORMALIZEDA | V2

RN

WARNINGS ARE GIVEN FOR THESE PRODHCTS

2—1

2 2! 2? 25 24 2
(B x 2%

Figure 12. The jaggles.

5.15

Independent of the discussion of gradual underflow or
particular operations, the graph of the jaggies should be
nothing new to users of floating-point arithmetic. If the
horizontal scale is simply the real number line and the
vertical scale measures the relative uncertainty of real
numbers rounded to the form (B x 2"), a graph with ex-
actly the same shape results. And not a single arithmetic
operation is involved! Thus, the jaggies are simply
another rounding phenomenon—which is what gradual
underflow is intended to be.

Conclusion

Floating-point computation is intrinsically com-

‘plicated. Traditionally, implementors have simplified

their task at the expense of more complicated—or less re-
liable—software. However, the proposed standard takes
the opposite tack. Consequently, the details of im-
plementation of the proposal are many, as shown in an
carlier article.’® But, as proven here for underflow, a
close look reveals an underlying coherence that leads to
simple statements about the arithmetic. The implementa-
tion complexity will be justified if high-quality software
developed for standard environments proves 1o be
simpler, more portable, and thus cheaper than it has been
in the past.

New software will tend to employ the normalizing
mode, by request in the prologue of the program, since
sO many computations lend themselves 1o an analysis
proving that denormalized numbers can be normalized
with impunity. Nonetheless, the constraints of current
and past software practice dictate that the warning mode
be specified as the default mode of operation in the pro-
posed standard. Periodically, the simplicity of both ex-
plaining and implementing the normalizing mode with its
effective lack of unnormalized operands will be redis-
covered, and it will be suggested as the default (and
perhaps only) mode of operation. This may be fine for
the future, but for now, existing programs have 1o per-
form at least as well as they have in the past—or stimulate
a warning. For this, the warning mode is vital.
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CHAPTER 6

Comparisons and Branching

1. Introduction

A basic fact of real arithmetic is that two numbers z and ¥ compare as
exactly one of less, equal, or greater. However, this so-called trichotomy
property does not hold when the real number system is expanded to include
not-a-number symbols (NANs) because these symbols have no natural order-
ing with the real numbers. This chapter deals with the issues raised by NANs

in the number system.

Loss of the trichotomy property complicates comparisons. Consider the

simple code sequence:

ifx > 3.1416 then ...

else...

If z is a NAN then the inequality is surely false, so the else clause must be
executed. But might the else clause have been written with the presumption
“z < @' in mind? If so, a NAN value of x may be disastrous. The problem is
more historical than technical. Since most computer systems to date have
simply stopped when a non-numeric reserved operand appeared, this prob-
lem has been avoided, though at considerable cost in the utility of the
reserved operands. Nowadays, when arithmetic operators are overloaded to
apply to complex numbers, arrays, or intervals, which though ‘‘numeric®

may have no linear ordering, the very same issues arise.

Here are the subjects to be dealt with in the coming sections:

6.1




(1)

(2)

(3)

(4

(5)

(6

6.2

In a system supporting partially ordered entities, what rules for com-
parisons hold in lieu of the trichotomy property of the real number sys-

tem?

What do the expanded rules for comparisons have to say about the rela-
tional operators of current languages? For example, Pascal's relational

operators
= <> < <= > 3=
themselves reflect the presumption that if two values are not equal, <>,

then they are related as less or greater.

What protection is there for existing programs and programmers who
labor under the assumption that floating point entities enjoy the tricho-

tomy relation?

How can the relational operators of current languages be expanded in a
reasonable way? What expansion, if any, is required by the proposed

binary floating point standard P7547?

What underlying implementations of floating point comparisons best

serve the needs of language systems and programmers?

How can the expanded set of relational operators be made compatible

with existing computers?

2. Relations

In the P754 number system with its NANs, the trichotomy is expanded to

the four-way relation less, equal, greater, or unordered. Determining the

relation between two floating point values z and ¥y is actually quite easy.

Working backward from the special cases:
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if z is NAN or y is NAN then z and y are unordered ...

else z and y are less, equal, or greater according to the ordering of real

numbers with the understanding that

+0 = -0 = reall

and

—co & {all real numbers ] < +ew |
Some computers, notably the CDC 6000 class, have been built without a
floating point comparison instruction, regquiring compilers and assembly

language programmers to issue code sequences like

temp « -y

test temp for positive, negative, or zero

to eflect comparisons. However, the proposed standards make this type of
implementation inconvenient, if not infeasible, by explicitly prohibiting the
possible side effects of the subtraction — overflow, underflow, inexact result,
invalid operation (see §5.7 of draft 10.0). Even with all due care in suppress-
ing the extraneous exception flags in the subtraction, the scheme above will
require special tests for cases like += = +=, since (+=)—{+=) is invalid, not

zZero.

Of course, if a signaling NAN appears as an operand in a comparison it
stimulates the invalid operation exception, just as it would in any other arith-
metic operation. Like a quiet NAN, it would compare unordered with the
other operand, though an invalid operation trap handler might modify the

relation based on an interpretation of the NAN outside the scope of P754.
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3. Current Language Predicates

In a P754 system, current language predicates like =, <, and >= keep
their literal interpretation despite the new relation unordered. For example,

consider the Pascal code fragment:
if z <y then begin ... end
else begin ... end;

If and only if x is less than y is the then clause executed. If z is equal to,
greater than, or unordered with ¥ then the else clause is executed. Thus the
meaning of the relational < has not changed, only the inference drawn from

its negation; execution of the else clause no longer implies that z > y.

Similar rules apply to the relationals =, <=, >, and >=. Their literal
interpretation is honored in deciding the fate of an if-then-else clause. How-
ever, the situaltion is more interesting for the relational *‘not equal” because
of the way it is written. In Pascal, the literal interpretation of “<>” is *‘less
or greater”. On the other hand, the literal interpretation of the FORTRAN
*“NE."” is more reasonably ‘‘less, greafer, or unordered’’. Current users of
both languages probably refer to both relationals as *‘not equal’’ and might
be surprised at any semantic difference. Is it better to follow the literal
interpretation of the syntactic form or to be consistent with the probable
intent across different languages? One could argue the former case on taste
and the latter on the basis of portability of algorithms between different
language systems. Since the computer cannot read the programmer’s mind,
it has to take what is said literally just in case what is said is what is meant

literally.
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4. Old Habits

The fourth relation, unordered, can undermine old programs, old pro-
grammers, and even old programming languages. Proposal P754 provides a

measure of security against mistaken inferences in else clauses such as
if z <y then begin ... end
else begin ... end

by stipulating that in such instances, if £ and y are indeed unordered, the
invalid operation exception should be stimulated. This is the best that can
be done since there is no floating point “result” from the comparison, with

which to propagate the NAN operand's diagnostic information.

According to §5.7 of P754, the invalid operation exception is to be sig-
naled when unordered operands are compared with a predicate “involving"*
the relations less or greater but not unordered. Thus, two families of rela-
tionals are deliberately exempted from the protection mechanism for unor-
dered operands. First, the FORTRAN *.EQ.” and “.NE.” are always unexcep-
tional since the are used in floating point calculations primarily to weed out
special, anomalous, values. This is quite different from using **.LT." to distin-
guish the condition less from “greater or equal’’; this comparison involves a
presumption that may not be valid. The second exemption from the invalid
exception is for any predicate that explicitly mentions (i.e., “‘involves”) the
unordered relation. As of this writing, there are few implementations of
languages with such relationals. But one could imagine an expanded FOR-
TRAN with “.ULE." for “‘unordered, less, or equal”. P754 exempts a state-

ment like

IF (X .ULE. ¥) GOTO 2050
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from the invalid operation exception when X and Y are unordered since, by
writing **.ULE."”, the programmer has shown a modicum of regard for the

unordered contingency; no protection is required.

These special relationals exempt from exceptions on unordered raise

some additional issues. Consider the two FORTRAN tests

IF (.NOT. X .GT. Y) GOTO 2001

IF (X .ULE. Y) GOTO 2001
Although the logical negation of “greafer” is indeed '‘wnordered, less, or
equal”’, the two tests differ in the invalid operation side effect. The latter

test is exempt from the exception because of its mention of unordered in the

relational; the former test is not. On the other hand all of the tests
IF (X .NE. Y) GOTO 1984
IF (.NOT. X .EQ. Y) GOTO 1984

IF (X .ULG. Y) GOTO 1984

cause a branch precisely when z and y are related as “‘unordered, less, or

greater”, and all are exempt from the invalid operation on unordered.

5. P754 Predicates

The following table, adapted from proposal P754, describes the complete
set of 26 relational predicates. Since there are four possible relations, less,
equal, greater, or unordered, each of which may be tested for true or false,
there are in principle 2* or 16 possible combinations. The unconditional true
and false are omitted, leaving 14. Including the logical negations, that is
(z <y) and NOT(z <y), yields 28. But two pairs of these

(zx =y) and NOT(z ?<>y)

and



NOT(z = y)

and

(z ?2<>y)

6.7

are functionally identical; deleting one of each pair leaves 26 functionally dis-

tinct relational predicates. (Note that the 12 other such pairs are function-

ally distinct because one member triggers the invalid operation exception if

the operands are unordered, and the other is unexceptional.)

6. Extending Existing Languages

P754 specifies what to do with each of the possible relational predicates

that can be formed given the four relations equal, less, greafer, and

Predicates Relations Exception
greater | less invalid if
ad hoc FORTRAN math than than | equal | unordered | unordered
= EQ. = F FI|T F No
<> .NE. # T T F | T No
> .GT. > T F F F | Yes
= .GE. > T F:T F | Yes
< LT. < FIT ¥ F | Yes
= LE. < FiT T F | Yes
? unordered F F F| T No
<> LG. T T F Yes
<=> .LEG. T T T Yes
?> UG. T F FIT No
>= UGE. T F|T T No
?< UL FIT F|T No
7<= .ULE. F|T T T No
P= UE. F FIT T No
NOT(>) FI|T T T Yes
NOT(>=) FI|T FIT Yes
NOT(<) T FIT T Yes
NOT(<=) T F F|T Yes
NOT(?) T T T F No
NOT(<>) F T Yes
NOT(<=>) F F F Yes
NOT(?>) FI|T F No
NOT{(?>=) FI|T F F No
NOT(?<) T FI|T F No
NOT(?<=) T F F F No
NOT(?=) T T F F No
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unordered. However, the proposed standards do not force a language imple-
mentor to provide any given set of relationals. Virtually every programming

language provides the set shown here for Pascal, BASIC, C, and FORTRAN.

Pascal and Basic C FORTRAN
= == Q.
<> 1= .NE.
< < LT.
<= <= LE.
> > .GT.
>= >= .GE.

How should this set be expanded, if at all?

First consider an easy case. Suppose that the C programming environ-

ment is expanded to include the predicate function

integer unordered(z, y)
float r, y;
ton

which returns the value one if and only if £ and y are unordered, without
raising the invalid operation exception, and returns zero otherwise. Then the

whole gamut of predicates is avaliable through constructions like
if (unordered(z, y) || (z <y) ) {...}

The logical OR operator “||'"* is such that if the left expression is true (i.e.,
nonzero), then the comparison on the right is bypassed. This short-circuit
evaluation allows the programmer to bypass the invalid operation exception
the standards would mandate in case unordered values of x and y were com-
pared with “<". C’s logical operators were designed with just such uses in

mind.

Now consider a Pascal system augmented by
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function unordered(z, y: real): boolean;

which returns true if and only if z and ¥ are unordered. The Pascal version

of the C test above is
if unordered(z, y) or (z < y) then begin ... end;

Unlike C, Pascal does not specify the order of evaluation of the two tests.
And Pascal says nothing about short-circuit evaluation, in case the first of
the two expressions is true. So, although the flow of control is unambiguous,
the invalid operation exception side-effect is left to the whims of the Pascal
system. The programmer who would avoid unwanted side-effects caused by

unpredicatable order of evaluation must force the order by nesting the tests:

if unordered(z, y)
then begin ... end
else /* vacuous case */
else
ifz <y
then begin ... end

else; /*vacuous case */

Unhappily for the Pascal programmmer, it may be necessary to use goto’s to

avoid duplication of code within the nested cases.

The Pascal programmer would be aided by an expanded set of relation-
als. Consider the set above augmented by the following set (written for FOR-
TRAN and C as well):
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Math Pascal and BASIC C FORTRAN
unordered ? ? .Uo.
unordered or equal = 7= UEQ.
unordered or less ?< 7< JULT.
unordered or greater ?> ?> .UGT.
unordered, less or equal 7<= K= .ULE.
‘unordered, greater or equal ?>= D= .UGE.
unordered, greater or less <S> = .NE.
(not equal)

The *‘not equal” operator is now written precisely for all of the languages.
The *‘less or greater' operator '*<>' of Pascal is not shared by C and FOR-
TRAN, but it is not so useful anyway. The symbol **?" in the Pascal and C
relationals and the letter "U" in the FORTRAN relationals is deliberately
placed at the head of the relational to suggest its short-circuit effect, that is,

that no invalid operation exception will arise if the operands are unordered,

These relationals have two unfortunate properties. The FORTRAN ver-
sions are coincidental with the typical assembly-language names for the
unsigned integer comparisons, which could cause confusion. Also, the ques-

tion mark may be inscrutable when used in a context like

if z ? y then begin ... end;
An alternative is to use either the function unordered(), or the complemen-
tary relationals with logical negation, like

if not (x <=> ) then begin ... end;

In the latter case, P754 calls for the invalid operation side effect when = and
Yy are unordered since there is no explicit reference to the unordered rela-

tion.
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7. Hardware Support for Language Constructs

Now that we have explored the language issues in comparisons we can
look at the required hardware support. A conditional branch construct like

the Pascal

if £ <y then begin <block A> end

else begin <block B> end,

might be compiled into assembly code of the form:

COMPARE =z,
BRANCH  UGE, LABEL-B ; skip to block Bif 2, >, or =

<block A>

BRANCH FINI ; unconditionally skip block B
LABEL-B:

<block B>
FINI:

What is important is that the compiler has *‘flipped’ the sense of the predi-
cate being tested, in order to branch around the then clause. In this case
the relational **<"’, which triggers invalid if x and y are unordered, is impli-
citly replace by *“?>=", which is never invalid. And an optimizer may
attempt later to move code blocks A and B by flipping the relational once
more. This is bad news if the arithmetic associates the invalid exception with

the assembly language branch condition.
The compiler has three fundatmental responsibilities:

(1) Ensure that unordered operands trigger the invalid operation exception

just when appropriate.

(2) Ensure that flipping the sense of the relational takes into account the

four possible relations.

(3) Ensure that subsequent optimizations are safe.
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Perhaps the simplest way to a robust implementation is to have two
comparison instructions: one just a straight arithmetic comparison, and one
that will also trigger the invalid operation exception on unordered. Then the
compiler can issue the required flavor of comparison on the basis of the rela-
tionall that appears in the source program, and the conditional branches can

be flipped with impunity later.

8. Implementation Examples

The following sections illustrate ways of implementing the P754 predi-
cates using the conditional branch schemes on existing CPUs. These proces-
sors were designed with the trichotormy in mind so some special care has

been required.

B.1. 16-bit Microporcessors

The families of 16-bit microprocessors available today from Intel (8086),
Motorola (68000), National (16000), and Zilog (Z8000) are two’s-complement
integer-only machines. These CPUs implement trichotomy comparisons

using a set of condition code bits like:

C ~ carry-out of result
Z — zero result
S — sign of result

V — integer overflow

S is sometimes called N, for “negative bit”. These bits are typically set
according to the result of each integer arithmetic operation. They are
tested using the conditional branch instructions. All the CPUs above either
already have or are intended to have hardware support for floating point in

the form of co-processor or slave chips. Will their existing branching
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schemes suffice, even though the trichotomy property does not apply to

P754 comparisons?

The conditional branch instructions come in two flavors depending on
whether they interpret integer results as unsigned or two's-complement
signed. The unsigned branches use the C and Z bits, and the signed branches
use the Z, S, and V bits. By an appropriate mapping of floating point com-
parisons into the condition code bits, the two flavors of branches can be rein-

terpreted so as to incorporate the unordered relation.

For definiteness the following discussion is based specifically on the
Zilog 28000 microprocessor. Execpt for notational differences, the situation
is the same for the other three microprocessors. One possible mapping of

the condition code bits for floating point comparisons is:

C — set iff less
7 — set iff equal
S — set iff less

V — set iff unordered

A useful interpretation of the Z8000 branches is given for the expanded list of
Pascal relationals. A question mark signifies unordered in the ad hoc rela-
tional predicates that mention that relation. Note that of the fourteen possi-
ble combinations of the four relations (ignoring the trivial true and false)
only one complementary pair cannot be tested with a single Z8000 condi-

tional branch.

Pascal Integer 28000 Condition
Predicate Predicate Code Setting
= = Z2=1
< unsigned < C=1
<= unsigned <= CorZz=1

> > Zor(SxorV)=0
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>= >= SxorV=0

? < SxorVv=1
<= <= Zor (SxorV)=1
> unsigned > Corz=0
D= unsigned >= C=0

? overflow V=1
<= no overflow V=0
<> not equal Z=0

?= NONE ZorV=1

<> NONE ZorV=20

With this mapping of the condition codes, full support is given the assembly
language programmer (and the compiler) if the assembler merely recognizes
the set of ““floating relationals’” and maps them into the appropriate condi-

tion code test. For example, the assembly instruction
JR FLELABEL3

requesting a Jump (Relative to the current program counter) to LABEL3 if
the floating relation <= is true, would be interpreted as the actual 28000

instruction
JR ULE,LABEL3
using the integer relation unsigned <=.

Although this mapping between integer and floating relationals may
seem nonintuitive at first, it i1s an exercise to show that this is the best that
can be done. The only nontrivial flexibility 1s in choosing which two “*double"
relationals will require two branch intructions. In this case, the relationals

?= and <> were chosen as the least likely to arise in practice.

B.2. Bbit Microprocessors

The Intel B0BO, Rockwell 8502, and the Zilog ZB80 are three common 8-bit

integer-only microprocessors. Each has 4 condition code bits
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C — carry-out of result
2 — zero result
S — sign of result

V — integer overflow

like the 16-bit processors above. But the 8-bit processors lack the full com-
plement of signed and unsigned branches. Instead, each of the condition
code bits must be tested individually with instructions like “branch on carry

set’’, *“branch on carry clear’’, etc.

So there is no clever mapping between the floating point relational
predicates and the signed and unsigned integer predicates. The best that
can be done is simply to map each of the the four floating relations onto one

of the condition code bits:

C — set iff less
Z — set iff equal
S — set iff greater

V — set iff unordered

A useful interpretation of the 280 branches is given for the expanded list of
Pascal relationals. A question mark signifies unordered in the ad hoc rela-
tional predicates that mention that relation. Note that of the fourteen possi-
ble combinations of the four relations (ignoring the trivial true and false)
only the combinations involving cne or three relations can be tested with just

one conditional branch.

Pascal Condition
Predicate Code Setting
= Z=1
< C=1

= C=1or Z2=1
> S=1
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>= S=1or Z=
? V=1
<= C=1orvVv=1
?> Szl or V=1
D= C=0
? V=1
<=> V=0
7> Z=0
= Z=1or V=1
<> C=1lor S=1

Beyond this, this situation differs on the three microprocessors. The
BOBO a set of three-byte branch instructions (one-byte opcode followed by
one-word absolute address) to test each of the condition code bits; the Z80
has these instructions plus two-byte branch instructions (one-byte opcode
followed by a byte offset from the current program counter) to test the C
and Z bits. On the other hand, the 6502 has only two-byte instructions to test
the condition code bits; branches beyond the range of the one-byte offset

must be handled with an unconditional three-byte jump.



CHAPTER 7

Accurate Yet Economical Binary —Decimal Conversions

“The ultimate aim is to persuade all of the civilized world to ebandon the de-
cimal numeration and to use octonal in its place; to discontinue counting in
tens and to count in eights instead. However, it seems unlikely that the
whole civilized world will be persuaded to complete this change during the
next twelve months, having previously declined similar invitations."

E. William Phillips (1936)

Introduction

Because of our ‘‘uncivilized"” insistence on decimal arithmetic for every-
day calculations, today's high-speed computers, most of which perform
arithmetic in radix two or a power of two, must be supplied with conversion
routines to expedite input and output of data in decimal form. These utilities
typically run without the benefit of extra range or precision, in which case
they are provably inaccurate, and often they use many more floating-point
operations than do more robust algorithms. Now, proposed 1EEE standard
P754 for binary floating-point arithmetic [1] attempts to impose accuracy
specifications for binary-decimal conversions. It turns out that the required

accuracy can be achieved with very economical algorithms.

This chapter is an extended footnote to proposal P754. It describes
algorithms that guarantee correctly rounded results for all input values.
However, these schemes can be costly in time and space. The principal con-
tribution of this chapter is an economical alternative, a set of fast algorithms
that provide results that are just accurate enough. These algorithms have
been adapted from an earlier implementation guide [3]. Implementors

interested only in the algorithms may turn immediately to §2 of this chapter.

7.1
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For the more leisurely reader, §1 introduces P754 and discusses the
important issues in radix conversion. Unfortunately, discovering what is
accurate enough in lieu of correct rounding, and correlating this with an
efficient implementation, entail a surprisingly tedious error analysis. This

analysis constitutes §3.
1. Radix Conversion Issues

1.1. Proposed Standard P754

A brief survey of proposed IEEE standard P754 for binary floating-point
arithmetic will explain some of the terminology in the rest of the paper. The
basic goal of the standard is to provide users with a computing environment
conducive to the production and portability of numerical software. P754
specifies 32-bit single and 64-bit double formats, as well as optional system-
dependent extended formats. The extended formats may be thought of as a
computer’s internal types; when available to programmers, they offer some
valuable extra range and precision at little added cost in execution time and
implementation complexity. P754 requires results computed as though with
unbounded range and precision, and then coerced (by rounding and checks

for exponent over /underflow) to fit in the destination format.

Four modes of rounding are specified in P754: the default mode to
neares! and the three directed modes foward ~=, toward 0, and foward +,
To express them in terms of radix conversion, let z and X represent binary
and decimal floating-point numbers, respectively, with preassigned precision.

Then the conversion z - X is correctly rounded if when rounding

to nearest: X is the nearest decimal to z, in case of a tie X has an even least
significant digit
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toward 0: X is the nearest decimal to z satisfying |X| < |z|
toward +w=: X is the nearest decimal to z satisfyingz < X

toward —=: X is the nearest decimal to z satisfying X < z.

Analogous rules apply for decimal to binary conversion X - z. However, for
huge and tiny values of z and X these rules are so expensive that P754 per-
mits them to be relaxed by, roughly speaking, replacing ‘‘nearest’’ with

“nearest or next to nearest’’.

Radix conversions are vulnerable to rounding errors, exponent overflow,
and exponent underflow. In addition to these exceptions, P754 distinguishes
two others, division by zero, and invalid operation (like 0/0), but these do not
matter for our purposes. Associated with each of the exceptions is a status
flag accessible to programs. A flag must be set whenever its corresponding
exception arises; it may be cleared only by user software. An implementa-
tion may also support traps for each of the exceptions, but these are
optional. Traps present problems more system-related than numerical, but
they are mentioned later in the few instances where they affect the algo-
rithms. Finally, P754 specifies the symbolic entities += to cope with overflow
and division by zero, and NAN (not—a—number) to deal with invalid operations.
Conversion to and from these symbols is left as a special case to be handled

by the implementor.

1.2. Floating-Point Number Systems

A conventional floating-point number system is characterized by its
radix, precision, and range. For example, the values of the finite numbers in

the P754 single format are precisely the values

ﬂ:bg'blbgbs o b23 % 2° ’
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where each b is either Oor 1 and ~126 < e < +127. A simple way to view this
number system is to divide the real number line into intervals of the form
[2""‘, 2"]. We call these binades, the binary analog of decimal decades.
Within each such binade the P754 single numbers have the absolute spacing
2" "% 5o they divide the binade into 2%° equal pieces. The size of the pieces
doubles from binade to binade to the right. The following picture illustrates

the number system near 1 on a logarithmic scale.
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Of course this picture does not apply across the entire number line
because of the constraints on the exponent e. What happens at the limits of
the representable number range poses no serious problem in radix conver-
sions. In particular, the tiny but notorious denormalized numbers of the

P754 formats [4] require no special treatment.

Decimal number systems are analogous, using instead of bits b, decimal

digits di.. In a decimal format with values
ﬂ:do’dldzds ot dP—'l X 10E
the intervals of interest are the decades [10V7}, 10Y] wherein the absolute

spacing is 10YP. The spacing jumps by a factor of 10 from decade to decade

to the right. The case P =9 is shown in the following diagram.
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Our goal in this paper is to devise mappings between binary and decimal
number systems that satisfy as nearly as practical the rules for correct
rounding. What complicates the problem is that the two systems do not
mesh compatibly; at some places the binary spacing doubles while at others

the decimal spacing jumps tenfold.

We can be more precise about the relation between binary and decimal
spacings. Suppose we have p-bit binary and P-digit decimal floating-point

approximations to a real number Z:

bO'ble' ' ‘bp_lxze R & dO'dle' : 'dp-lx 1OE ,
with b5=1 and dp>0. Then the binary and decimal spacings near Z are simply
the units in the last place (ulps) of the respective approximations. They are
ulp; = 2°P*! and ulpyg = 10E-P+!

from which we get the relation

ulpo  _ [10P)  [1081)
ulpz 27F J 28+lj

between ulps,q and ulpsz. The fixed ratio 10°F/2P depends on the preci-
sions of the binary and decimal formats. However, the ratio 10F+!/2¢+!
depends on Z. It varies between a maximum of almost 10, when Z lies in
intervals of the form [10V, 2"] where 10" ~ 2", and a minimum just above

1/2, in the corresponding intervals [2™, 10¥]. So we deduce the formula

-P
10 x 1:_p (C)

~-P
1,110 < 4o
2 2P ulpz

which is useful in bounding ulps; and ulps; in terms of each other.

From formula C we can find roughly equivalent binary and decimal pre-
cisions. If we choose precisions p and P such that the ratio 10°P/27P is

about 1, then ulpg and ulp;p would be about the same size, up to the factor
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10F+1/28+1 For example, the P754 single format has precision p = 24; since
27%% is about 8.0x1078, the corresponding decimal precision is somewhere
between P = 7 and P = 8. The P754 double format has precision p = 53, with

2753 about 1.1x107!; so the corresponding decimal precision is about 186.

1.3. A Distinguished Decimal Precision

Some applications demand that any representable binary floating-point
value be obtainable by rounding an aptly chosen decimal number. That is,
the decimals should be so dense as to distinguish the binary numbers. How

many decimals are required? That is the question we turn to now.

This separation property has been discussed in the literature before, for
example in 1. B. Goldberg's astute note [5] on the binary precision required
to distinguish eight-digit decimal numbers. He worked in the opposite direc-
tion, distinguishing decimals with internal binary values, but the issues are

the same. What we need for this paper will be redeveloped here.

The problem is, given binary precision p, to find the decimal precision P
required to distinguish the binary numbers. A condition suflicient for dis-

tinction is given by the following:

Separation Requirement. For every binary number z, either z is
exact in the decimal format, or z's nearest decimal neighbors
X <z < X' are such that X*—X~ is less than the distance from z

to its nearest binary neighbor.

This requirement implies for every z that there is a decimal number nearer
to z than to any other number in z's format. Thus it guarantees that some
decimal number would round to z in a correctly rounded conversion; that is,

it gpuarantees distinction.
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To see how to satisfy the separation requirement, consider the number
line below on which a power of ten is bracketed thus, 2" !< 10V < 2n, by
adjacent powers of two. The spacings of p-bit and P-digit numbers in the
respective binades and decades are shown, although the representable ticks

are omitted for clarity.

N

[ l Lk V. |

JENAPETTE B AN
2n-—1 2n 2n+1

If the separation requirement is satisfied in the interval [10¥, 2™}, then it is
surely satisfied throughout the entire decade [10%, 10¥*1] in which the
decimal mesh is uniform while the binary spacing doubles across successive

binades.

So it is enough to study the critical intervals [10¥, 2*]. If P is the
number of decimals carried and p is the number of bits, the separation

requirement is equivalent to requiring that

ulpy = 10V P#1 ¢ 2nP = yp,
hold over all pairs of corresponding N and n. Rewriting the inequality in the

form

10—P+l < on
2P 10V

shows that 2P > 107P*! is a sufficient condition for separation, because
2»>10". In the P754 single and double formats, with p =24 and p =53, respec-

tively,

2% m~ g.0x107® > 107® and 27%% ~ 1.1x107'® > 1078

ave
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so P=8 and P=17 satisfy the separation requirement.

We have derived the chain of inferences

107P*1 < 2P - Separation Requirement - Distinction
Now, can we complete the chain and show that all three conditions are logi-
cally equivalent? The answer in general is NO, but the explanation is
deferred to the Nit-Picking at the end of the paper. The answer for P754 sin-
gle and double is YES. To see that P=9 and P=17 are actually necessary for
distinction, we need only consider the critical interval [103, 2!°]. There, the
binary spacing 6.1x107° for p=24 is coarser than the decimal spacing 107°
for P=8, but is almost twice as fine as the spacing 107 for P=B. So by the
pigeonhole principle P = B could not achieve distinction. The situation for

p=53 and P=17 is similar.

In the last section we looked at roughly equivalent binary and decimal
precisions on the basis that ulp;; ® ulpp. Although the P754 single format
gives about 7 or B significant digits of precision, P=9 is required to ensure
that ulp;p < ulpz even in the most critical intervals [10”, 2"]. In general, the
decimal precision P necessary and sufficient for separating binary numnbers
of precision p, is the smallest P satisfying 107°*1 < 2P This may be
thought of as a requirement that the widest relative spacing in the decimal
format be just narrower than the narrowest relative spacing in the binary

format.

Now that we have fixed the relation between p and P, we can flip the
ratios in formula C to bound ulp; in terms of ulp,e. The ratio 10/ 2P is about
59.6 for P754 single and 11.1 for double. Thus the spacings of 9-digit decimal

numbers and P754 single format numbers satisfy



5.96 ulp;g < ulpsg

< 119 ulp,q ,

and the spacings of 17-digit decimal numbers and P754 double satisfy

1.11 ulpsp

< ulpz < 22.2ulpy .

7.9

These bounds are nearly achieved in practice. Consider the two border cases

2% & 10'® and 2'% ~ 10% illustrated in the figures

253 254

for which the following table applies.

L

2102

Approximate spacing ulpy as a multiple of ulp,,.

[258' 1018] [103)’ 2103]
P754 single 107 ulpjo 6.04 ulp;g
P754 double 20 ulp;p 1.13 ulp,g

b

2103

From these examples and the discussion above we see that the 9-digit

decimal numbers are always at least six times as dense as P754 single format

numbers, while in some intervals the 17-digit numbers just barely distinguish

double format numbers. It is a remarkable coincidence that the P754 single

and double formats reflect the near extremes of tightness in decimal encod-

ings! We will return to the separation property later when we analyze imper-

fectly rounded conversions in §3.

1.4. less than Perfect Rounding

Conversions using a computer’s built-in floating-point arithmetic typi-

cally commit somewhat more than the expected rounding error. Just how

imperfect may such conversions be, and still be accurate enough? We might

atternpt to preserve as many as possible of the important properties of ideal
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conversions. Consider the following list, in which binary values are given in

lower case (z, y¥), and decimal values in upper case (X, Y).

[Sign symmetry.] When rounding to nearest or toward 0, if z - X, then -z -
~X; and if X » z, then =X -+ —z. When rounding toward +w, if x - X,
then when rounding toward —e, —x -+ —X; similar relations hold for the

conversion X - z and with the rounding directions swapped.

[Monotonicity.] Ifz <y,z » X,andy » Y, thenX<Y. f X <Y, X -» z, and

Y-y, thenx < y.

[Direction.] When rounding foward +e, if  » X thenz < X, and if X » z
then X < z. Similar inequalities hold when rounding toward 0 or toward

—

[Recovery.] If X is carried to at least 9 (17) decimals then z -+ X = z when
rounding to nearest in single (double). And if X is carried to no more

than 6 (18) decimals then X » = - X.

[Sensibility.] Applied to numbers of reasonable size, conversions should be
correctly rounded. For example, results like 3.0 » 2.99999...9 and 0.5

-+ 0.5000...01 from binary to decimal conversion are unacceptable.

[Consistency.] X should map to the same internal value =z regardless of
whether X appears in the source text of a program or is put in as data
at execution time. Similarly, a value T should be displayed as the same
decimal X (for a given format) regardless of the programming language

or output medium used.

The consistency property often falls victim to system or language
idiosyncracies. Perhaps the most bothersome situation can arise when a
language compiler uses a different (imperfect) conversion scheme than the

run-time 1/0 facility. In that case, a user might be unpleasantly surprised to
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discover that the debugging statement

r = 3.14159265
has a different effect than does typing that decimal string in response to the

prompt ‘‘Test value x = ?'* at an interactive terminal.

Recovery of a binary number z from the chained conversionz -+ X -» x
is guaranteed if the conversions are correctly rounded and if X is kept to
decimal precision P sufficient to distinguish binary numbers with the preci-
sion p of x. We discussed the relation between P and p in the last section.
Now we would like to carry the recovery property over to imperfectly
rounded conversions. We must ensure that the total error in the two conver-
sions is less than one ulp,. Formula C bounds the binary to decimal error,

measured in ulps;g, as a fraction of an ulpz. The condition

10-—P+1

p— X b-d errorinulp;g + d-berrorinulp, < 1ulp;

is sufficient for recovery z » X - z. Measured in their respective ulps, the

individual bounds are at least %—ulp due to rounding. But the factor

(107P*1/27P), which is about 1/ 6 for single and 9/ 10 for double, provides a
cushion in binary to decimal conversions, so it is possible to keep the total

error less than 1 ulp,.

The factor (107P*1/27P) is the maximum relative spacing of full preci-
sion decimal numbers to representable binary numbers. The value 1/6 for
the single format suggests that the 9-digit decimal numbers are so dense
that perhaps a few full ulps;; error could be tolerated in binary to decimal
conversions without losing the recovery property. On the other hand, the
factor 9/10 leaves little margin for extra error in binary to decimal conver-

sion from the double format.
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The properties listed at the beginning of this section are reasonable
requirements for binary-decimal conversions but they are incomplete as a
set of specifications. It is a simple exercise to invent bizarre conversions
that satisfy these rules but almost always yield ridiculous results. What is
needed is a bound on the extra rounding error incurred. The cryptic figure
0.47 ulp was put in proposed standard P754 as a worst-case bound, not to
guarantee the properties listed above. In fact, it is too high for all conver-
sions but binary to decimal from the single format in a directed rounding
mode, and for that case it is lower than absolutely necessary to preserve the
other properties. But we suspend further discussion of the error bounds

until we have analyzed the algorithms below.

2. Algorithms

2.1. Correctly Rounded Conversions

We will look first at algorithms for correctly rounded binary-decimal
conversions. The error properties of such conversions are already well
known, thanks especially to an exhaustive series of papers by D. W. Matula[7].
But the algorithms themselves have not been discussed, due perhaps to their
impracticality.

Consider conversion from the P754 single format to decimal. The input

values will have the form

tbpeb by - - - bpgx 2° where —126<e < +127 .

These values are representable exactly in the binary fixed point format

Tizrlizslies * © - TelyiooS oS -2 f —148f -140

and can be converted exactly to the decimal format
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Tsalsplsg  Tel\JooF\F g - FgyF g5 F_y149F 149
with equally many fraction digits. Of course the decimal value will usually be
rounded down to some more manageable length, depending on the output
precision desired. The important point about such conversions is that they
require arithmetic on a wide bit buffer for the binary input and a wide digit

buffer for the decimal output.

There are several ways to perform the integer conversion. One is to
repeatedly divide the binary integer buffer by a power of ten; then the suc-
cessive remainders give the decimal digits from right to left. Another way is
to scan the integer bits from left to right, accumulating a decimal value that
must be doubled at each step. In yet another scheme the binary integer
would be divided by a huge power of ten, perturbed upward a little bit, and

then converted as a fraction.

A binary fraction may be converted to decimal by repeated multiplica-
tion by a power of ten; the successive integer parts give the decimal digits
from left to right. For example, since 10 = B+2, multiplication of a bit buffer
by 10 can be accomplished by shifts of three and one bits, followed by an add
of the shifted values. The case 1000 = 1024—16-8 is similar and provides

three digits at each step.

Once the integer and fraction parts are convertea as necessary, the
decimal fixed point value, if not exact, must be rounded to the precision of
the target format. In the worst case this entails propagating a carry across a
string of nines, possibly causing a carry out of the left end. Correct rounding
is possible — even in the half-way cases when the least significant digit output
must be even — because the integer and fraction schemes above produce

successive digits correctly. For example there is never a question whether a
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string of digits “4999..."" should actually be *5000...”, as is the case with ele-
mentary transcendental functions. Only in the integer conversion requiring
the small perturbation must care be taken not to confuse the perturbation

with rounding error.

Further discussion of integer and fraction conversion algorithms may be
found in [6, pp. 302-312] and [9, pp. 436-459]. Appendix D contains a sample
implementation of correctly rounded conversions. The procedures are
presented as a Pascal unit (in the notation of Apple 11l Pascal [2]) suitable for
inclusion in a system library. They may be parameterized to support P754

single, double, or even double-extended format conversions.

Although the correctly rounded conversions are conceptually simple, all
of the schemes discussed above suffer time penalties on machines without
significant support for the wide binary and decimal quantities involved. For
example, the first two integer schemes require that all integer digits be con-
verted. Fraction conversion is somewhat simpler, and it has the advantage of
producing digits from left to right, so it may be stopped when enough digits
have been obtained to round to the target precision. The time and si)ace
penalties incurred are severe for operands of wide range and precision. The
Pascal routines in the appendix require one 1400-bit packed BCD buffer and
one 1000-bit binary buffer in order to perform P754 double format conver-
sions. Such conversions are unsuitable for implementation, say, on a chip
supporting the rest of a floating-point engine and presumably subject to time
and memory tradeoffs. But they are ideal for low-end implementations
either done entirely in software or lacking extended support for the algo-

rithms of the next section.
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2.2. Imperfect Conversions

In this section we look at algorithms for converting between decimal
strings and the P754 binary floating-point formats. All arithmetic is per-
formed in a P754 extended format, whose exact requirements are discussed
at the end of the section. The only decimal operations required are exact
conversions between decimal integers of modest length and integer values in

the extended binary floating-point format.

The basic strategy in binary to decimal conversion is to scale the input
value by a suitable power of ten so that, when rounded to an integer, the
scaled value has the desired number of digits in its exact decimal represen-
tation. Together, this integer and the scale factor determine the decimal
significant digits and exponent. Rounding errors can occur during binary to
decimal conversion; floating-point overflow and underflow in the sense of
P754 do not arise because because the decimal format has no range restric-
tion. However, a kind of overflow arises if the decimal destination field has
insufficient width to accommodate the desired number of significant digits
and the computed exponent. What happens in this situation is highly
system-dependent; further discussion is deferred to the Nit-Picking section
at the end of the paper. What makes the following algorithm interesting is its

near-minimal rounding error.

Algorithm B (Binary to decimal conversion.) Given a binary floating-point
number zin, a positive integer N, and implicitly the current direction of
rounding, this algorithm finds the significant digit and exponent components
of the floating decimal string od,-dzdgz - - - dy Ederp approximating zin. The
named temporary variables are integers LOGX and SCALFE, and extendeds z

and y.
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BO. [Special cases.] Dispatch zero, infinite and NAN values of zin.

Bi. [Extend rin.] Set z « xin. (z will be normalized.) Save y « z. {z will be

normalized.)

B2. [Log base 10.] Set LOGX « |log o{ |z | )], perhaps underestimating by 1.

(See algorithm L below.)

B3. [Scale factor exponent.] Set SCALE « N-LOGX-1. (Rounding zx105%LE 4

an integer should yield the N-digit significand.)

B4. [Scale z.] Scale z by 105™LE a5 in algorithm S below.

B

[Round to integer.] Round z to an integer, according to RMODE.

B8. [Check for N digits.] If |z| = 10" then increase LOGX by 1, restore z «
v, and go back to step B3. Otherwise, if |z| < 107! then replace z by
107! with the sign of z. (The latter test is not necessary for all imple-

mentations. See the analysis of algorithm B for details.)
B7. [Significant digits.] Convert z to the signed decimal string od,d, - - - dy.
BB. [Exponent.] Convert LOGX to the signed decimal string dezp. =

Algorithm B is designed for FORTRAN E-format conversions, where the
number of significant digits is specified in advance. With a small
modification, the algorithm can be applied as well to F-format conversions,
where only the number of fraction digits is specified. Let a separate flag indi-
cate whether E- or F-format output is desired; for the latter N specifies the
number of fraction digits to be displayed; then SCALE in step B3 is simply N
(even if N itself is negative), and steps B2 and B8 are unnecessary. F-format
conversion may suffer *‘format overflow" in step B7 if |z]| is too big to fit into
the destination to receive it. In this case a helpful system might print the

number in E-format with a modest number of digits.
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Input conversion from decimal to binary is computationally simpler, but
is open to several hazards associated with free-format character strings. For
instance, if polynomial coeflicients are read from a file built by an algebraic
manipulation system with very high precision and range, what is to be done
with 35-significant-digit numbers, or numbers with (outrageous) 13-digit
exponents? Some problems lie outside the domain of the conversion routine.
Literals in program text may be decomposed into significant digit and
exponent strings during a compiler’s lexical scan, and subjected to the arbi-
trary size constraints of the scanner. Will the compiler even recognize spe-
cial values like += or NAN? ldeally, recognition of floating-point numbers
should be the responsibility of a systern routine. Figure 1 at the end of the
paper shows how floating strings might be discovered. In any case, decimal

strings might be constrained to have fewer than, say, B0 characters.

Algorithm D uses the conversion strategy of algorithm B above, in
reverse. The significant digits are converted as a wide integer to be scaled
by a suitable power of ten, whose exponent depends on the exponent field as
well as the placement of the decimal point in the input string. Figure 2 at
the end of the paper shows one way to parse floating strings into significant
digit and exponent fields. Of course algorithm D is vulnerable to rounding

errors; unlike algorithm B, it may also suffer overflow or underfiow.

Algorithm D (Decimal to binary conversion.) Given the signed decimal
strings od,dy - - - dy (with d, # 0), and dezp, corresponding to the value
odydy - - dy.0 X 10%% | and implicitly the current rounding direction, this
algorithm computes a corresponding binary floating-point number xout. The
constant NMAX is the maximum number of significant digits that may be

input. The named temporaries are integers SCALE and LOST and extended
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value z.
DO. [Special cases.] Dispatch zero, infinite, and NAN strings.

D1. [Convert exponent.] Set integer SCALE « dexp. (This will be exact
A excépt when |dexp| is outrageously large, in which case SCALE should be
set to some huge value like 4000. This will produce a scaled value x that,
while not outside the extended range, will provoke the suitable overflow

or underflow in step D6.)

D2. [Excess digits.] Set LOST « 0. If N < NMAX, skip to step D3. Otherwise,
truncate the excess N—~NMAX digits dyyax+18nuax+z - - du, setting LOST
« 1if any of them are nonzero. Add N —-NMAX to SCALE. Go to step D4.

D3. [Canonical form.] Minimize |SCALE| as follows. 1f SCALE > 0, pad the digit
string on the right with up to NMAX—N zeros, subtracting from SCALE
the number of zeros appended. Otherwise, if SCALE < 0 truncate up to

—SCALE trailing zeros, adding to SCALE the number of zeros dropped.

D4. [Significant digits.] Convert the digit string: z « od,dy - - - dy. (Steps D2

and D3 assure that 1 < M < NMAX, so the conversion is exact.)
D5. [Scale z.] Set Scale z by 10°*~F as in algorithm S below.

D6. [Round.] Logically OR LOST into the least significant bit of z. Convert to
storage format: zout « z. (This final step may overflow or underflow. If
there is no trap, the result is as in P754. If there is a trap two cases
arise. If the overflow or underflow was ‘“‘reasonable” then a correctly
wrapped-around result is sent to the trap hanler in lieu of zout. If the
exponent of z cannot be wrapped-around to within the range of xout,
then the value of z, though it may be available to the trap handler, is
meaningless since the decimal exponent may have been set arbitrarily in

step D1; in this case the most useful information is the original decimal
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string, but it may not be available.) o

How much extended arithmetic is actually needed? We have seen that
discriminating binary-decimal conversions require rather more decimal pre-
cision than binary. For example, nine decimals are required for conversion

from the P754 single format. Since

10° > 2% ~ 1.7x 107,
and both algorithms B and D require that a nine-digit integer be stored
exactly, it is clear that conversions cannot be carried out entirely in the sin-
gle format with its 24 significant bits. Proposal P754 includes optional
extended formats for just such calculations. These formats follow the P754
conventions for, say, rounding and the handling of over/underflow but their
particular encoding is system-dependent. P754 requires that there be at
least 8 extra bits of precision and 3 extra exponent bits in single-extended,
and 11 extra bits of precision and 5 extra exponent bits in double-extended.

Since

10° < 2248 ~ 4.3 x 10° ,
any nine decimal significant digit string can be held, as an integer, in the
single-extended format, so the scalings of algorithms B and D can be per-
formed with a few extra bits to suppress rounding errors. We will see later
that the numbers B and 11 of extra bits are very tight — there is hardly a bit

to spare in providing accurate binary-decimal conversions.

If an extended format is not implemented in hardware, algorithms B and
D may be less attractive than the correctly rounded conversions of the previ-
ous section. But if time, space, or even compatibility constrain one to the
methods of this section, some provision must be made in software. The only

arithmetic operations required for the conversions are multiplication, divi-
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sion, comparison, round to integer, and conversion to and from the single or
double formats being supported. The operations are simplified by the
absence of special cases involving infinite and NAN operands and by the res-
triction to results which usually suffer only rounding errors (the conversion
in step DB of algorithm D may over/underflow). So it is feasible to build
these functions from a reasonable complement of intrinsic integer opera-

tions.

2.3. A Poor Man’'s Logarithm

Step B2 of algorithm B calls for the calculation of | log;o{2z) |, where z is a
positive normalized number. It turns out that a suitable approximation
LOGX, perhaps too low by 1, may be found with just a few integer operations.

If we express z in the form 2° x 1.f, we can see that

logio(z) = logio(2) x loge(z) = logio(R) X (e + loga(1.1)).
A look at the graph of logx(1.f ) versus O.f

0 o0f 1

and a little calculus indicate that 0.f < logo{1.f) with a maximum deviation
of about 0.088. So logg(2° x 1.f) is approximated from below by e + O.f,
that is “e.f" as a fixed-point number! This suggests the following simple

procedure for computing LOGX.

Algorithm L (Log base 10.) Given a positive binary floating-point number z,

this algorithm computes LOGX as |logio(2) ] or the next integer toward —s.
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The temporary variables LOG2 and L2X hold fixed point values.

LD. [log,p(2).] Set LOG2 « 0.4D104D427 - - - 15, log;p(2) in hexadecimal, trun-

cated to a convenient length like 8 or 18 bits.

L1. [loga(z).] Set L2X « e + O0.f, where z = 2°x1.f. The fraction 0.f may be

truncated to as few as B bits.

12. [Ensure a lower bound.] If L2X < 0, increase LOG2 by one unit in its last

place.
13. [log,p(2).] The result is LOGX « | LOG2 x L2X |. «

The maximum possible error in LOG2 X L2X is approximately log,(2) x
0.086 ~ 0.026 , caused by the linear approximation to logz(z). By com-
parison, the errors due to truncating low-order bits of e.f and rounding
log,g(2) are small. In any case, all errors are toward —w. Only rarely will the
computed LOGX be wrong, and then it will be off by 1." If we assume that
logz(1.f ) is uniformly distributed between O and 1 [6 pp. 238-247], then the

average induced error in LOGX is about

1

logo(2) x fo (logo(1+t) — t)dt = 0.017 .
Assuming that (log,o(z) mod 1), too, is uniformly distributed between 0 and
1, this means that LOGX will fall short less than 2% of the time and then only

for values 2 barely greater than powers of ten.

As usual, the analysis is more complicated than the implementation. To
illustrate the ideas, we can compute | log,o(Y) | where Y is a positive, normal-

ized number in the P754 single format. Y is encoded as a 32-bit string

5| E F
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Y = (_1)5 X zE'—127 x1.F

The sign bit S is zero for positive Y. So to approximate logz(Y) we need only

subtract the bias 127 from E and imagine a binary point between £ and F.

Then the product with an approximate log,o(2) is essentially an integer

operation. The following assembly language sequence will compute |logo(Y) ]

on a Zilog ZB000 microprocessor [10].

Program L (Log of a single format number.) Given the value Y in register

RR2, compute | log;e(Y) ]. (On the ZB000, RR2 refers to the pair of 18-bit

registers R2 and R3; RHZ2 and RL2 refer to the most and least significant

bytes of R2.)

LD R3, #%4D10

SIA  R2 #1

SUBB RH2, #%7F

JR PL, PLUS

INC  R3, #1
PLUS: MULT RR2, R2

! Overwrite the low-order half of ¥ in R3 with log,(2),
chopped, whose implicit binary point is to the left of
R3. The ‘7%’ flags the constant as hexadecimal. !

! Shift the high-order half of Y left 1 bit, leaving the
exponent in RH2 and the seven leading fraction bits,
followed by a O bit, in RL2. |

! Unbias the exponent to get a two’s complement ap-
proximation to logz(¥), with an implicit binary point
between RHZ2 and RL2. !

! Chopped log;¢(2) is fine if unbiased £ = 0. !
! Round log;e(2) up. !

! RR2 gets R2xR3 ®log,p(Y) in two's complement
with the binary point between RH2 and RL2. The ap-
proximate | log;p(Y) ] is in RH2 since in two's comple-
ment arithmetic the floor function is achieved by
truncation. ! »

2.4. Scaling in Algorithms Band D

This section contains a scaling algorithm that lies at the heart of both

algorithms B and D.
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Algorithm S (Scaling in binary-decimal conversions.) Given an extended
floating-point number z, an integer SCALE, and implicitly the current direc-
tion of rounding, this algorithm computes zx105*€  rounded toward zero,
and sets the least significant bit of z to 1 if any nonzero bits have been
rounded off. Extended variable z holds the value 105CALE possibly rounded.
The pseudo-variable RMODFE contains the current rounding direction. The
integer pseudo-variable JXFLAG corresponds to the P754 inexact flag; it sig-
nals rounding errors in floating-point operations. The values RMODE and

IXFLAG are saved in and restored from the variables RSAVE and IXSAVE.

S0. [Rounding direction for scale factor.] Set RSAVE « RMODE. If RSAVE =
to nearest, skip to step S1. (These next tests handle the other three,
directed, roundings.) If RSAVE = toward —~ and r < 0, or RSAVE =
toword 4+~ and > 0, set RMODE « toward +; otherwise set RMODE «

toward —e. Finally, if SCALF < 0, reverse the sense of RMODE.

S1. [Scale factor.] Set 2z « 10!S%LE|  (See algorithms P and Q below. Both
algorithms B and D are designed so that 2 will not overflow the extended
range.)

S2. [Perform scaling.] Save /XSAVE <« IXFLAG and set IXFLAG « 0. Set
KMODE « toward 0. 1If SCALE > 0, set x « zxz, otherwise setz « z/2z .
(IXFLAG, assumed to take the values O — clear and 1 — set, records any

rounding error in the multiplication or division of by 2.)

53. [Collect roundofl.] Logically OR /XFLAG into z's least significant bit.

Restore RMODE « RSAVE. lLogically OR JXSAVE into IXFLAG. =

If the scale factor 10/SLEl cannot be represented exactly in the
extended variable 2, then it is rounded in a direction that guarantees that

the ultimate result in algorithm B or D will honor the intended rounding
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direction.

Algorithm S is vulnerable to errors in step S1 when 10/SE| 5 com-
puted and in S2 when the input z is scaled. However, the latter error may be
avoided. Since both algorithms B and D will round the scaled value z to a
precision narrower than extended, any low-order bits chopped off in step 82
will participate correctly as “‘guard bits" for the rounding in step B5 or step
D6, if they are logically OR’ed into the least significant bit of z. And when
rounding toward 0, the P754 inexact exception flag, /XFLAG, contains pre-

cisely the logical OR of all chopped bits. The figure below tells the story.

2.5. Evaluating Positive Powers of Ten

Step S1 of algorithm S involves the calculation of a nonnegative power of
ten in an extended variable z. Since it is this calculation that contributes to
any error algorithms B and D commit in excess of the expected rounding

error, it is worthwhile to compute z as accurately as possible.

X x| 2~10SCALE

7///////////////// Togical |
—p | x*2 chopped //////>/pe/d/b1}3/ o Q

Inexact
Flag

\
—=p | x *2 chopped Q

)
%

////
X st lesst two trailing 0’s

—p |integer(x*2)

Avoiding an unnecessary error.
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Expressing nonnegative powers of ten in the form 10* = 2% x 5% | we
see that 10% is exactly representable in a binary floating-point format with p
significant bits and reasonable exponent range only if 5% < 2P. The P754
single-extended and double-extended formats, with 32 and 64 significant bits,
can accommodate powers of ten up to 13 and 27, respectively, since
515 ¢ 2% < 514 and  5Y < 2% < 5% .
Unfortunately, these exact powers of ten are not sufficient for sc.aling in

steps B6 and D7. For example, in conversion from the single format to

decimal, the input values xin to algorithm B satisfy

—45 < |logyf(|zin |)| < 38 ,
with an asymmetric range because zin may be a tiny denormalized number
[4]. Then, since the digit count N can range from 1 to 9, the value SCALE
computed in step B3 can range from —-38 to 53. Somehow the powers of ten

053

up to 1 must be computed for scaling in single format conversions. Hap-

pily, there is a strategy blessed by a stroke of good luck.

Suppose that the exact values 10°% 10}, ..., 10'® are available, either from
a table or to be computed on the fly. And suppose there is available the table

of values:

Pis 0.9184E72A,4 x 2% = 1013,

Pe; 0.CECBBF28,g x 2°° & 10% x (1 + 27%) and

1

Py 0.EB194F8E; x 2132 w~ 10%x (1 —2735) |

Given the table values above algorithm P below will compute any nonne-
gative power of ten up to 10% with just one rounding error, regardless of the
rounding mode. This is possible because of the extraordinary accuracy of

the rounded values P, and P4 and because of extra care in a few special
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cases. And it is fortunate since, as we will see in the analysis of the next sec-
tions, accuracy to the last bit is required to guarantee monotonicity in algo-

rithms B and D for single format conversions.

Algorithm P (Nonnegative power of 10, single format.) Given N = 0 and
implicitly the current rounding direction, compute extended z =~ 10¥ wigh
the property that z > 10V if rounding toward += and z < 10V if rounding
toward 0 or —=. The integer pseudo-variable JXFLAG corresponds to the

P754 inexact result flag.

PO. [Exact case 0-13.] If N > 13 then set JXFLAG « 1 and go to step P1. Oth-

erwise set z « 10V, exactly and exit.

P1. [Case 14-26.] If N > 26 then go to step P2. Otherwise set z « P;gx 10VN-13
and exit.

P2. [Case 27-40.] If N > 40 then go to step P3. Otherwise set z « Py, X
10V-#7,

If N is either 27 or 28 and the rounding mode is foward ~« or

toward 0 then subtract 1 in the last place of 2. Exit.

P3. [Case 41-53.] Set 2z « Py x 10V 7%, If N is either 42 or 48 and the round-

ing mode is not foward O then add 1 in the last place of z. »

Conversions to and from the P754 double format are more complicated.
With 64 significant bits in the double-extended format, powers of ten up to
10?” can be represented exactly. But the wider exponent range of the double

0840, in order to convert the tiniest denormal-

format requires powers up to 1
ized number. The strategy here is similar to algorithm P above except that
the table of powers of ten depends on tradeofis among time, space, and accu-

racy. Fortunately, it is not necessary to produce perfectly rounded powers

of ten as was the case above.
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Algorithm Q exploits a carefully chosen table of increasing powers of
ten: pten(1) = 10?7, pten(2), - - -, pten (JMAX). These values are kept in the
extended format, and all but the first are rounded. Let pezp(1) = 27,
pexp(2), ... pexp(IMAX) be the corresponding decimal exponents. Then the
following algorithm computes 10V with a loop that multiplies the necessary
table values, followed by a final multiply by an exact power of ten. The
directed rounding modes are honored in the sense that all rounding errors

have the correct sign.

Algorithm Q (Nonnegative power of 10, double format.) Given N > 0 and
implicitly the current rounding direction, compute z = 10¥ with the pro-
perty that z = 10V if rounding toward += and z < 10V if rounding foward 0
or —=. The temporaries used are integer I and extended z. The integer

pseudo-variable JXFLAG corresponds to the P754 inexact result flag.
QO. [Initialize.] Set I « IMAX and set z « 1.0.
Q1. [Check threshold.] If N < pexp([/), skip to step Q3.

Q2. [Scale z.] Set z « 2z x FIXED(pten (7)), and decrease N by pezp (/). (The
value pten (I), which is kept rounded to nearest, might require an adjust-
ment of 1 in its last place to comply with a directed rounding mode. It
suffices to keep an array pfiz (1), pfiz(2). ... pfiz (IMAX) of integers with
value 0, +1, or —1 according to whether the corresponding table entry is
exact or is rounded up or down. In any case, for the table values sug-
gested below, the fix never amounts to more than a change in the low
order 16 bits of pten (), that is, a simple integer operation.) If pfiz (/) is

nonzero then set JXFLAG « 1.

Q3. [1terate.] Decrease [ by 1. 1If / > 0, go back to step Q1.
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Q4. [Last multiply.] Set z « z x 10¥. (N < pexp(1) so 10V is exact.) »

If space is to be economized, a good choice for the table pten() is:

0.CECBBF27F4200F3A,s x 2% = 10°7,
0.DOCF4B50CFE20766,¢ x 2183~ 1059 x (1+2776) |
0.DAO1EE641A708DEA;g x 235 ~  10'08 x (142767) angd
0.9F79A169BD203E4 1, x 2885 =~ 10706 x (1-277)

Given 10° through 10?7, exactly, any power of ten through 10%%° can be com-
puted with at most three multiplications, using at worst two rounded table
values. The rounded table entries are so accurate that, when rounding to
nearest, the error bound in any computed power of ten will be dominated by
the error in the multiplications alone. A conservative error estimate would

be

108 mp = 108a % (1 + 27843 x (1 + 277)2
= 10N, x (1 £ (7/2)x2784)
for a worst case bound under four rounding errors even when computing the
largest required power of ten. In any of the directed rounding modes the

error estimate is

10800 X (1 £ 27898 x (1 + 2769)2

1083 mp

1

10N, x (1 + 5%x2799)

where the sign of the error depends upon the direction of rounding.

Two more accurate variants of this scheme are worth considering
although the accuracy above is sufficient. A table of 10° through 10?” along

with a table of the powers

1055' 1083’ 10111‘ 10189, ce 1027+23xk’
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permits the evaluation of any power of ten with at most one multiplication,
reducing loop Q1-Q3 in to just one pass. This scheme suffers at most two
rounding errors, one inherited from the latter table value and one from the
multiplication, but it requires about forty extended table entries to reach

10340,

A more extravagant form of the table just mentioned can produce any

10Y with one multiplication, and with a guaranteed error bound of -;——ulpg

when rounding to nearest. Rather than using values spaced by the factor
10?® as above, it uses a denser table carefully chosen to produce correctly
rounded intervening powers. Experiments indicate that about sixty table
entries would be required just to achieve results correctly rounded to

nearest [11].

When the value z in algorithm P or Q can be computed exactly, algo-
rithms B and D are guaranteed to suffer at most one rounding error — in step
B5 or DB. Whether z is exact depends on the value SCALFE in the algorithms
B and D. If |SCALE| does not exceed 13 in single conversions and 27 in dou-

ble conversions then 10!SCALE]

can be computed exactly in the single
extended and double extended formats, respectively. This accounts for the

ranges in Table 3 of the proposed standard P754 [1).

2.6. Testing Algorithms Band D

Of course the best way to test a program is to compare its results with
the right answers. Fortunately that is possible, if only the algorithm for
correctly rounded conversions is implemented along with algorithms B and
D. Over what ranges should the two programs agree? The analysis in §3
shows that the key to correct conversions in algorithms B and D is a correct

iSCALE']_

scale factor 10 For single format conversions, algorithm D is correct
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for all 9-digit values in the range

100000000. x 10713 to 999999999. x 10'% ,

and algorithm B is correct if its output lies in this range. Smaller values,
down to 107!? jtself, may be converted correctly if the number of significant
digits involved diminishes accordingly. For example, the decimal string
**1.234e—10"" would be cast as the value 000001234. x 1073 by step D3 of algo-

rithm D, lending itself to correct conversion.

When correctly rounded conversion is not guaranteed, how far off can
algorithms B and D be? Not more than an ulp in the destination format, as
we will see. So let us consider binary to decimal conversion from an input z.
Let X;,, X,, and X, be the decimal values resulting from algorithm B with
rounding toward —e, to nearest, toward +=, respectively. Let G, G, and G
be the corresponding correctly rounded values. Finally, suppose z is not
exactly representable in the decimal format. Then G, and G, differ by one
ulp;g and G, is one or the other of those values. ldeally, the corresponding
C's and X's should match. But this may not hold for huge or tiny . Then,
X, is in error by less than an ulp so it too must be one of (,, or ,, though

not necessarily the right one, ;. And the direction property ensures that

X sCn=Xn=sG =X
One of the innermost inequalities is equality, so the other is strict. And one
of the outermost inequalities is equality since the 0.47 ulp;g bound on extra
error guarantees that X;,, and X, differ by at most 2 ulps;p. Note that this
discussion carries over to algorithm D as well. These facts about the inter-
lacing can be used with the correctly rounded conversions to test algorithms

B and D.
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A byproduct of the interlacing is the fact that another implementation
of algorithms B and D must produce corresponding values Y, ¥,, and Y
satisfying the same relation to the C's, and so differing from the X's by at

most an ulp,;; apiece.

The recovery property leads to a different kind of test for the algo-
rithms. It is particularly convenient since no decimal manipulations are
involved. Simply run the conversion £ - X - ¥y to full decimal precision,
rounding fo mearest, and check that z=y. Recall that recovery is most
difficult in intervals of the form [10%, 2°], where the decimals are sparsest.
A set of interesting intervals is given below. The center column is suitable for
single format conversions. The outer columns span the range of the double
format. Reciprocating the endpoints produces the intervals [27¢, 107F]
wherein the decimals are relatively dense with respect to the binary values.
Other pairs F and e can be obtained by noting that the nearer E/e is to

log;o(2), the more nearly equal are 10 = 2°.

A flavor of recovery is available for the directed roundings, too. Convert
z - X, and then from X - y, rounding first toward +e, then toward —~. How
are z and y related? An exhaustive analysis shows that, so long as X is car-
ried to full decimal precision, ¥ is either  or the next representable number
left of z. The key observation, based on bounds from §3, is that even when

the decimals are sparsest, X may be slightly more than an ulp;; greater than

Intervals [ 10%, 2¢] where decimals are sparse
E e E e E e
-308 -~1203 -28 —-83 59 1986
292 -970 —-16 -53 121 402
—146 —485 -1 -3 298 930
3 10 304 1010

31 103
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z but is certainly less than the next binary number to the right of z. A simi-

lar bound applies if the sense of the rounding modes is reversed.
3. Analyses

3.1. Analysis of Algorithm B

Algorithm B scales the exact input zin by a power of ten and rounds the
result to an integer. Together that integer and the scale factor determine
the decimal significant digits and exponent. This process is vulnerable to two
rounding errors. The scale factor in step S1 of algorithm S will be computed

as

10/ SCALE | x (1 £ 6)
where § is nonzero precisely when SCALE is so large that 5!5%LF | cannot be
represented exactly in the extended format. Then, an error can be commit-
ted in step B5 when the scaled value z is rounded to an integer. The
difference between algorithm B and a correctly rounded conversion is the

error § in the scale factor.

What about the multiply or divide in step S2? The discussion following
algorithm S shows how to avoid any ezxtra error there. The key for single for-
mat conversions is that the result z of steps B5 and B6 is an integer less than
10°. Assuming z is normalized in a format with at least 32 significant bits, at
least two of its trailing bits must be 0. The situation is similar for double for-

mat conversions in 64 significant bits.

Now let us bound the extra error incurred in step S1. First, consider
conversions from the single format with rounding to nearest. The value to be

rounded in step BS has the form
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z X 105CALE x (1 1+ 6) |
Since the ultimate result of this scaling is an integer value, the extra error,

in ulpsg, is just

z X 105CALE x (+6)ulp,, .
We saw in the discussion of algorithm P that the relative error 6 may be as

high as 27%. So its absolute contribution the final error is bounded by

(10° x 273%) ulp,, ~ 0.23ulp,p .
The notorious 0.47ulp,g error bound that has appeared in many drafts of
P754 was based on an analysis of algorithm P in which 31 rather than 32 bits
of precision were kept for intermediates. Now it is known that 32 bits are
required. The bound 0.47 still applies, however, as the maximum error in sin-

gle conversions with a directed rounding mode.

We can bound the extra error in ulpsjp for any binary to decimal conver-
sion by choosing appropriate values for 8§ and the number of significant digits
to be delivered. The following table gives values relevant to P754 when out-
put is delivered to the maximum decimal precision, namely 9 digits for single
and 17 for double. If k¥ fewer than the maximum number of digits are

delivered, the error bound is smaller by a factor of 10*.

to nearest directed
format é bound in ulp;g 8 bound in ulp;p
single 2732 0.23 281 0.47
double || (7/2) x 2784 0.019 5x 2763 0.054

3.2. Pathologies in Algorithm B

Steps B3-B6 of algorithm B are a loop whose implicit termination condi-

tion is 107! < |z| < 10", where N is the number of significant digits to be




7.34

output. Does the loop actually terminate, and does it impact the rounding
analysis? From the discussion of the last section, we can assume that the
scaling operation in S2 is carried out exactly since its error is subsumed in

step B5.

First, suppose that the input zin is 10P x (1 + ) for some 7 less than,

say, 1/2. Then the scaled value in step S2 is

z = 10 t'x(1+9)x(1+6),
if LOGX was computed correctly in step B2. Can (1 + 7) x (1 + 6) be less than
1 before z is rounded to an integer? If so, the result of step B5 could fall
below 10¥~1, Positive v is a relative measure of how much the single or dou-
ble input value rin exceeds 10?2, while & is the relative error of the scale fac-
tor when computed to extended precision. So the scenario is possible only
for very small 7. A careful inspection of the powers of ten expressed In
binary reveals that the answer to the last question is NO for single and YES
for double. For example, 10%x({1 + 27%) is representable in double; it may
be rounded by a scale factor from algorithm Q with & as large as 5x2783,
depending on the rounding mode and the number of digits desired. Thus, the
test against 107! may be omitted for single conversions, but it is necessary
for double conversions, if only for rare circumstances. Note that the correc-
tive measure, forcing the magnitude up to 10M-1, shrinks an error which

already lies within the computed bound.

If LOGX was miscalculated as |log,o(z)}—1 in step B2, which may happen

for 7 less than about 0.06, the scaled value above would be

z = 10V x(1+79)x{(1£6) .
This case is benign if x rounds down to less than 10”; if it does not, LOGX is

corrected and the situation is that of the last paragraph.
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Now suppose the input value zin is 10” x (1 — ), for some 7 less than
1/2. In this case LOGX is always correct in step B2. So the scaled value z in

step S2 is

z = 10V x{(1-9)x(1£8) .
The scaled value z falls out of range if (1 —9) x (1 + 8) is at least 1. As
above, this may only happen for some rare double format conversions in
which 7y is very tiny. If this occurs, LOGX is increased to |log,o(z)]+1 and the

scaling is retried. The scaled value is then

10 1 x (1 —9) x (1 £6) .
If the result of step B5 is less than 10Y~! it will be forced up to 10V, satisfy-

ing the stated error bound.

We can conclude from all this that the branch back to step B3 will be
taken at most once, so long as LOGX is in error by no more than 1; when the

branch is taken, the loop is guaranteed to terminate after the second pass.

3.3. Analysis of Algorithm D

Like algorithm B, algorithm D is vulnerable to two rounding errors, one
in the evaluation of the scale factor in step S1 and another when the scaled
value is rounded to the destination precision in step D6. And algorithm D
exploits the same trick with the inexact exception flag and chopped arith-

metic to avoid an extraneous error in step S2.

The conversion of the significant digit string in step D4 is exact, once
any excess digits are truncated in step D2. Recording the presence of lost
nonzero digits in the flag LOST assures that the directed rounding modes will
be honored, but in no way takes the place of a very wide decimal buffer for

the digit string. For example, a P754 single format number w between one-
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half and one has the value

w =2+ box2 R 4+ bax2 3 4+ - - 4 by x2 ™
where the b; are either 0 or 1. Since any such number can be closely
rep.resehted by a decimal fraction of 24 digits, it takes just 25 digits to
represent values half way between a pair of them. Truncating all but the first

9 digits in algorithm D dooms any prospect of perfect rounding fo nearest.

The error analysis parallels that of algorithm B exactly. It is the error in
step 81 that contributes to any error beyond what is expected in the round-
ing in step D6. Let us use the P754 single format for illustration. Ideally,

algorithm D computes
z x 105CALE = 2n x (bob; - - - bagebagbas )
where the binary point is aligned so that, as in algorithm B, it is the fraction
part that is rounded off to produce the delivered result. When an error is
committed by algorithm P, what is computed is
z X105 x(1 £ 6) = 2" x (b, - - - bagebagbas - -+ ) x (1 £6) .
So the error, expressed in ulps; is
(Boby - - - bagebasbes - - ) X (£6) ,
leading to the bound (2% x §ulpy). If we assume that, when rounding to

nearest, the scale factor will suffer at most one rounding error in extended

precision, then the extra error is bounded by

(2% x 273%) ulp, ~ 0.0039ulp,

The following table gives the error bounds for P754 conversions.
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to nearest directed
format o) bound in ulps o) bound in ulp,
single 2% 0.0039 231 0.0078
double || (7/2) x 2784 0.0017 5x 2763 0.0049

These bounds hold for all applications of algorithm D, unlike those of algo-
rithm B, which were parameterized according to the number of decimal

digits produced.

Algorithm D is subject to over/underflow problems, since the exponent
field of the decimal input may contain values far out of the range of the tar-
get format. It is only in step D2 that care must be taken to screen out
unreasonable exponent values. Since the range of the extended intermedi-
ates exceeds that of the target variable, it is possible to replace unreason-
able exponents with huge but reasonable ones and still achieve the correct

over/underflow response in steps S2 and D8.

3.4. Accuracy Revisited

Now that we have analyzed algorithms B and D we can determine
whether they actually satisfy the accuracy requirements set forth earlier in

the paper. Was it all worth it?

The sign symmetry and rounding direction properties are built right in
to both algorithms B and D, so they are easily seen to hold. The sensibility
property holds since, for numbers of reasonable size, algorithms P and Q
compute 10!5PE | exactly, so conversions in both directions are correctly

rounded. The consistency property is a matter of system convention.

The recovery property is verified using formula C and the absolute error

bounds of algorithms B and D. Earlier we derived the inequality
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-P+1
1?2—_?—] Xb-derrorinulp;p + d-berrorinulp, < 1 ulp,

which gives a sufficient condition for the recovery property. Now we can fill
in the blanks. The ratio 107°*!/27P is just under 1/6 and 9/10 for the P754
single and double formats, respectively. Using the values from the tables of

the last few sections, we can write

(1/6) x 0.73 ulpyg + 0.503%ulp; = 0.63ulp; < 1 ulp,

for single, and

(97 10) x 0.519 ulp,g + 0.5017 ulp, = 0.97 ulp, < 1ulp,
for double. So binary to decimal to binary conversion is the identity map if
the decimal value is kept to full precision. And this of course guarantees the
separation of binary numbers by decimals, namely that for each binary z

there is some decimal X such that X - x.

The monotonicity property is more subtle. At first sight, monotonicity
appears to be built into the algorithms, both of which compute
z x 105CALE
in order to convert an input value . What happens though is that néarby
values z may be scaled quite differently. In algorithm D, trailing zeros may
be appended to or stripped from the input significant digit string in order to
minimize the magnitude of SCALE. Here is an example of single format

conversions, using adjacent 9-digit numbers:

1.23499999e~10 - 123499999. / 1018

1.23500000e—10 -+ 1235 7/ 103

The latter value is converted with just one rounding error since 10!3 is exact;
but the former suffers an extra error in 10'®. If these decimal values hap-

pened to be nearly half-way between two single format numbers and round-
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ing were fo nearest, the extra error incurred in the former case might cause
it to round up while the latter value (correctly) rounds down — violating the

monotonicity rule.

To see that algorithm D is monotonic for directed roundings it suffices to
consider the following case. Let X, Y be decimal numbers such that 0 < X <
Y and suppose X » z, ¥ » y in decimal to binary conversion with rounding
toward +=. The direction property assures that X <z and Y<y. Cany <

z? In a picture:

J

- -

see

US
\’x—d—

©
f_ e

Bad news for monotonicity — directed roundings.

This situation can arise only if the error in the conversion X - z exceeds one
ulp; by at least Y—X, which of course is at least one ulp;g. From formula C
we see that, with 9 decimal digits, Y—X is at least 0.0084 ulp; for single
numbers; and that with 17 decimal digits, Y—X is at least 0.05ulp; for double
numbers. However, the table in the discussion of algorithm D limits the
extra error to 0.0078ulp; for single and 0.0049ulp; for double, barely pre-
cluding the possibility that ¥ < z.

Why is the bound so tight for single conversions? Recall that the 9-digit
decimal numbers are up to 120 times as dense as the P754 single numbers in
some critical intervals [2°, 10¥]. This means that, in the picture above, X
and Y may be very close to each other and to z, relative to the gap from z to
Y. The extra error required to lose monotonicity is just a tiny fraction of the

input spacing ulps.
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Carrying this analysis over to the case of rounding fo nearest is easy; it
is only the picture that changes. As before let X and Y be decimal numbers
suchthat 0 < X < Y, andlet X » x and ¥ = y. Again, cany < z? No direc-
tion property applies here, but the bounds given after algorithm D assure
that the conversion error must be less than one ulp;. First, if z 2 X theny <
z implies an error in excess of one ulpz. Similarly for y < Y. So monotoni-

city is jeopardized only if we have the situation:

X ¥ |
’ L} ‘

s

Bad news for monotonicity — rounding fo nearest,.

et

In the worst case, X and Y are situated about the midpoint between z and y,
which must be adjacent binary numbers if the error is fall below an ulp,. The
only difference is that here we ensure that Y—X is less than half of the extra
error allowed; this way the two errors can never conspire to cross the mid-
point between x and y. But all is well since the value § limiting the extra
error inherited from the scale factor is at least halved when rounding to

nearest,

Monotonicity makes sense in algorithm B only for a predetermined out-
put precision. For example a binary value just less than 1.5 will print as **1."
to one significant digit while any number of binary values just less will print
as "1.5" to two significant decimals. With this in mind, monotonicity is
indeed built into binary to decimal conversions. The only way for nearby
binary values to be scaled by different powers of ten is for them to straddle a
power of ten or to both be just greater than a power of ten. Since LOGX, the

estimated floor of the log,; of the input value, is itself monotonic,
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monotonicity is easily verified in the few cases that neighboring binary input

values are scaled by different powers of ten.

We have now succeeded in verifying that algorithms B and D satisfy the

accuracy properties requested in lieu of correct rounding.

Out of this flurry of bounds and inequalities come a few interesting rela-
tionships. The monotonicity and recovery properties seem to oppose each
other. When the decimal numbers are dense relative to the binary numbers,
as is the case with P754 single, the recovery property is trivially satisfied but
monotonicity is barely guaranteed. And when the decimal numbers are rela-
tively sparse, as with P754 double, just the opposite is the case. In some
sense, the monotonicity and recovery properties have the last word on the
accuracy of algorithms B and D since the other properties are built right in.
Are B and D overkill? Look back at the discussion of monotonicity in single
format conversions. The required bound was barely met there, saying that
not only are 32 significant bits required for intermediate calculations, but
that the factor 10!SPALEI myst be computed with just one rounding error.
Algorithm P showed this was possible. The situation for double format
conversions is quite different. Algorithm Q is allowed its expected comple-
ment of errors in producing IO‘SCALE‘, and it can even be shown that only 63

significant bits are required for sufficiently accurate conversions.

3.5. Nit-picking
What follows is a collection of lesser details, included as much for their
curiosity as for an air of completeness they may lend. They were omitted

from the body of the text so as not to distract the patient reader.

We have seen that the 9-digit decimal numbers are up to 120 times as

dense as the P754 single format numbers. A concrete example shows how
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the formats’ relative spacings can be surprising. Consider the value

3 = 0555555555 - i

which rounds to 0.5555558,¢ in P754 single with its 24 significant bits. The

absolute rounding error is exactly %-ulpg. Now in the neighborhood of 1/3,
one ulp,;g is about 5%-111})2. so the error in rounding 1/3 to 24 bits

corresponds to over 10 ulps;s. The nearest 9-digit decimal to the rounded
value of 1/3 turns out to be 0.333333343,;. And the nearest 9-digit decimal
to the next smaller single format number happens to be 0.333333313,5. Thus
there is no way to produce 0.333333333,p from a P754 single format value!
The apparent discrepancy in the second to the last digit is likely to be mis-
taken for a bug in the conversion routine, rather than a reflection of the rela-

tive density of decimal and binary numbers.

The number of decimal digits required to distinguish binary numbers of
a given precision was discussed in the context of correctly rounded results.
Is the separation requirement, from which the relation was derived,
compromised by the extra error 6 suffered in computing the scale factor?
The answer NO is guaranteed by the recovery property as verified in the last
section. This is the sense in which recovery is the computational analog of

separation.

Goldberg's paper [5] about the separation property is of historical
significance to P754 enthusiasts. Not only is it one of the first technical argu-
ments for an implicit leading bit in a binary floating-point format, but it is
the first known discussion of how to encode denormalized numbers [4] and

zero by reserving the bottommost exponent.
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It is a simple exercise to reverse the arguments about the Separation
Requirement and deduce, as Goldberg did, that 2*! < 107F is a sufficient
condition to guarantee that p-bit binary numbers will distinguish P-digit
decimal numbers. The P754 single format numbers, with 24 significant bits,
distingljish 6-digit decimal numbers, and the P754 double numbers distin-
guish 16-digit numbers.

In the discussion of the separation requirement, we deduced thé chain

of inferences

107P*1 < 2P - Separation Requirement - Distinction
but noted that the three are not generally equivalent. In some cases the ine-
quality is stronger than absolutely necessary. The Separation Requirement

is equivalent to the inequality

ulpie  _ 107F 105!
Ulpz 2P petl

< 1

Recall that the latter ratio varies between 1/2 and 10. The inequality derived
before simply assured that 107F/2P was less than 1/10. However, it is a
fact of number theory (the existence of (P—1)/p approximating log;c(2)
arbitrarily closely from above) that there exist pairs P and p such that
107P/ 2P is just slightly above 1/10. Then, if we simply restrict the range of
E and e so that 108*!/2%*! stays far enough below 10, then the Separation
Requirement will be met by a pair P and p Just barely failing the inequality
107P*1«27P. Knuth presents this as an exercise relating the Separation
Requirement and the Distinction Property [8, p. 312 exercise 18, with solu-
tion].

For conversions between two floating-point number systems, the Separa-
tion Requirement and distinction property are equivalent, although this fact

is not of great importance for the purposes of this paper.
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Care was taken in algorithm L to ensure a lower bound on llog,(z)].
Why? The issue is looping in algorithm B. If L were allowed to be too big then
corrective step B8 would have to branch back to step B3 whether the scaled
value was too big or too small. It is possible that an input value very near to
a power of ten could round in such a way as to fail both tests and loop
indefinitely. Getting the lower bound on LOGX is much easier than defending

the loop criteria against further pathologies.

This paper discusses conversions from the P754 single and double for-
mats backed up by an extended format. It should be obvious that single for-
mat conversions backed up by the double-extended format easily satisfy the
accuracy requirements. But what about extended conversions? Algorithms
B and D may be used to convert to and from an extended format, but there
may be a significant loss of accuracy due to lack of extra precision beyond
double-extended; and without extra exponent range, numbers at the
extremes of the double-extended range will be converted incorrectly because
of intermediate overflows and underflows. In order to cover the full range of
extended numbers, the table in algorithm Q must be extended. The following

are reasonable table values:

0.C6BOA0D9BA95202BD, g x 2136  ~  10%12 x (1+42766) |
0.9A35B24641D05953,4 x 2°738 H108% x (1+279%) |
0.B9C94B7FABD76515, X 2547  w~  10'8x (142795 | and
0.86D48DB626C27EEC,q X 210950 1 103296 x (14 2765)

Alternative values may be computed with the algorithm providing correctly-
rounded conversions, supplied in the Appendix. To find the appropriate
bound on the rounding error simply compute each desired 10f to a modest

number of extra significant bits.
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In the discussion of pathologies in algorithm B, we dismissed the need
for the second test in step BB for single format conversions. However, if
extended values are to be converted using algorithm B the second test in
step B6 is essential. There are potentially many more representable values

10Fx(1+y) which will scale to 10" "1x(1—£) when N digits are required.

The rounded table values 10?7 and 10*° in algorithm P just barely cover
the range of P754 single numbers. vlf in step B2 of algorithm B, LOGX of a
tiny number were computed as —48 instead of the correct —45, then SCALE
in step B3 could be 9—(—46)—1 = 54, beyond the range of algorithm P. For-
tunately this does not happen; all of the denormalized numbers whose
correct LOGX is —45 are sufficiently far above 10™% that algorithm L com-

putes their LOGX correctly as —45.

Although the rounded value 10*? is available to algorithm P directly from
the table, the value is deliberately computed from P3;XP,5 in order to cause
a rounding error. The rounding error suflered in the multiply causes the

value 10*° to correctly honor the rounding mode in effect.

Step B7 of algorithm B calls for the conversion of an integer value in the
extended format to a decimal string. Here is an eflicient way to accomplish
this for single format conversions. First, express the extended value as a
true 32-bit binary integer, in this case

00bzgbogbay - -+ biboe
since the value is bounded by 10°. Then divide this by 10° producing the

chopped binary fraction

Oeb_yb.pb g - b_gb_g
Adjust this value upward by one unit in the 32nd bit, producing a value

slightly greater than the true quotient. In a S-step loop, repeatedly multiply
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the binary fraction by ten (two shifts and an add) stripping off successive
BCD digits as they appear left of the binary point. At the end of the loop, dis-
card the remaining fraction. The loop operations are exact; the only error

arises from chopping the quotient and adjusting upward, that is,

0 < 2R x (1 —0sb_ggb_gsbgs ) < 273
Its impact on the final digit string is bounded by 27%*x10° < 1, so the com-

puted digits are correct.

For the purposes of exception handling, binary-decimal conversions are
treated as atomic operations in P754. Algorithms B and D are presented as
programs based upon a few P754 arithmetic operations. Algorithms B and D
always signal the inexact exception when their results are inexact; they pes-
simistically signal inexact in the rare circumstances when multiple rounding
errors cancel and the result is in fact exact. Algorithm D may also suffer
overflow and underflow. It is set up to encounter any range exception in the
format conversion in step D6. If values at the limits of the range of extended
are converted there is no way to represent scale factors guaranteed to gen-

erate the appropriate error in step D6.

Algorithm B can suffer a format overflow error if the destination string
cannot accommodate the converted value. For example, suppose binary z is
converted to the B-digit decimal value —1.2345678x1072°C, but is destined for

a string of at most 14 characters. The string
''—1.2345878E-250""

is one character too long. More severe cases are possible. The problem is
complicated by the possibility that a massive amount of printed output may
be ruined if just one field, and hence one line, is allowed to overflow by a

character. There are several remedies. The value may be converted again,
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but to fewer significant digits. Or if the value must overflow the field, the
printer driver program may allow the offending line to spill over, and then
skip to the next page; in this way the output is intact but for the few pairs of
partial pages where a line overflowed. Historically, a reproof such as

*?77.??"" has been printed when all else failed.

It was shown under Accuracy Revisited that conversion from 17-digit
decimal values to the P754 double format using algorithm D would be mono-
tonic. The same argument guarantees monotonicity for conversion from 18-
digit values, but it fails for 19 digits. Some systems may allow 19-digit values
to be input, since the B4-significant-bit double-extended format will accom-
modate any 19-digit value exactly, but these conversions will not in general

be monotonice.

P754 requires that the conversion of input values in a certain range be
perfectly rounded; that is, the power of ten used for scaling must be com-
puted ezactly. Is this requirement actually met? Step D3 of algorithm D
preconditions the input to decimal to binary conversion specifically to meet
P754, so the scale factor is always the correct one. However, the situation
for binary to decimal conversion is less obvious, since the scale factor
depends on LOGX, which may be too low by one. For instance, if nine decimal
digits were desired, a single format input value just larger than 107° would
ideally be scaled by the exact value 10’2 and rounded to an integer to deter-

mine the significant digit string:

1.00000xxx - - - X 107° ®~ 100000yyye x 10713

However, if LOGX were miscalculated as —8 then the scale factor would be
10, known to be wrong by a full half ulp in the single-extended format. If

the error in the scale factor 10'* caused the significant digit field to be com-
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puted as
999999zzz- x 107

then algorithm B would produce an imperfectly rounded result — in violation
of the standard. So the question is, when can a miscalculated LOGX lead to
an incorrectly rounded output value, rather than a branch back in step B8 of
algorithm B? As we saw in the discussion of pathologies in algorithm B, the
answer is NEVER for single format conversions and RARELY for double
conversions; indeed, the situation can arise in double only for values far out-
side the range in which LOGX can make the difference between perfect and

imperfect conversion. So there is no hazard after all.

What is the point of all this? On the one hand we have the simple but
usually uneconomical correctly rounded conversions. On the other we have
reasonably accurate, yet economical conversions whose economy is bought

[

with a tedious verification that they are '‘accurate enough'. These conver-
sions are so nearly correctly rounded that, although different implementa-
tions may produce results differing in just one ulp, those differences — and

the deviation from correct rounding — will be almost imperceptible to users.
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Eight State Decoder
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CHAPTER 8

Radix-Independent Description of the Proposed Standard

1. Introduction

The intent of proposed IEEE standard P754 for binary floating-point
arithmetic is to regulate the numerical programming environment. The
story really begins with implementations of high-level languages, whose
sernantics must be carefully defined with regard to the overall struc-
ture of programs and the control of side-effects. But this chapter
picks up in the middle, at the level of a single arithmetic operation
like

zZ = xXy,
Simple as it may appear, this operation involves many subtleties if z,
y. and 2z are allowed to have different number formats, or if an éxcep—
tion like overflow should arise in the computation of the product zxy.
Since steps are taken in P754 to handle every exception, such as zxy
overflowing to =, further error possibilities are introduced, such as Oxw

in a subsequent product.

The system described here conforms to draft 10.0 of IEEE proposal
P754 and is intended to be compatible with the forthcoming radix-free
proposal P854. The first version of this implementation guide, based
on draft B.0 of P754, was presented at a tutorial on the proposed stan-

dard in May 1981.

The paradigm for the operation above is:

81
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Compute the product zxy as though with unbounded range

and precision, and pack the result in 2.

But this very natural statement has many ramifications. For example,
how acéurate is the actual implementation of ‘“‘unbounded precision"”
when the ideal result must be packed into a destination with limited
range and precision? And what of the error conditions overflow and
occurrence of invalid operands? In fact, the computation of the result
Zz is not so much an atomic operation as it is a process that may be

viewed as:

(1) Unpack z.

(2) Unpack y.

(8) Compute the ideal result (as though with unbounded...).
(4) Trim the ideal result to within z’s format limitations.

(5) Pack the result into z.

This process is expressed precisely in the Control Flow section. The

various steps of the arithmetic operation are written as subroutines.

The heart of the operation, (3) above, is discussed in terms of
operands in a so-called canonical format. Thus they are radix and for-

mat free, while following the rules laid out in proposal P754.

The unpack/pack operations are of course format specific. Three
sections of this document describe these operations for the binary for-

mats specified in P754.

Though this is ostensibly an implementation guide, it is not
intended to translate directly to an implementation. Efficiency and
compactness have been sacrificed throughout to obtain the greatest

modularity. For examnple, each individual arithmetic operation handles
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input NANs in the opening switch statement; a more effective imple-
mentation filters NANs just once, in a preamble to the operations.
Also, each step of the trim_result() sequence, checking for underflow,
rounding, and checking for overflow, is coded independently, necessitat-
ing redundant tests for special short circuit cases. This modularity
permits the reader to study individual sections of the code without
having to know the state of the system as a whole. The ﬁltimate
object is twofold: to convey an idea of the data and control flow
through an arithmetic operation, and to prescribe the result of any

operation.

This description is written in a type of pseudo-code based on the
programming language C. Our pseudo-C has a rich set of data types
and a high tolerance for abuses of types. For example, a significant
digit field will in some contexts be viewed as an array of digits while
in others it will be given its mathematical interpretation as a value
whose radix point lies after the leading significant digit. Most of the
syntactic short-cuts for which C is notorious (for example, “'x++;"
means the same as "x = x + 1;') have been carefully avoided.
Readers unfamiliar with C should be able to follow the control flow
without getting lost in the language constructs, since the language is

quite terse and only the simplest control structures are used here.

Aficianodos will note several deviations from conventional C. Usu-
ally the meaning will be clear from the context rather than from strict

C semantics.

(1) Subsets of arrays are used. For example, if fraction[] is defined

as an array of digits (decimal, binary, or otherwise), the expres-
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sion “fraction[1 ... 23]" denotes the first 23 digits taken as a
group. The expression “fraction’” by itself denotes the entire

array.

(2) When a set of elements of a structure are to be taken as a unit,

notation like “operand.(msd, fraction)” is used.

(3) The passing of parameters is quite cavalier. For example, the
expression ‘‘normalize(op)” is wused instead of ‘‘normalize{&op)"
when it intended that the caller’s operand be modified. Strictly

speaking, op's address, “‘&op', should be passed.

(4) In each use of the C switch/case construct, the cases are mutually

exclusive, so the break instruction is omitted.

(5) C indexes arrays from 0, that is the N elements of an array x are
x[0], x[1], ..., x[N-1]. That notation is clumsy for the present dis-
cussion, so the convention x[1], .... x[N] is used instead. The text

is very explicit about this when it matters.

(6) Most of the variables used in the pseudo-code are global, that is
they are known to all procedures. For definiteness, the globals

used in any routine are declared extern as in C.

This chapter makes many detailed references to the P754 docu-
ment, in an attermpt to illuminate what may be stated very tersely
there. Each reference is marked by a section number (such as §4,

which introduces the notion of rounding).

Once again, this is not a complete *“implementation’” of P754.
Aside from lacking any detailed mention of the programming environ-
ment, this discussion omits several operations. Binary-decimal conver-

sions are treated extensively in chapter 7. And floating-integer
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conversions are left out because of their highly system-dependent
nature; they differ from the floating-point round to integer instruction
only in the exceptions that arise from attempting to store huge or
nonnumeric values in an integer format with no reserved operands

(§5.4 and §7.1.7 of P754 discuss these issues).

The proposed standard entailss a small number of implementation
options. The reader's attention will be called to those situations where

a variety of responses are possible.

2. Control Flow

The following procedure effects the operation 2 = z # y. The
dyadic operations add, subtract, multiply, divide, and remainder pro-
duce a floating-point result. Comparison produces a condition code in
this presentation. P754 also permits comparisons to be effected by
high-level language predicates (§5.7); see chapter 6 for a discussion of
this style of comparison. The monadic operations round to integer,
square root, and the various format conversions have an obvious analog

of the form z = # z.

For simplicity, the storage operands z, ¥, and z are declared
generically, that is without reference to their storage foramts. In fact,
the types may differ. The only constraint of proposal P754 is that the
z's format be no narrower than the wider of the z and y formats,

except for the format conversion operations (§5.1 - 5.3).

Statements of the form z = =z, 2 = -z, or z = |z| in which 2
and z have the same format are non-arithmetic since no conversion is
required. They may be effected by simple translation of the digits,

perhaps with a sign change as in absolute value or negation, or they
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may be implemented arithmetically (85, Appendix). Actual format
conversions follow the form of the other monadic operations, except
that the compute step is trivial — all the work is in the trimming and

packing.

arithmetic_operation(z, x, y) arithmelic_operation

/‘
* The types of 2, z, and y may differ, as explained
*in the text above.
4

storage_types Z, X, Y;

extern canonical opl, op2; /* unpacked inputs ¥
set_globals(); /* collect mode informaltion ¥
unpack(opl, x); 7 opl <——zx, unpacked ¥
unpack({op?2, y); 7 opl <~-1y, unpacked ¥
/‘
* The following routine is generic —— add(), subtract(),
* multiply(), divide(), ... should be called as appropriate.
b’
compute_result(); /7 sel resull <——opl # op2 Y
/*

¥ The subtlest phase of any operation is trimming the

* result according to the limitations of the destination 2.
* This is distinguished from the actual packing, to

* preserve us much of the format—free nature of the

* trimming. Note that the comparison operation will

* bypass the next two steps, trim and pack.

4

trim_result();
pack_result(z); /* just a bit—mapping operation ¥
side _effects(); ~* collect and handle error flags %
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3. Globals

Underlying the basic arithmetic process is a group of global vari-
ables, defined as custom C-like structures. They are listed here with a
brief summary of their purpose. Also included are the initialization
routine set _globals() and the clean-up routine side_effects() that do

basic housekeeping operations on the globals.

Canonical format operands opl and op2 hold the unpacked input

operand(s), and result holds the computed “‘infinite precision’ value.

cancnical opl, opZ, result;

The mode structure determines the rounding precision and direc-
tion. Since this variable has a life-span of just one operation, it must
be fetched from the user's environment at the start of each opefation.
The definition of “mode’ in §2 describes the behavior of the mode as

part of the user’'s environment.

mode_str mode;

The error structure logs exceptions for each operation separately.
At the end of the operation, the error structure is used to update the
user's ‘'status flags” (see §2). The trap structure determines whether

the user wants a software trap when the corresponding exceptions
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arise. like the mode wvariable, the trap structure is loaded from the

user’s environment at the start of each operation.

exc_str error, trap;

The dst structure contains data about the destination format, for

use by the trim() routines especially.

dst_str dst;

The initialization routine collects state information -- from control
registers of the arithmetic device, from the user’s “process data area",
or possibly from the instruction itself; thus the fetch() operation is is

highly implementation-dependent.

set_globals() sel_globals
¢

extern mode_str mode;

extern exc_str error, trap;

extern dst_str dst;

Vi

* Determine rounding precision and direction.
* If the operation is remainder, ignore any precision

* control specification —— use the range and precision
* of the destination format (section 5.1).
4

fetch(mode);
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/* Clear all flags (for this operation) to FALSE. %
clear(error);

/* Determine which exceptions the user will trap on. %
fetch(trap);

/#

* Set the range and precision of the destination,
* subject to the precision control mode.
4 :

set(dst);

The termination routine stores the error flags back where the user
can interrogate them. (Note that the flags are never cleared by arith-
metic, but only at the user’s specific request.) Also, if a software trap

is to occur the mechanism is initiated here.

;;ide__effects() S'i,de__effects

extern exc_str error, trap;

7* Logically OF error into the user’s flags. %
save(error);

/*

* Check whether any of the errors that arose are
* lo stimulatle a user {rap.

V4
if (error & trap)

¢

/* System—dependent trap interface. %
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4. User state

User-determined state variables are kept in a defined structure
called mode. The particular encedings used here are representative,

not mandatory.

typedef struct mode_str

¢
: bit round[2];
bit precision[2];
{ mode_str;

These are the encoded values of the rounding directions, kept in
the round]] element of mode_str. All four rounding modes must be

implemented (§4).

# define TO_NEAREST 0 7% default %
# define TOWARD_0 1
# define TOWARD _PLUS 2
# define TOWARD_MINUS 3

When available, rounding precision control permits a user to round
results to a narrower precision than that of the destination format.
This is intended to help users of different systems to overcome archi-
tectural differences in producing matching results. For example, sup-
pose that a program is to be run on identical single format data sets
on two different systems. The first system does all calculations in sin-

gle, while the other delivers all intermediate results to the double-
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extended format. If the program sets the precision control to single
on the second system, then, in the absence of overflow or underflow in

the first system's calculations, both will obtain identical results.

§4.3 and footnote 4 specify which systems must have precision con-
trol. However, it is up to the implementor to decide whether precision
control implies range control too, that is, whether the exponent is
coerced to within the bounds corresponding to the precision. If both
precision and range are controlled, then identical results can be
obtained regardless of the presence of extended intermediates (because
they are coerced as though they are single). This option is a tradeoff
in P754. Although it is desirable to achieve identical results (despite
overflow and underflow) when the same calculation is performed on dif-

ferent systems, the cost of range coercion may be very high.

Note that precision control is intimately tied to the complicated
issues of expression evaluation in high-level languages. But that is

beyond the scope of this guide.

# define EXTENDED 0 /* defoult %
# define SINGLE 1
# define DOUBLE 2

Corresponding to each of the 5 elements of exc_str is a sticky
error flag and a trap-enable flag. Since support of user traps is

optional, the trap structure is optional (§8).
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typedef struct exc_str
¢

boolean inexact;
boolean invalid;
boolean div_zero;
boolean oflow;
boolean uflow;

} exc_str;

5. Canonical format

This canonical format is described in radix-free form following the
spirit of P754. Only this format is referred to below in the discussion
of the operations. This description of operands as data structures of
bits, digits, integers, etc. permits a precise specification of the arith-
metic in terms of primitive operations such as shift and increment.

The canonical numeric data type is defined as:

typedef struct

int tag;

bit sign;

int exponent;
digit c_out;
digit msd;

digit fraction] CANON_FRACTION }J;
{ canonical;

The tag is a small integer used to identify special operands not

having the usual form
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(—1)° x RADIXE x X . XXXXXXX.
This greatly simplifies the discussion by distinguishing the special

values from numerical representations.

# define ZERO_TAG 0 oY

# define INF_TAG 1 7 infinity ¥

# define S_NAN_TAG 2 /* signaling NAN %

# define Q_NAN_TAG 3 /* quiet NAN %

# define NUM_TAG 4 /* finite nonzero number %

The sign is just one bit of information, 0 for + and 1 for —.

The canonical exponent, is presumed to accommodate all result
exponents from operations on supported formats. Thus neither over-
flow nor underflow will arise in canonical numbers until they are
trimmed to within the constraints of the destination format. Though
the exponent is described as type integer above, care must be taken
to provide sufficient range. For example, 17 (two extra bits) of work-
ing range are required of a P754 implementation supporting the
double-extended format, or else some extra tests are required in the
overflow and underflow handlers. Chapter 9 deals with this in detail
No assumption is made about the radix of the exponent as an integer.
For example, it may be desirable to implement decimal floating-point

arithmetic with a binary exponent.

The discussion of the operations is independent of the radix of the
underlying implementation. Although this discussion applies to arith-
metic with any positive, integer radix, the interesting cases are

expected to be 2 and 10. The parameters are set for binary arith-
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metic here.

# define RADIX 2 /*or 10or Bor 16 ... %
# define HALF_RADIX 1 /7* for use in rounding ¥
# define RADIX_1 1 /* radiz minus 1%
typedef digit bit;

The canonical format has an extra (second) digit, c_out, to the left
of the radix point to catch carries out of the msd (most significant
digit). C_out is named explicitly only to simplify the description. Typ-
ically, an implementor will provide for a carry-out only in those few

places where one can arise.

The canconical format carries three extra low-order fraction digits
so that results can be rounded as in §5 of P754. These digits are

commonly known as guard, round, and sticky:

Guard is next digit beyond the least significant digit of the widest

storage format supported.

Round is the next digit beyond guard. It is crucial to the operations
addition, subtraction, and division which may entail a left shift

before rounding.

Sticky conveys just one bit of information (though it will normally be
an entire digit). It is nonzero precisely when the associated infin-
ite precision number has nonzero digits to the right of the round

digit.
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The working precision as specified here is suitable for a P754

implementation supporting the double-extended format.

# define CANON_FRACTION 66

The “‘infinite precision’ result is trimmed to the destination format
according to a set of parameters kept in the special purpose struc-

ture:

typedef struct
¢

int othresh; /* overflow threshold %
int uthresh; /* underflow threshold %
int biasadjust; /* exponent fix for traps ¥

/* indezx of least significant digit in fraction[] %
int Isd;
{ dst_str;

8. P754 Formats

The following two structures define data types corresponding to the
single and double formats specified in §3.2 and 3.3 of P754. Each for-
mat may be thought of as a trio of bit strings, denoted as arrays of

bits below. As bit strings:
The sign bit is 0 for +, 1 for -

The exponent is an unsigned integer, biased by 127 for single, and

1023 for double.
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The fraction lies just to the right of the binary point of the

unpacked number.

The ordering of the bits, from most to least significant, is sug-
gested by figures 1 and 2 in §3, but P754 does not specify how they.

are to be ordered in byte or word groupings.

typedef struct
¢

bit sign;
bit exponent[8];
bit fraction[23];

{ single_binary;

?ypedef struct

bit sign;
bit exponent[11];
bit fraction[52];

{ double_binary;

The extended formats are optional in implementations of P754. A
typical system will support (only) the extended format corresponding to

the wider basic (single or double) format supported.

Unlike the basic formats, the extended types have range and pre-
cision subject only to minimum bounds, rather than specifications down
to the bit. The most significant bit may be implicit or explicit at the
implementor's option. (This may be inferred from §3.3 and the width

parameters in table 1.)
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# define S_EXT_RANGE 11
# define S_EXT_FRACTION 31

typedef struct

bit sign;

bit exponent[S_EXT_RANGE];
bit msb; :

bit fraction][ S_EXT_FRACTION J;

} single_extended_binary;

# define D_EXT_RANGE 15
# define D_EXT_FRACTION 63

typedef struct

bit sign;

bit exponent[D_EXT_RANGE];
bit msb;

bit fraction][ D_EXT_FRACTION J;

{ double_extended_binary;

7. Unpack Binary Formats

7.1. P754 Single

Unpack a P754 single format number s to the canonical format.

single_unpack(w, s) single_unpack

7w <——s, unpacked. ¥
canonical w;
single_binary

n

extern mode_str mode;
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/* Assume s is o normal number, then check special cases. ¥
w.tag = NUM_TAG;

w.sign = s.sign;

w.exponent = s.exponent — 127, /% 127 1is the exponent bias ¥
w.c_out = 0;
w.msd = 1; /* presumed normalized... ¥

/* Fraction of s is left—justified in w, and zero padded. ¥
w.fraction[1 ... 23] = s.fraction;
w.fraction[24 ... CANON_FRACTION] = 0;

if (s.exponent == 0)
¢

/* Zero or denormalized. ¥/
if (s.fraction == 0)

w.tag = ZERO_TAG; /% Zero. Y
else
¢
w.msd = 0; /* Denormalized. %
w.exponent = w.exponent + 1;
normalize(w);

]
else if (s.exponent == 255)
¢

/7* Infinity or NAN. ¥
if (s.fraction == 0)
w.tag = INF_TAG; /*infinity YV

/‘
* Distinction between signaling and
* quief NANs is system—dependent.
* Leading FRACTION bit is used here.
Y
if (s.fraction[1] == 1)
w.tag = Q_NAN_TAG;

else

clse
w.tag = S_NAN_TAG;

7.2. P754 Double

Unpack a P754 double format number to the canonical format.

This is precisely analogous to the single unpack routine above.
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double _unpack(w, d) double_unpack
/At w <——d, unpacked. ¥
canonical w;
double_ binary d;
¢
extern mode_str mode;

/* Assume d is a normal number, then check special cases. ¥

w.tag = NUM_TAG;

w.sign = d.sign;

w.exponent = d.exponent — 1023; /* 1023 is the exponent bias ¥
w.c_out = 0;

w.msd = 1; /* presumed normalized... %

/* Fraction of dis left—justified w and zero padded. %
w.fraction[1 ... 52] = d.fraction;
w.fraction[53 ... CANON_FRACTION] = 0;

if (d.exponent == 0)

/* Zero or denormalized. ¥/
if (d.fraction == 0)
w.tag = ZERO_TAG; /* Zero %
!else
w.msd = 0; /* denormalized %
w.exponent = w.exponent + 1;
normalize{w);

)
else if (d.exponent == 2047)

/* Infinity or NAN. %
if (d.fraction == 0)
w.tag = INF_TAG; /™ Infinity. Y
else
if (d.fraction[1] == 1)
w.tag = Q_NAN_TAG;
else
w.tag = S_NAN_TAG;
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7.3. P754 Single-Extended

There are many plausible implementations of the extended formats
that meet the range and precision specifications of P754. For exam-
ple, rather than having reserved exponent values as in the single and
double formats, the extended formats may use a tag field to distin-
guish operands like =zero, infinity, and NAN (the canonical format of
this document uses such a field.) Also, there are two possible interpre-
tations of the smallest possible exponent, as explained in chapters 2

and 5.

The extended formats discussed here use a convenient 80-bit for-
mat. The exponent is an unsigned, biased integer as in the single and
double formats. The exponent value 111...11 is reserved for INF and
NAN, in which case the msd is irrelevant. The exponent value 000...00
has only one special case, namely zero, when all significant digits are
0. For simplicity, all finite extended values are normalized when they
are unpacked into the canonical format. However, P754 does not
require this normalization for unnormalized numbers above bottorﬁ of
the extended range, so long as the system does not produce such

unnormalized results (see §3.3).

single_extended_unpack(w, se) single_extended_unpack
/*w <—-— se, unpacked. ¥

canonical w,
single_extended_binary se;

extern mode_str mode;
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/* Assume se is a normal number., ¥

w.tag = se.tag;

w.sign = se.sign;

w.exponent = se.exponent — 1023; /™ bhias = 1023 ¥
w.c_out =0

w.msd = e.msb; 7* Copy explicit leading digit.

/* w’s fraction is left—justified and zero padded. ¥
w.fraction[1 ... 31] = se.fraction;
w.fraction[32 ... CANON_FRACTION] = 0;

if (se.(exponent, msd, fraction) == 0)
w.tag = ZERO_TAG; /* Zero, ¥

else if (se.exponent == 2047)
¢

/* Infinity or NAN —— msd irrelevant, %
if (se.fraction == 0)
w.tag = INF_TAG; /% Infinity. %

/‘
* Distinclion between signoling and
* quiet NANs is system—dependent.
* Leading FRACTION bit is used here.
Y
if (se.fraction[1] == 1)
w.tag = Q_NAN_TAG;

else

else
w.tag = S_NAN_TAG;

else

/* All nonzero operands are prenormalized. %/
normalize(w);

7.4. P754 Double-Extended

This routine is analogous to the single-extended unpack above.
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double_extended_unpack(w, de) double_extended _unpack

/> w <——se, unpacked. ¥
canonical w;
double_extended_binary de;

extern mode_str mode;
/* Assume de is a normal number. ¥

w.tag = NUM_TAG;
w.sign = de.sign;

w.exponent = de.exponent — 16383, /* bias = 16383 %
w.c_out =0;
w.msd = de.msb; /* Copy lead digit. ¥

/* w’'s fraction is left—justified and zero padded. ¥
w.fraction[1 ... 63] = de.fraction;
w.fraction[64 ... CANON_FRACTION] = 0;

if (de.(exponent, msd, fraction) == 0)
w.tag = ZERO_TAG; /* Zero. Y

else if (de.exponent == 32767)

/* Infinity or NAN. %
if (de.fraction == 0)
w.tag = INF_TAG; 7 Infinity. Y

/‘
* Distinction between signaling and
* quiet NANs is system—dependent.
¢ Jeading FRACTION bit is used here.
Y
if (de.fraction[1] == 1)
w.tag = Q_NAN_TAG;

else

else
; w.tag = S_NAN_TAG;
else

/* All nonzero operands are prenormalized. %
normalize(w);
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8. Pack Binary Formats

After the “infinitely precise” intermediate result is trimmed to the
precision and range of the destination format (or perhaps somewhat
narrower, due to precision control), the result is be packed from the
canonical format into the storage format by biasing the exponent and

copying the sign and significant bits.

B.1. Pack P754 Single

single_pack_result(s) single_paclc_result
single_binary s;

¢
extern canonical result;
s.sign = result.sign; /* Regardless of special cases. %

switch (result.tag)

case NUM_TAG:
s.exponent = result.exponent + 127;

/* Denormalized numbers have a bias of 126 %
if (result.msd == 0)

s.exponent = s.exponent - 1;
s.fraction = result.fraction[l .. 23};

case ZERO_TAG:
s.exponent = 0
s.fraction = 0;

case INF_TAG:
s.exponent = 255;
s.fraction = 0;

case S_NAN_TAG:
case Q_NAN_TAG:
s.exponent = 255;
s.fraction = result.fraction[1 ... 23];
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B.2. Pack P754 Double

double _pack_result(d) double_pack_result
double_binary d;

¢
extern canonical result;

d.sign = result.sign;
switch (result.tag)

case NUM_TAG:
d.exponent = result.exponent + 1023;

/* Denormalized numbers have o bias of 1022 %
if (result.msd == 0)

d.exponent = d.exponent — 1;
d.fraction = result.fraction|1 ... 52];

case ZERO_TAG:
d.exponent = 0;
d.fraction = 0;

case INF_TAG:
d.exponent = 2047,
d.fraction = 0;

case Q_NAN_TAG:
case S_NAN_TAG:
d.exponent = 2047,
d.fraction = result.fraction[1 ... 52];
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8.3. Pack P754 Single-Extended

single_extended_pack_result(se) Single_exiende d_pack_result
» single_extended_binary se;
¢

extern canonical result;
se.sign = result.sign;
switch (result.tag)

case NUM_TAG:
se.exponent = result.exponent + 10235;
se.msb = result.msd;
se.fraction = result.fraction[1 ... 31];

case ZERO_TAG:
se.exponent = 0;
se.msb = 0;
se.fraction = 0;

case INF_TAG:
se.exponent = 2047,
se.msb = 0;
se.fraction = 0;

case Q_NAN_TAG:
case S_NAN_TAG:
se.exponent = 2047,
se.msb = result.msd;
se.fraction = result.fraction[1 ... 31];
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B.4. Pack P754 Double-Extended

double_extended _pack_result(de) double_extende d.__paclc_re sult
double_extended_binary de;
¢

extern canonical . result;
de.sign = result.sign;
switch (result.tag)

case NUM_TAG:
de.exponent = result.exponent + 16383;
de.msb = result.msd;
de.fraction = result.fraction[1 ... 63];

case ZERO_TAG:
de.exponent = 0;
de.msb = 0;
de.fraction = 0;

case INF_TAG:
de.exponent = 327867,
de.msb = 0;
de.fraction = 0;

case Q_NAN_TAG:
case S_NAN_TAG:
de.exponent = 32767,
de.msb = result.msd;
de.fraction = result.fraction[1 ... 83];

8. Trimming the Result

This basic trim seguence applies to all operations that produce
floating-point results. For simplicity, it is written as though every
result would be trimmed, though in an actual implementation a trim
sequence might be set up for each operation, and then applied only to

finite, nonzero results.
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;rim_result() lrim_result

under_result();
round_result();
over_result();

P754 permits three different underflow criteria (§7.4) when there is

to be no trap on underflow:

(1) An intermediate result is less than the smallest normalized
number, when tested before rounding, and does indeed suffer a

rounding error in round_result().

(2) Like (1) except that tininess is tested after rounding as though the

range were unbounded.

(3) The final result differs from what would have been computed were

exponent range unbounded.

This implementation uses (1), which is perhaps the most straightfor-
ward to implement. In (2), the routine under_result() would follow
rather than precede round_result{) in sequence; a tiny, rounded result
would be flagged as underflowed, ‘‘unrounded”, and then sent back
through round_result(). It can be shown that a result can be
unrounded if it is known whether the result was rounded up in magni-
tude during the first application of round_result(). The most difficult
to implement, (3), is similar to (2) in that under_result() would follow
round_result(); however, the criterion for underflow is not that the

rounded result be tiny and inexact, but that it be tiny and yet incapa-
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ble of storage in the destination format without further alteration (i.e.,

it must be rerounded).

under _result() under.result
t
extern canonical result;
extern dst_str dst;
extern mode_str mode;
extern exc_str error, trap;
if (result.tag '= NUM_TAG) /* Bypass special results. ¥
return;
if (result.exponent >= dst.uthresh) /* Tiny? ¥
return,
/#

* Set tentative signal based on tininess only. Flag will
* be reset later if the result is exact.

4

error.uflow = TRUE;

if (trap.uflow == FALSE)
/* Denormalize... %
shift_right(result, dst.uthresh — result.exponent);

else
/* System—dependent action, including... ¥
result.exponent = result.exponent + dst.biasadjust;
!
round _result() round_resull
extern canoncial result;
extern dst_str dst;
extern mode_str mode;
extern exc_str error, trap;
digit guard;

bit sticky;
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if (result.tag '= NUM_TAG) /* Bypass special results. %

¢
if (result.tag == Q_NAN_TAG)
t

/’
* System—dependent action to check that
* the quiet NAN has some nonzero digits
*in the leading dst.lsd digits,
Y
J

return;

J

/* Quard is the next digit after rounding precision. %
guard = result.frac| (dst.lsd + 1) };

/t
* Sticky bit is 1 if and only if any digits beyond guard
* are nonzero. In includes the so—called round bit, which
* already served ifs purpose in +, —, and/.

4
if (result.frac| (dst.1sd + 2) ... CANON_FRACTION ] != 0)
sticky = 1;
else
sticky = 0;
/‘

* Test for exact result. If so, and underflow is not

* trapped, then undo any tentative underflow signal.
4

%f ((guard == 0) && (sticky == 0))

if (trap.uflow == FALSE)
error.uflow = FALSE;
return;

error.inexact = TRUE;

switch (mode.round)

¢
r*

* In the unlikely case of an odd radiz, the half-way

* case will never arise, and the following test
* could be simplified.
4
case TO_NEAREST:
if (guard > HALF_RADIX)
inc_result();
else if (guard < HALF_RADIX)
chop_result(};
else




/* (quard == HALF _RADIX) %
if ((sticky == 1) ||
(result.frac[dst.Isd] IS ODD))
inc_result();
else
chop_result();

case TOWARD_O:
chop_result();

case TOWARD_MINUS:
if (result.sign == 1)
inc_result();
else
chop_result();

case TOWARD_PLUS:
if (result.sign == 0)
inc_result();
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else
chop_result();
3

]
}
over_result() over_result

extern canonical result;

extern dst_str dst;

extern mode_str mode;

extern exc_str error, trap;

if (result.tag '= NUM_TAQG) /* Special operands. ¥

return;

if (result.exponent <= dst.othresh)
return;

if (trap.oflow == FALSE)
t

error.inexact = TRUE; /* Inezact if untrapped. %

error.oflow = TRUE,;
if ( (mode.round == TO_NEAREST) ||

((mode.round == TOWARD_PLUS) && (result.sign == 0)) ||
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((mode.round == TOWARD_MINUS) && (result.sign == 1)) )
result.tag = INF_TAG;
else

huge_result();

/* System~dependent action, 'including.., vd
result.exponent = result.exponent — dst.biasadjust;

10. Low-Level Ulility Routines

/* Short—hand for long mnemonic... %
# define CF CANON_FRACTION

When shifting right, 0 is shifted into c_out and fraction digits lost

off the right are accumulated in the trailing digit.

shift _right(w, cnt) shift_right
canonical W,
int cnt;

while (cnt > 0)

/* Logically OF the last digit into the second last... %
w.fractionE/CF ] = w.fraction[ CF ]| w.fraction[ CF ~ 1 ];

/% . .before the right shift. %
w.{c_out, msd, fraction) = w.(c_out, msd, fraction) >> 1;

w.exponent = w.exponent + 1; /*® Adjust exponent. ¥
cnt = ent — 1;
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The arithmetic is such that left shifts may be made without regard

to the special “'sticky” nature of the lowest fraction digit.

The carry-
out digit c_out will always be 0.
shift_left{w, cnt) shifi_lLeft
canonical w;
int

cnt;

while {cnt > 0)

/* Just shift left, with Ointo fraction] CF]. %
w.(c_out, msd, fraction) = w.(c_out, msd, fraction) << 1;

w.exponent = w.exponent — 1; /* Adjust exponent. ¥
cnt = ent — 1;

Normalize by shifting left. c_out and fraction[CF] are always O.

If
all significant digits are zero, the number is set to Normal O.
normalize(w) normalize
canonical w;
¢

if ( w.(msd, fraction) ==0) /* Dismiss special case. %
w.tag = ZERO_TAG:
else

while (w.msd == 0)

¢

w.(msd, fraction) = w.(msd, fraction) << 1;
w.exponent = w.exponent — 1;
J
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Increment by a unit in the last place of rounding precision. Then

clean up trailing digits.

inc_result() wme_result
extern canonical result;
extern dst_str - dst;
canonical tmp;

7 Set up dummy significant digit field for incrementation. %
tmp.msd = 0;

tmp.fraction = 0;

tmp.fraction[dst.l1sd] = 1;

result.(c_out, msd, fraction) =
result.(msd, fraction) + tmp.(msd, fraction);

if (c_out!'=0) /* Catch carry—out. ¥
shift_right(result, 1);

/* Clean up trailing digits. %
result.fraction[ {(dst.Isd + 1) ... CF ] = 0;

Chop at the last place of rounding precision.

chop_result() chop_result
¢

extern canonical result;

extern dst_str dst;

result.fraction| (dst.lsd + 1) ... CF ] = 0;

Set result to the largest number of the specified range and preci-

sion.
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huge_result() huge_:result
extern canonical result;
extern dst_str dst;
result.exponent = dst.othresh; /* largest exponent ¥

result.msd = RADIX_1;
result.fraction[1 ... dst.1sd] = (RADIX_1, RADIX_1, ..., RADIX_1);
result.fraction| (dst.lsd + 1) ... CF ] = 0;

11. Operations

Each of the operations is broken into a large switch-case state-
ment to handle the cases of zero, infinite, NAN, and normal operands.
All operations on NANs are dealt with in the NAN-Hanlders section.

Invalid operands are flagged for later processing during the Trim step.

In this implementation, all numeric inputs are normalized when
unpacked, so there is no need for special provision for unnormalized
operands. However, this is not required by P754. §3.1 and 3.3 expli-
citly allow an implementation to interpret unnormalized values in the
sense of the obsolete Warning mode. This interpretation is discussed

in chapter 5.

11.1. Add

Set result to the sum of opl and opZ2.
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add{)
!

add

extern canonical opl, opZ2, result;
extern mode_str mode;
extern exc_str error;

Vad

* Special | 0 NUM INF NAN

* case lable: e e e e e

L ]
L4
%
*

4
switch (

case A:

case B:

case C:

case E:

case [

case D:

opl.tag versus op2.tag )

Mo+ 0%
result = opl;
if (op1l.sign != op2.sign)
if (mode.round == TOWARD_MINUS)
result.sign = 1;
else
result.sign = 0;

/*opl=0orop2=INFY
result = opZ2;

M opl=0oropl = INFY
result = op1;

/~opland opl = INF Y
if (op1l.sign == opZ2.sign)
result = opl;
else
make_nan();

/* NANs! %
two_nans();

/* Typical case of two nonzero numbers. %
/* Arrange to have opl >= 0p2in magnitude. *
if (op2.exponent > opl.exponent)

swap(op1, op2);

/% Align opZ's radix point with opl’s. %
shift_right(op?2, opl.exponent — op2.exponent);

if (opl.sign == op2.sign)
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/* Add magnitude case, ¥

/* Tentotive tag, sign, exponent. ¥
result = opl;

result.{c_out, msd, fraction) =
opl.(msd, fraction) + op2.(msd, fraction);

/* Handle possible carry—out, %
if (result.c_out 1= 0)
shift_right(result, 1);

else
/* Subtract magnitude case. ¥

/‘
* The following swap() prevents a borrow,
* which this notation is unequipped to describe.
b4
if ( op2.(msd, fraction) > op1.(msd, fraction) )
swap{op1, op2);

/* Tentative tag, sign, exponent. ¥
result = opl;

result.(msd, fraction) =
opl.(msd, fraction) — op2.(msd, fraction);

/.
* Case of total concellation ——
* determine sign as in case A
v
if (result.(msd, fraction) == 0)
if (mode.round == TOWARD_MINUS)
result.sign = 1;
else
result.sign = 0;

normalize(result);
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11.2. Subtract

Set result to the difference of opl and op2, using add().

subtract() subtract
extern cahonical ope;
/* Flip the sign of op2 with exclusive—or, ¥

opZ2.sign = opZ.sign ~ 1;
add();

11.3. Multiply

Set result to the product of opl and op2. When the product of
two finite numbers is actually computed, the significant digit fields are

interpreted as

<digit> . <fraction digits>

so that their product has the form

<carry-out digit> <digit> . <double-length fraction>

Only CANON_FRACTION fraction digits need be computed here, with the
last digit reflecting the logical OR of all digits farther to the right of

the *“‘infinitely precise” result.
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;nultiply()

extern canonical

/‘
* Special
* case table:
®»
®
E
»

4

opl, op&, result,;

| 0 NUMINF NAN
+

0| A A CE
NUM| A B D E
INFI|C D D E
NAN| E E E E

/* Sign is exclusive—or of operand signs. ¥
result.sign = opl.sign ~ opZ2.sign;

switch ( opl.tag versus op2.tag )

¢

case A: /* Otimes finite. ¥/
result.tag = ZERO_TAG;

case C: /* Otimes INF. ¥
make _nan();

case D: /* INF times nonzero. ¥
result.tag = INF_TAG;

case E: /* NANs! %

two_nans();

case B: /* Two finite, nonzero numbers, ¥
result.exponent = opl.exponent + opZ.exponent;

result.(c_out, msd, fraction) =
opl.(msd, fraction) * op2.(msd, fraction);

/‘

multiiply

* Watch for carry—out — product of numbers

* befween I and RADIX may exceed RADIX,

* requiring a one—digit shift.

k4

if (result.c_out = 0)

shift _right{result, 1);
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11.4. Divide

Set result to the quotient opl / op2. When the actual quotient of
two numbers must be computed, the significant digit fields are inter-

preted as
<digit> . <fraction digits>
so that the quotient takes the form
<digit> . <fraction string, perhaps nonterminating>

Only CANON_FRACTION correct fraction digits need be computed, with

the last of them reflecting the logical OR of all digits farther to the

right.
divide() divide
¢
extern canonical opl, op?, result;
extern exc_str error;
/‘
* Special | 0 NUM INF NAN
* case table: e e e e
® O0|A B B F
* NUM| C D B F
® INF | E F A F
® NAN| F F F F

%

/* Result sign is exclusive—or of operand signs. %
result.sign = opl.sign ~ opl.sign;

switch ( opl.tag versus op2.tag )

case A: /* 00 or INFINF, %
make _nan();

case B: /* NONZERO or finite/INF. %
result.tag = ZERO_TAG;



8.40

case C: /* finite/’0. ¥
result.tag = INF_TAG;
error.div_zero = TRUE;

case E: * INF/finite. ¥
result.tag = INF_TAG;

case F: /* NANs! ¥
two_nans();

case D: /* finite/finite %
result.exponent = opl.exponent — op2.exponent,;
result.(msd, fraction) =
opl.(msd, fraction)/ op2.(msd, fraction);

/‘
* Quotient of two values between 1 and RADIX
* may be less than 1, in which case a one—digit
* shift is required.
b4
if (result.msd == 0
shift_left(result, 1);

11.5. Remainder

Find the value result such that
opl = (op2 X Q) + result
where Q is an integer and
lresult] = 0.5 x |op2| ,

with Q an even integer in the case of equality., Q need not be
delivered, though its sign and several low-order bits would be useful for

trigonometric argument reduction.

In principle, result may be computed by computing all of the

integer bits of opl/op2 (discarding the high-order 1's) and fixing up
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the remainder to satisfy the above inequality. However, it turns out in
practice to be easier to compute Q@ and the first fraction guotient bit
and then fix the remainder. The fraction bit aids in checking the ine-

quality.

According to §5.1, precision control is not to apply to remainder.
Thus, the result doesn't require rounding. Even if op2 is tiny and the
remainder falls below the underflow threshold, the result will be exact

and so will not underflow.

remainder() remainder
extern canonical opl, opZ, result;
extern mode_str mode;
extern exc_str error;
int Q, Qsign;
/ﬁ
* Special | O NUM INF NAN
* case table: e e e e e e e
* 0O|A B B D
» NUM| A C B D
* INF | A A A D
* NAN| D D D D
%/
Qsign = opl.sign ~ opR.sign; /* Quotient sign. ¥

switch ( opl.tag versus op2.tag )

case A: /* opl rem O or INF is invalid. ¥
error.invalid = TRUE;

case B: /* Xrem INF and Orem Yare trivial. %
result = opl;

case D: /* NANs! %

two_nans();
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case C: /* finife rem finite. ¥

/* Set tentative sign and exponent. %
result.sign = opl.sign;
result.exponent = opZ2.exponent;

/* Generate all integer and one fraction gquotient bits. %
Q = LOW(opl.exponent — op2.exponent + 2)

BITS OF QUOTIENT;
result.(msd, fraction) = REMAINDER;

/% Low bit of @ = 1 when REM is at least half op2. %
;f ((Q&1)==1)

if (result.(msd, fraction) == 0)

/i.

* Half-way case —— result

* has half magnitude of opZ,

* with sign flipped if

* integer @Qis odd.

»

result.(msd, fraction) =

op2.(msd, fraction);

result.exponent = result.exponent — 1;

%f((Q&Z) == 2)

/* Test low integer bit of @ ¥
result.sign = result.sign ~ 1;

Q=Q+2;

else

/* More than half—way. %
resull.sign = result.sign ~ 1;
result.(msd, fraction) =
op2.(msd, fraction)
~ result.(msd, fraction);

Q=Q+%2
}

normalize{result);
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/“
* Now @ and its sign are available. ..
Y

11.6. Compare

Compare opl and op?2 and return the condition EQUAL, LESS THAN,
GREATER THAN, or UNORDERED. To implement the language aspects of
comparisons, two versions of the comparison instruction are useful, one
that triggers Invalid on UNORDERED and one that is silent. See

chapter 6 for further details.

compare(iftrigger) compare

7* Trigger invalid error if operands are UNORDERED? %
boolean iftrigger;

extern canonical opl, opZ;
extern mode_str mode;
extern exc_str error;

int cond;

/*

* Special | 0 NUM INF NAN
* case table: e e e e e e
he 0|A B B F

hd NUM| C D B F

* INF| C C E F

hd NAN| F F F F
&

switch ( opl.tag versus op2.tag )

cage A: # Ous 0. %

cond = EQUAL;



case B: /* Sign of op2 determines. ¥

if (op2.sign == 0)

cond = LESS;
else

cond = GREATER;

case C: /™ Sign of op1 determines. ¥

if (op1.sign == 0)

cond = GREATER;
else

cond = LESS;

case E: /* INFwvs INF. %

if (op1l.sign == opZ2.sign)
cond = EQUAL;
else if (opl.sign == 0)
cond = GREATER;
else
cond = LESS;

case . /™ NANs! ¥

/“
* Cnll NAN-handler to deal with exceptions
* like signaling NANs, but ignore the setting
* of the result.() structure.
v

two_nans();

cond = UNORDERED;

case D: /* finite us finite ¥
if (op1.sign != op2.sign)

/* Trivial if signs differ. %
if (opl.sign == 0)

cond = GREATER;
elge

cond = LESS;

else

/ﬁ
* Since operands are prenormalized,
* unequol exponents determine order.
Y
if (opl.exponent > op2.exponent)
if (opl.sign == 0)
cond = GREATER;
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else
cond = LESS;
else if (opl.exponent < op2.exponent)
if (opl.sign ==
cond = LESS;
else

cond = GREATER;

else if (op1.(msd, fraction) > op2.(msd, fraction))
if (opl.sign == 0)
cond = GREATER;
else
cond = LESS;

else
if (opl.sign == 0)
cond = LESS;
else
cond = GREATER;

J

/* Raise a flag if necessary. ¥
if ((iftrigger == TRUE) && (cond == UNORDERED))
error.invalid = TRUE;

return(cond);

11.7. Round to Integer

Set result to opl, rounded to an integer.

rnd_integer() rnd_integer
¢
extern canonical opl, result;
extern mode_str mode;
extern exc_str error;
Vs
* Special | 0 NUM INF NAN
* case table: e o e o e e e e e
* 0O|A B A C

4
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gwitch (opl.tag)
¢

case A: /* int(zero or INF) is itself. ¥
result = opl;

case C: /* NAN! Y
one_nan();

case B: /* typical case of finite number ¥
result = opl;

/"
* Nothing to be done if exponent is bigger than
* the index (since it’s already an integer).
* Otherwise right—align the significant digits
* to round of f the fraction part.
hd
if (result.exponent < dst.1sd)
shift _right(result, {dst.lsd — result.exponent));

round_result(}; /* May be unnormalized. %
normalize(result);

11.8. Square Root

Set result to the square root of opl. The core of this operation
is the computation of the square root of a number between 1 and
RADIX x RADIX, which root is always of the form d.ddd before rounding.
After CANON_FRACTION correct fraction digits of the root are found, a
1 should be logically OR-ed into the last digit of result.fraction to sig-

nal the nonzero digits further to the right.
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;qrt() sqri
extern canonical opl, result;
extern mode_str mode;
/‘
* Special | 0 NUM INF NAN
* case table: i
* O0|A B CD
4

switch ( opl.tag )

case A: M sqri( +/— 0 )is +/— 0 (\(sc6.2) ¥
result = opl;

case C: /* Only sqgrt( +INF ) is valid. ¥
if (opl.sign = 0)
result = opl;
else
make_nan();

case D: /* NAN!'Y
one_nan();

case B: /* sqrt(finite). %
/* Negative values are invalid. %
if (opl.sign == 1)
make_nan();

else
¢
/* Handle odd exponents with care. ¥
if (opl.exponent & 1)
shift_left(op1, 1);

result.sign = 0;
result.exponent = opl.exponent/ 2;

result.c_out = (;
result.(msd, fraction) =
root{opl.(c_out, msd, fraction));




B.48

11.9. NAN-Handier

The treatment of NANs is quite system-dependent. The intention is
that quiet NANs should propagate through operations without generating
exceptions. When two operands are such NANs, a system-dependent
precedence rule should arbitrate, designating one of the input NANs as
the result. The choice should be made on the basis of the operands’
fraction fields only (see §6.2 of P754, especially the last paragraph, and

the discussion of NANs in chapter 2).

Signaling NANs generate an exception whenever they are touched,
presurmably because the user has some specific interpretation to be
effected by special trap handling software. Signaling NANs might also
be used by a system to provide a menu of alternatives to the default

exception handling schemes provided by the arithmetic.

two_nans{) lwo_nans
extern canonical opl, opZ, result;
canonical precedent_nan();
/"
* Special | @_NAN S_NAN ELSE
® case table: —————— S e e e e e e e
. Q NAN| A B C
* S_NAN| B B B
® ELSE| D B NA
V4

switch ( opl.tag versus op2.tag )

case A: /* Two quiet NANs. ¥
result = precedent_nan(opl, op2);

case B: /* One or two signaling NANs. %
make _nan();
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case C: /* opl is quiet NAN, op2is ELSE. %

result = opl;
case D: /* op2is quiet, oplis ELSE. ¥
result = op?2;
; !
one_nan() ' one.nan
extern canonical opl, result;

if (opl.tag == Q_NAN_TAG)

result = opl;
else
make _nan();
}
make _nan() make_nan
extern canonical result;
extern exc_str error;

error.invalid = true;

/-
* Set result to some quiet NAN, perhaps indicating the
* nature of the error,
4







CHAPTER 9

Intermediate Exponent Calculations

1. Introduction

Proposed IEEE standard P754 for binary floating-point arithmetic
specifies that results be computed as though with unbounded range and pre-
cision and then coerced to within the constraints of the destination number
format. Just how much exponent range is required for the “infinitely precise

intermediate result” is the subject of this brief chapter.

Among the unusual features of P754 are the so-called denormalized
numbers, which alleviate some common problems due to exponent underflow
(see chapter 5). The denormalized numbers eflectively extend the exponent
range of the host format by a small amount, though this is not their primary
purpose. But just this small amount can have a serious impact on exponent
calculations. For example, a typical implementation of the P754 double-
extended format will use 15 exponent bits, biased by 3FFF;¢. Since multipli-
cation and division entail adding and subtracting their operands’ exponents,
one extra exponent bit — for a total of 16 — would seem to suffice for inter-
mediate results, pending checks for overflow and underflow. However, the
extra range afforded by the denormalized numbers is slightly wider than can
be covered by 16 bits alone. We will see how an implementor can make do

with 16 bits when the cost of an extra exponent bit is very high.

Throughout this chapter, all four-digit integer constants are hexade-

cimal unless otherwise indicated.

8.1
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2. An Implementation

In P754, extended formats are specified by lower bounds on the range
and precision to be provided. For definiteness, let us assume a double-
extended format with a biased 15-bit exponent ranging from 0000 to 7FFF,
including an added 3FFF. Suppose that the maximum exponent, 7FFF, is
reserved to encode += and NANs, so the unbiased exponent ranges from
—3FFF to 3FFF for finite numbers. If there are 84 significant bits, all of them

explicit, then the set of finite representable numbers is

:t2" X bo'b 1b2b3 ot bss
where —3FFF < n < 3FFF. The special value zero is encoded with an
exponent —3FFF and all significant bits zero. Three numbers are of particu-

lar interest in what follows:

B = 2%¥FFx 3911 .11 = Dbiggest normalized
= 2%Fyx1000 - 00 = smallest normalized
D = 2FF 30000 --01 = smallest denormalized
= 2%y 190

3. Extreme Overflows and Underflows

The extreme cases for intermediate results are these:

BxB = 2WFx1111 - bbbb -

= 2%% x 1.0 rounded to single or double precision
BrS = 2%Exi111---11

= 2"™F x 1.0 rounded to single or double precision
Bs/D = 280111111

= 2899 x 1.0 rounded to single or double precision
SxS = 2TEx10
DxD = 28%Cx)p
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S/ B = 2 ™Fx1000 - 0bbbb - -

D/ B = 28Ex1000- - Obbbb - - -

The range covered by results involving only normalized numbers is =7FFF to
BO0OO, a total of 2! values. This may barely be covered with a 16-bit inter-
mediate exponent. However, with denormalized inputs the eﬁ'ective range is
—B807C to B0O3E. Of course, a 17-bit exponent covering the range —10000;5 to
OFFFF,g would more than suffice for intermediate calculations, but the cost
of the seventeenth bit may be high. The rest of this paper discusses a way to

get by with just sixteen bits.

4. Overflow and Underflow Ranges

Suppose that floating-point arithmetic is performed with a 16-bit inter-
mediate exponent biased by 3FFF. And suppose that exponent calculations
are performed in integer arithmetic, modulo 2'%, as in two's-complement
signed arithmetic. Then the exponent ranges of interest in unbiased and

biased forms are:

Case Unbiased Range | Biased Range
(a) unexceptional | —3FFF to 3FFF | 0000 to 7FFE
(b) x underflow —B807C to —4000 | B783 to FFFF
(c) / underflow ~B03E to —4000 | BFC1 to FFFF
(d) x overflow 4000 to BOOO 7FFF to BFFF
(e) / overflow 4000 to 803E 7FFF to CO3C

Here they are on a number line:
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O

8 b

1 | 1
| | !
0000 4000 8000 Cc000 FFFF

b o o 2 oy

The amount of range in excess of sixteen bits is shown by the overlapping

overflow and underflow ranges of x and /.

5. Facts about Over/Underflow

Only double-extended products and quotients are susceptible to ambigu-
ous overflow and underflow cases when a 18-bit exponent is used for inter-
mediate values. An exponent in the range [BF83, BFC1] is either overflowed

or underfiowed.

Let’s call big any extended number with a biased exponent larger than,
say, 7F00 and call smaoll any extended number with a biased exponent
smaller than 0100 (this includes the denormalized numbers). The extreme

underflow cases can arise only from

small x small or small / big

and the extreme overflow cases can arise only from

big x big or big / small
This suggests that the ambiguous cases can be resolved by checking the left
operand: if it is small the result has underflowed, and if it is big the the

result has overflowed.
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6. Tests of Overflow and Underflow

As explained in §7.4 of P754 and in chapter 8, underflow is signaled when
a result is both inexact (that is, rounded) and tiny. Tininess is the conven-
tional criterion that a value underflows when it falls below a certain thres-
hold. However, the denormalized numbers enable unconventionally tiny
values to be represeAnted. So underflow is signaled only when a tiny value
suffers some unusual loss of accuracy due to denormalization. This.section
discusses only the tininess criterion. Chapter B treats both underflow cri-

teria.

When testing a result for tininess, three intervals are of particular

interest:

BF82 CO3C

0000 4000 8000 cooo FFFF

[0000, BF82] — result cannot be tiny (though overflow may be detected later).

[BF83, CO3C] — result is tiny if and only if the left operand is small (otherwise
the left operand must be big and overflow will be detected

later).

[CO3D, FFFF] — result is unambiguously tiny.

To test whether the left operand is small it suffices to check whether its
biased exponent is at most 4000, unsigned;. that is, simply ensure that the

exponent is not big.

In P754, the test for tininess always precedes the test for overflow. Thus
the ambiguous cases are eliminated by the time overflow is tested. The test

for overflow is simply:
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if exponent < 7FFE then either inrange or already underflowed...

else overflow...

where the 16-bit comparison is unsigned.

7. Single and Double Results

Since P754 specifies that products and quotients involving extended
operands cannot be delivered directly to single or double destinations, the
ambiguous cases cannot arise there. In a so-called ‘‘extended based" system
which delivers all arithmetic results to extended destinations, single and
double destinations only arise in format conversions. On such a system, the

test for tininess in extended - double conversion is

if exponent < 3C01 then underflow...

else inrange or overflowed...

where the comparison is signed two's-complement. The signed comparison is
used to catch dencormalized inputs which, when prenormalized, have
exponents of the form FFzz — modest negative numbers in the two’s-
complement system. There is no problem with overflowed exponents like
BOzz because the largest finite extended input has exponent 7FFE. The situa-

tion for extended - single format conversion is analogous.

B. Summary

The cost of keeping a 16-bit exponent for intermediate results is a
slightly more complicated test for tininess, using two thresholds, and the
need to inspect the exponent of one of the input operands. The extra nui-
sance may be small compared to the cost of a seventeenth exponent bit for
all exponent calculations when there is a natural 16-bit boundary, as is the

case with some bit-slice and software implementations.



CHAPTER 10

A Compact Test Suite for P754 Arithmetic — Version 2.0

The initial version of this test data base for the proposed IEEE 754 binary
floating point standard (draft 8.0) was developed for Zilog, Inc. and was
donated to the floating point working group for dissemination. Errors in or
additions to the distributed data base should be reported to the agency of
distribution, with copies to Zilog, Inc., 1315 Dell Avenue, Campbell, CA, 95008.

The above statement, which is to accompany any copy of this test suite,
indicates the origin of this effort. The author developed the tests while
employed at Zilog. Since then, with help from James W. Thomas of Apple
Computer, the tests have been expanded and updated to conform to draft

10.0 of proposed IEEE standard P754 for binary floating point arithmetic.

1. Distribution format

The data base consists of several files of ASCII data: this description, the
test vectors [Appendix B], and a sample Pascal program to drive the tests
[Appendix C].

Currently, the tests are available on an unlabeled magnetic tape, 1600
BPI, composed of physical blocks of 40 *‘card images'’ of 80 ASCII characters.
Files are separated by file marks, with a double file mark at the end of the
last file. The tape may be obtained by mailing $100 (payable to the Regents

of the University of California) to Keith Sklower, Computer Science Division,

Evans Hall, University of California, Berkeley, CA, 94720.

2. The design goal

Our object was to exercise the P754 arithmetic, the special case logic in

particular, with as terse a test set as possible. By keeping the test fields

10.1
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brief we could generate new tests by simply typing the vectors ourselves,
rather than using a table-driven or random scheme. And it was easy to
update the data base as new cases occurred to us and errors were detected.
Most important, the tests were designed to be as format-independent as pos-
sible, so that the same vectors would apply to all formats — single, double,
single-extended, and double-extended — without regard to the

implementation-dependent features of the extended formats.

No claim is made about the completeness of these tests. Attempting to
maintain format independence led to two important restrictions. First, we
could not describe arbitrary bit patterns, so we were limited to a special
class of numbers, roughly speaking, ‘'simple” numbers modified in their low-
order bits and possibly scaled up or down. Second, the tests were written as
though all operations were of the form

ropy - =z

where z, ¥, and z all have the same format. However, this is not the archi-
tecture of several known microprocessor implementations. Those implemen-
tations are fundamentally two-address, with extended format destinations for
all operations except conversion from extended to a narrower format. The
test suite does not explicitly test such mixed-format operations. But with
care such operations can be used to simulate the type of architecture the
test vectors apply to — even though this simulation will not be used for ordi-
nary calculations.

P754 is really a specification of a programming environment. This test

scheme simply exercises an arithmetic engine that purports to “support”
the proposed standard. Thus the tests do not address the more global P754

issues such as which formats are supported., how expression evaluation is
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carried out (including possible provision for precision control), how com-
parisons are handled, how binary-decimal conversion is provided {and how

accurate it is), and how exceptions are reported.

3. Test vector format

The test vectors are contained in several files of ASCI] text. Each line of
a test file is either a comment (beginning with ‘" or entirely blank), or a test

vector such as:
2% = 1i1 -1li2 x =1i3 aninexact product

The leading ‘2’ is the version number; the first version of the tests, distri-
buted through 1982, had no version number. This particular example is a
product (*) with rounding to nearest (=). The factors are 1.0 incremented (i)
by a unit in its last place (to the precision of the format under considera-
tion), and the negative of 1.0 incremented in magnitude by two units in its
last place. The result, which is inexact (x), is the negative of 1.0 incremented

by three units in its last place.

Each test vector consists of seven fields: version number and operator,
modes, first operand, second operand, result flags, result, comment. The
fields are separated by white space — blanks or tabs; thus, no field but the
last may be blank, and only the last field can itself contain white space. In
the case of unary operations like square root, the value 0" is used as a

placeholder for the second operand.

The operators supported in version 2.0 of the tests are: +, —, * /, C
(compare), V (square root), % (remainder), | (round to integer), N (nex-
tafter), A (absolute value), ~ (negate), @ (copysign), S (scalb), L (logb), and F

(fraction part). The last seven operators are taken from the P754 Appendix
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(F is a combination of S and 1L, as shown in the accompanying program).
They are recommended but not required by P754; they were not included in

version 1.1.

' The modes are = (round to nearest), 0 (round toward 0), < (round
toward —infinity), > (round toward +infinity), s (single operands), d (double
operands), t (single extended operands), e (double extended operands). The
modes s, d, t, and e are used when the result explicitly depends on a specific
exponent range or precision; thus, modes t and e must be used with great
care since those formats are implermentation-dependent. Modes for the
afline and projective interpretations of infinity and for the normalizing and
warning interpretations of denormalized numbers were included in version
1.1, but they are omitted here since the projective and warning modes were
removed from P754 in the passage from draft B.0 to draft 10.0. In the nota-
tion of draft B.0, all operations in the version 2.0 tests are run implicitly in
the affine and normalizing modes. If one or more rounding modes appears in
a vector, then the test is run in those modes only; otherwise, the test is run
for all rounding modes. Similarly, if any format restrictions are listed then
they exclude any others. If a test applies to all formats in all rounding
modes then the key "ALL" is used as a placeholder, since the mode field

must be non-empty.

The error flags are o (overflow), x (inexact), i (invalid operation), z (divi-
sion by zero), and u/v/w (underflow). There are three flags for underflow
since P754 now permits an implementor to use any one of three slightly
different definitions of underflow for all operations. In the language of sec-
tion 7.4 of P754, u indicates underflow due to tininess and “extraordinary”’

error; v indicates underfilow due to tininess and inexactness, where tininess is
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tested after rounding; and w indicates underflow due to tininess and inexact-
ness, where tininess is tested before rounding. The three definitions are
nested in the sense that u-underflow implies v-underflow which in turn
implies w-underflow. The three definitions differ in subtle ways, and a few
multiply and divide tests have been devised to distinguish them. Version 1.1
had two other error flags, d and t, concerning denormalized and signaling
NAN operands, specific to the original Zilog implementation; these have been
omitted from version 2.0. Unexceptional tests have the key “OK” in the

result flag fleld as a placeholder.

A numeric operand field is scanned left to right. It consists of an
optional sign, a mandatory root number, and zero or more modifier suffixes.
The sign is + or —; as usual, plus is presumed if the sign is omitted. Root
numbers are of several types: integers, NANs, and tiny and huge numbers.
The single-digit integers 0, 1, ..., 9 speak for themselves. S and Q signify sig-
naling and quiet NANs, respectively (T and N were used in version 1.1
corresponding to the oblsolete names “‘trapping’ and ‘‘nontrapping”). Ez,
where z is a single digit, is a tiny power of two: EO is the smallest normalized
number, E1 is twice EO, E2 is twice E1, etc. Similarly, Hz is a huge power of
two: HO is infinity (a special case), H1 is the largest power of two, H2 is half of
H1, etc. Finally, there is a notation for specifying arbitrary root values,
though it is intended for further expansion of the test vectors and is not used

in version 2.0. The form is:
%zzx « . szyy DR 'y
The dollar sign indicates that a literal root value follows. The z-field is a

string of hex digits with an implicit binary point after the leading bit of the

leading hex digit. The y-field is the decimal expenent (optionally signed) of
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two. The value represented is thus

Ozzz -z * (2~(yyy "y + 1))

with the binary point moved over to the left of the x-field for notational con-

venience.

The five suffixes have the form sK, where s is one of i, d, u, p, or m and
K is a digit 0, 1, ..., 8. The increment (i) and decrement (d) suffixes cause
the root value to be altered by K units in its last place (ulps). The ulp (u)
operator replaces the root value by K units in its last place. The plus (p) and
minus (m) operators cause the root value to be scaled up or down by 2~K.
Since it is easier to see how the operators apply than to enumerate formal
rules, further discussion is deferred until several examples have been

presented.

4. Sample Numerical Values

The following list of numerical operands illustrates most of the

subtleties of the test vector representation. The subsequent text discusses

the examples.

Test Operand  Mathematical Value  Single Format Encoding

1 1 3FB0 0000
1i1 1+ ézA—zs) 3F80 0001
1d1 1 —(2~-24) 3F7F FFFF
1ul 2~—23 3400 0000
1p1 1*2 4000 0000
im1 1%2~-1 3F00 0000

2 2 4000 0000
—2i3 —(2 + 3%(2~-22)) C0O00 0003
2u1 R2~—22 3480 0000

2i3ul 2~—22 3480 0000

2d1ul 2~—-23 3400 0000

—2p1 —-2%2~1 €080 0000

2m1 2*2~-1 3FB80 0000

$800000~1 2 4000 0000
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$800001~1 2+ (2~-22) 4000 0001
3i1 3+ (2~-22) 4040 0001
3ul 2~—22 3480 0000

4 4 4080 0000
4m1 2 4000 0000
0 0 0000 0000
-0 -0 8000 0000
0i5 5 *(2~—149) 0000 D005
-0i2 -2 * (2~—149) 8000 0002
EO 2~—-1286 0080 0000
E0i1 2~-128) + EZ*—MQ) 0080 0001
E0d1 2~—126) — (2~—149) 007F FFFF
EOilul 2~-149 0000 0001
E0d1uil 2~—149 0000 0001
EOm1 (2~—-128) * (2~-1) 0040 0000
HO infinity 7F80 0000
HOd1 (8~128) — (2~104) 7F7F FFFF
HOm1 (2~128) * (2~-1) 7F00 0000
Hi 2~127 7F00 0000
—-Q negative quiet NAN FF81 0000
S signaling NAN 7FC1 0000

The increment (i) and decrement (d) operators are defined to yield the
next represenatable value to the number to which they are applied. When
the root value is a power of two and is greater than EO, the amounts incre-
mented and decremented differ by a factor of two. Compare, for example,
1i1 and 1d1. However, when the root value is a power of two no bigger than
EO (the smallest denormalized number), the magnitude of the increment and
decrement are the same, namely the value of the tiniest denormalized
number. This follows from the fact that numbers in the range E0 to E1 have

the same spacing as the numbers in the range 0 to EO.

There are two special cases of i and d. Oil is the tiniest denormalized
number (that is, the next representable number to 0), and in general 0iK is

defined to be K times 0il. When HO, representing infinity, is decremented, as
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in HOd1 above, HO behaves as though it had the value 2~128, that is the smal-

lest power of 2 too large to represent.

The ulp operator (u) gives units in the last place of the number to which
it is applied. The operator is motivated by the need to describe the results of
magnitude subtractions. The ulp operator may best be thought of as satisfy-
ing the following formula: for any value X, XuK = XiK — X. Thus only the
exponent of X, not its significand, determines the magnitude of the ulps. For
example, 2ul, 2i3ul, and 3ul all have the same value since the root values 2,

2i3, and 3 all of the form (2~1)*1.f.

The scaling operators p and m typically affect only the exponent of a
number, as in the cases 1pl and 4m1, both of which equal 2. However, when
the root value is no bigger than EO, the scaled value must be denormalized,

as in the case of EOm1 above.

The NAN root values Q and S are system-dependent since P754 specifies
only that they have the maximum exponent and some nonzero bits in the
significand. In the examples shown, the leading fraction bit is used to distin-

guish the two kinds of NAN.

A negative sign applies to the number as a whole, as in —2i3 above.
Regardless of any sign, the increment and decrement operators add and sub-

tract in magnitude, respectively.

5. Sample Driver Program

Appendix C contains a Pascal program which has been used to run the
test vectors. The program was developed by James W. Thomas and the
author and has been run on both an Apple Il and an Apple Lisa computer

(using prototype floating point software just becoming available as products).
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The program is broken into three parts, the main program FPTEST and two
“units” (in the notation of UCSD Pascal) FP and FPSOFT.

FPTEST parses the test vectors, builds the numeric operands in a canon-

ical format, invokes FP to run the tests, and checks the results.

The unit FP is composed of subprograms to pack canonical values into
the P754 storage types and to perform single, double and extended format
tests. This unit is highly implementation-dependent. If an extended format
is implemented, then packing from the canonical format to extended will
depend on details of the extended format. Even packing into the single and
double formats depends on the ordering of the bytes in the 32 and 64 bit
words. FP invokes the actual arithmetic operations to be tested; in some
cases, such as this sample program, the arithmetic is available only through
subroutine calls. The unit FPSOFT describes one interface to such routines.
FP simulates single-only, double-only, and extended-only operations. In this
sample program the arithmetic is two-address extended-based so extra care
is taken to avoid the so-called double-rounding that may arise when a result
is computed in an extended intermediate variable and then stored (and pos-
sibly rounded again) to a single or double destination. It can be shown that
because the extended format has more than twice as many significant bits as
does the single format, this hazard only arises in double format tests. (We
note again that this restriction to operations on just one format is an arbi-

trary constraint set by the test scheme, NOT by P754.)

FPSOFT is an hypothetical interface to a floating point package, to sup-
ply the operations needed by FP. Of course, this unit would not be required if
the host system fully supported floating point arithmetic right in Pascal, in

which case the unit FP could be greatly simplified.






APPENDIX A

Excerpts from a Proposed Standard for Binary Floating-Point Arithmetic

Based on Draft 10.0 of 1EEE Task P754 December 2, 1982

Foreword

This foreword and the footnotes are not part of IEEE
Standard 754 for Binary Floating-Point Arithmetic.

This standard is a product of the Floating-Point Working Group of the
Microprocessor Standards Subcommittee of the IEEE Computer Society Com-
puter Standards Committee. Draft 8.0 of this standard was published to soli-
cit public comments.! Implementation techniques can be found in ‘*An Imple-
mentation Guide to a Proposed Standard for Floating-Point Arithmetic" by

Jerome T. Coonen,? which was based on a still earlier draft of the proposal.

This standard defines a family of commercially feasible ways for new sys-
tems to perform binary floating-point arithmetic. The issues of retrofitting
were not considered. Among the desiderata that guided the formulation of
this standard are these:

(1) Facilitate movement of existing programs from diverse computers to
those that adhere to this standard.

(R) Enhance the capabilities and safety available to programmers who,
though not expert in numerical methods, may well be attempting to pro-
duce numerically sophisticated programs. However we recognize that
utility and safety are sometimes antagonists.

(3) Encourage experts to develop and distribute robust and efficient numer-
ical programs portable, via minor editing and recompilation, onto any
computer that conforms to this standard and possesses adequate capa-
city. When restricted to a declared subset of the standard, these pro-
grams should produce identical results on all conforming systems.

(4) Provide direct support for
Execution-time diagnosis of anomalies,
Smoother handling of exceptions, and
Interval arithmetic at a reasonable cost.

(5) Provide for development of
Standard elementary functions like exp and cos,
Very high precision (multi-word) arithmetic, and

{Computer, Vol. 14, No. 3, March 1981.
EComputer, Vol. 13, No. 1, January 1980.
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Coupling of numerical and symbolic algebraic computation.
(6) Enable rather than preclude further refinements and extensions.

A2
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Excerpts from a Proposed Standard for Binary Floating-Point Arithmetic
Based on Draft 10.0 of IEEE Task P754 December 2, 1982

1. Scope

1.1. Implementation objectives. It is intended that an implementation
of a floating-point system conforming to this standard can be realized
entirely in software, entirely in hardware, or in any combination of
software and hardware. It is the environment the programmer or user
of the system sees that conforms or fails to conform to this standard.
Hardware components that require software support to conform shall
not be said to conform apart from such software.

1.2. Inclusions. This standard specifies
(1) Basic and extended floating-point number formats;

(2) Add, subtract, multiply, divide, square root, remainder and compare
operations;

(8) Conversions between integer and floating-point formats;
(4) Conversions between different floating-point formats;

(5) Conversions between basic format floating-point numbers and decimal
strings; and

(8) Floating-point exceptions and their handling, including non-numbers
(NaNs).

1.3. Exclusions. This standard does not specify
(1) Formats of decimal strings and integers,
() Interpretation of the sign and significand fields of NaNs, or
(3) Binary«+decimal conversions to and from extended formats.

2. Definitions

Biased exponent. The sum of the exponent and a constant (bias) chosen to
make the biased exponent's range nonnegative.

Binary floating-point number. A bit-string characterized by three com-
ponents: a sign, a signed exponent, and a significand. Its numerical value, if
any, is the signed product of its significand and two raised to the power of its
exponent. In this document a bit-string is not always distinguished from a
number it may represent.

Denormalized number. A nonzero floating-point number whose exponent has
a reserved value, usually the format's minimum, and whose explicit or impli-
cit leading significand bit is zero.

Destination. Every unary or binary operation delivers its result to a destina-
tion, either explicitly designated by the user or implicitly supplied by the
system (e.g., intermediate results in subexpressions or arguments for pro-
cedures). Some languages place the results of intermediate calculations in
destinations beyond the user’'s control. Nonetheless, this standard defines
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the result of an operation in terms of that destination’s format as well as the
operands’ values.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the value of
the represented number. Occasionally the exponent is called the signed or
unbiased exponent.

Fraction. The field of the significand that lies to the right of its implied
binary point.

Mode. A variable that a user may set, sense, save and restore to control the
execution of subsequent arithmetic operations. The default mode is the
mode that a program can assume to be in effect unless an explicitly contrary
statement is included in either the program or its specification.

The following mode shall be implemented:
(1) Rounding, to control the direction of rounding errors;
and, in certain implementations,
(2) Rounding precision, to shorten the precision of results.
The implementor may, at his option, implement the following modes:
(3) Traps disabled /enabled, to handle exceptions.

NaN. Not a number; a symbolic entity encoded in floating-point format.
There are two types of NaNs (6.2). Signaling NaNs signal the invalid operation
exception (7.1) whenever they appear as operands. Quiet NaNs propagate
through almost every arithmetic operation without signaling exceptions.

Result. The bit string (usually representing a number) that is delivered to
the destination.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary point and
a fraction field to the right.

Shall and should. In this standard the use of the word *‘shall” signifies that
which is obligatory in any conforming implementation; the use of the word
“should” signifies that which is strongly recommended as being in keeping
with the intent of the standard, although architectural or other constraints
beyond the scope of this standard may on occasion render the recommenda-
tions impractical.

Status flag. A variable that may take two states, set and clear. A user may
clear a flag, copy it, or restore it to a previous state. When set, a status flag
may contain additional system-dependent information, possibly inaccessible
to some users. The operations of this standard may as a side effect set some
of the following flags: inexact result, underflow, overflow, divide by zero and
invalid operation.

User. Any person, hardware, or program not itself specified by this standard,
having access to and controlling those operations of the programming
environment specified in this standard.
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3. Formats

This standard defines four floating-point formats in two groups, basic
and extended, each having two widths, single and double. The standard levels
of implementation are distinguished by the combinations of formats sup-
ported.

3.1. Sets of wvalues. This section concerns only the numerical values
representable within a format, not the encodings which are the subject of the
following sections. The only values representable in a chosen format are
those specified via the following three integer parameters:

P — the number of significand bits (precision),
E may — the maximum exponent, and
Emin — the minimum exponent.

Fach format's parameters are displayed in Table 1. Within each format just
the following entities shall be provided:
Numbers of the form (~1)*2F (byeb by - - - b,-1) where
s isDor 1,
E is any integer between F;, and F . inclusive, and
each b; is O or 1;
Two infinities, +e and —e;
At least one signaling NaN; and
At least one guiet NaN.

The foregoing description enumerates some values redundantly, e.g.,
2°%(1.0) = 21(0.1) = 2%(0.01) =

However, the encodings of such nonzero values may be redundant only in
extended formats  (3.3). The nonzero values of the form
+27™0sb by - - - by_,) are called denormalized. Reserved exponents may be
used to encode NaNs, +w=, +0, and denormalized numbers. For any variable
that has the value zero, the sign bit s provides an extra bit of information.
Although all formats have distinct representations for +0 and -0, the signs
are significant in some circumstances, like division by zero, and not in oth-
ers. In this standard, O and =« are written without a sign when the sign does

Table 1. Summary of format parameters.

Format
Parameter
Single Double
Single Extended Double Extended
P 24 = 32 53 > 64
Eax +127 = +1023 +1023 = +16383
Emin -126 < —1022 -1022 | =< -18382
exponent bias +127 | unspecified | +1023 | unspecified
exponent width in bits B =11 11 2 15
format width in bits 32 > 43 B84 =79




DRAFT STANDARD -- SUBJECT TO CHANGE A8

not matter.

3.2. Basic formats. Numbers in the single and double formats are composed
of three fields:

A 1-bit sign s,
A biased exponent e = E'+bias, and
Afraction f =+b,by- - - by ;.

The range of the unbiased exponent £ shall include every integer between
two values Fo;, and F.., inclusive, and also two other reserved values:
Erin—1 to encode +0 and denormalized numbers, and Fpaxt1 to encode £
and NaNs. The foregoing parameters appear in Table 1. Each nonzero
numerical value has just one encoding. The fields are interpreted as follows.

3.2.1. Single. A 32-bit single format number X is divided as shown in
Figure 1. The value v of X is inferred from its constituent flelds thus:

(1)Ife = 255 and f # 0, then v is NaN regardless of s.

(8)lfe =255 and f =0, thenv = (—1)%.

(3)If0 <e <255, thenv = (—1)52¢717(1.1).

(4)lfe =0and f # 0, thenv = (-1)*27'%(0.f) (denormalized numbers).
(5)Ife =0and f =0, thenv =(-1)*0 (zero).

Figure 1. Single format.
1 B 23 ... widths

s e J

msb Isb msb Isb ... order

“msb' means ‘‘most significant bit"”’
“lsb’ means ‘‘least significant bit"

3.2.2. Double. A 64-bit double format number X is divided as shown in
Figure 2. The value v of X is inferred from its constituent fields thus:

(1) Ife = 2047 and f # O, then v is NaN regardless of s.

(2)If e = 2047 and f = 0, then v = (—1)% .

(3)If 0 <e <2047, thenv = (—1)*2°71023(1.1 ).

(4)lfe =0and f # 0, thenwv = (—1)*27'%%(0.f) (denormalized numbers).
(5)Ife =0and f =0, thenv = (—1)°0 (zero).

Figure 2. Double format.
b 11 52 ... widths

s e f

msb Isb msb Isb ... order

3.3. Extended formats. The single extended and double extended formats
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encode in an implementation-dependent way the sets of values in 3.1 subject
to the constraints of Table 1. This standard allows an implementation to
encode some values redundantly, provided that redundancy be transparent
to the user in the following sense: an implementation either shall encode
every nonzero value uniquely or it shall not distinguish redundant encodings
of nonzero values. An implementation may also reserve some bit strings for
purposes beyond the scope of this standard; when such a reserved bit string
occurs as an operand the result is not specified by this standard.

An implementation of this standard is not required to provide (and the
user should not assume) that single extended have greater range than dou-
ble. ‘

3.4. Combinations of formats. All implementations conforming to this stan-
dard shall support the single format. Implementations should support the
extended format corresponding to the widest basic format supported, and

need not support any other extended format.3

4. Rounding

Rounding takes a number regarded as infinitely precise and, if neces-
sary, modifies it to fit in the destination’s format while signaling the inexact
exception (7.5). Except for binary«sdecimal conversion (whose weaker con-
ditions are specified in 5.6), every operation specified in §5 shall be per-
formed as if it first produced an intermediate result correct to infinite preci-
sion and with unbounded range, and then rounded that result according to
one of the modes in this section.

The rounding modes affect all arithmetic operations except comparison
and remainder. The rounding modes may affect the signs of zero sums (6.3),
and do affect the thresholds beyond which overflow (7.3) and underfiow (7.4)
may be signaled.

4.1. Round to nearest. An implementation of this standard shall provide
round to nearest as the default rounding mode. In this mode the represent-
able value nearest to the infinitely precise result shall be delivered; if the two
nearest representable values are equally near, the one with its least
significant bit zero shall be delivered. However, an infinitely precise result
with magnitude at least 27™>(2—27) shall round to = with no change in sign;
here En,; and p are determined by the destination format (§3) unless over-
ridden by a rounding precision mode (4.3).

4.2. Directed roundings. An implementation shall also provide three user-
selectable directed rounding modes: round toward +=, round toward —e, and
round toward O.

When rounding toward +=, the result shall be the format's value (possi-
bly +=) closest to and no less than the infinitely precise result. When round-
ing toward —ew, the result shall be the format’'s value (possibly ~=) closest to
and no greater than the infinitely precise result. When rounding toward 0, the
result shall be the format's value closest to and no greater in magnitude

30nly if upward compatibility and speed are important issues should a system
supporting the double extended format also support single extended.
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than the infinitely precise result.

4.3. Rounding precision. Normally a result is rounded to the precision of its
destination. However, some systems deliver results only to double or extend-
ed destinations. On such a system the user, which may be a high-level
language compiler, shall be able to specify that a result be rounded instead
to single precision, though it may be stored in the double or extended format
with its wider exponent range.* Similarly, a system that delivers results only
to double extended destinations shall permit the user to specify rounding to
single or double precision. Note that to meet the specifications in 4.1, the
result cannot suffer more than one rounding error.

5. Operations

All conforming implementations of this standard shall provide opera-
tions to add, subtract, multiply, divide, extract the square root, find the
remainder, round to integer in floating-point format, convert between
different floating-point formats, convert between floating-point and integer
formats, convert binary<«sdecimal, and compare. Whether copying without
change of format is considered an operation is an implementation option.
Except for binary<«»decimal conversion, each of the operations shall be per-
formed as if it first produced an intermediate result correct to infinite preci-
sion and with unbounded range, and then coerced this intermediate result to
fit in the destination's format (§4 and §7). Section 6 augments the following
specifications to cover +0, +=, and NaN; section 7 enumerates exceptions
caused by exceptional operands and exceptional results.

5.1. Arithmetic. An implementation shall provide the add, subtract, multi-
ply, divide and remainder operations for any two operands of the same for-
mat, for each supported format; it should also provide the operations for
operands of differing formats. The destination format (regardless of the
rounding precision control of 4.3) shall be at least as wide as the wider
operand's format. All results shall be rounded as specified in §4.

When ¥ # 0, the remainder r = £ REM vy is defined regardless of the
rounding mode by the mathematical relation 7 =z — yXn, where n is the in-
teger nearest the exact value z/y; whenever |n —z/y| =%, then n is even.
Thus, the remainder is always exact. If 7 =0, its sign shall be that of z. Pre-
cision control (4.3) shall not apply to the remainder operation.

5.2. Square root. The square root operation shall be provided in all support-
ed formats. The result is defined and has positive sign for all operands = 0,
except that ~/=0shall be —0. The destination format shall be at least as wide
as the operand’s. The result shall be rounded as specified in §4.

5.8. Floating-point format conversions. It shall be possible to convert

4Control of rounding precision is intended to allow systems whose destinations
are always double or extended to mimic, in the absence of over/underflow, the preci-
sions of systems with single and double destinations. An implementation should not
provide operations that combine double or extended operands to produce a single
result, nor operations that combine double extended operands to produce a double
result, with just one rounding.
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floating-point numbers between all supported formats. If the conversion is to
a narrower precision, the result shall be rounded as specified in §4. Conver-
sion to a wider precision is exact.

5.4. Conversion between floating-point and integer formats. It shall be pos-
sible to convert between all supported floating-point formats and all support-
ed integer formats. Conversion to integer shall be effected by rounding as
specified in §4. Conversions between floating-point integers and integer for-
mats shall be exact unless an exception arises as specified in 7.1.

5.5. Round floating-point number to integral value. It shall be possible to
round a floating-point number to an integral valued floating-point number in
the same format. The rounding shall be as specified in §4, with the under-
standing that when rounding to nearest, if the difference between the un-
rounded operand and the rounded result is exactly one half, the rounded
result is even.

5.6. Binary«+decimal conversion. Conversion between decimal strings in at
least one format and binary floating-point numbers in all supported basic for-
mats shall be provided for numbers throughout the ranges specified in Table
2. The integers M and N in Tables 2 and 3 are such that the decimal strings
have values +Mx10*¥. On input, trailing zeros shall be appended to or
stripped from M (up to the limits specified in Table 2) in order to minimize
N. When the destination is a decimal string, its least significant digit should
be located by format specifications for purposes of rounding.

When the integer M lies outside the range specified in Tables 2 and 3,
i.e., when M = 10°® for single or 10'? for double, the implementor may, at his
option, alter all significant digits after the ninth for single and seventeenth
for double to other decimal digits, typically O.

Conversions shall be correctly rounded as specified in §4 for operands
lying within the ranges specified in Table 3. Otherwise, for rounding to
nearest, the error in the converted result shall not exceed by more that 0.47
units in the destination’s least significant digit the error that would be in-
curred by the rounding specifications of §4, provided that exponent
over/underflow does not occur. In the directed rounding modes the error
shall have the correct sign and shall not exceed 1.47 units in the last place.

Conversions shall be monotonic. That is, increasing the value of a binary
floating-point number shall not decrease its value when converted to a de-
cimal string; and increasing the value of a decimal string shall not decrease
its value when converted to a binary floating-point number.

When rounding to nearest, conversion from binary to decimal and back
to binary shall be the identity as long as the decimal string is carried to the
maximum precision specified in Table 2, namely, 9 digits for single and 17 for

double.®

5The properties specified for conversions are implied by error bounds that
depend on the format (single or double) and the number of decimal digits involved;
the 0.47 mentioned is a worst-case bound only. For a detailed discussion of these er-
ror bounds and economical conversion algorithms that exploit the extended format,
see “Accurate Yet Eccnomical Binary+sDecimal Conversions” by Jerome T. Coonen
(to appear).
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If decimal to binary conversion over/underflows, the response is as
specified in §7. Over/underflow and NaNs and infinities encountered during
binary to decimal conversion should be indicated to the user by appropriate
strings. This standard says nothing about dealing with NaNs encoded in de-
cimal strings.

To avoid inconsistencies, the procedures used for binary«decimal
conversion should give the same results regardless of whether the conversion
is performed during language translation (interpretation, compilation or as-
sembly) or during program execution &‘un-time and interactive
input/output).

Table 2. Decimal conversion ranges.

Decimal to Binary | Binary to Decimal
Format

Max M Max N Max M Max N
Single 10%—1 99 10°—1 53
Double | 10'7—1 999 10171 340

Table 3. Correctly rounded decimal conversion range.

Decimal to Binary | Binary to Decimal
Format

Max M Max N Max M Max N
Single 10°-1 13 10°-1 13
Double || 10'7-1 27 1071 27

5.7. Comparison. It shall be possible to compare floating-point numbers in
all supported formats, even if the operands’ formats differ. Comparisons are
exact and never overflow nor underflow. Four mutually exclusive relations
are possible: “less than’, “equal”, ‘‘greater than’, and “unordered”. The
last case arises when at least one operand is NaN. Every NaN shall compare
“unordered’ with everything, including itself. Comparisons shall ignore the
sign of zero (so +0 = —0).

The result of a comparison shall be delivered in one of two ways: either
as a condition code identifying one of the four relations listed above, or as a
true-false response to a predicate that names the specific comparison
desired. In addition to the true-false response, an invalid operation excep-
tion (7.1) shall be signaled when, as indicated in the last column of Table 4,
“‘unordered” operands are compared using one of the predicates involving
“<" or **>" but not *?". (Here the symbol “?" signifies ‘‘unordered".)

Table 4 exhibits the twenty-six functionally distinct useful predicates
named, in the first column, using three notations: ad hoc, FORTRAN-like, and
mathematical. It shows how they are obtained from the four condition codes
and tells which predicates cause an invalid operation exception when the re-
lation is “‘unordered’’. The entries T and F indicate whether the predicate is
true or false when the respective relation holds.
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Table 4. Predicates and relations.
Predicates Relations Exception
greater | less invalid if
ad hoc FORTRAN math than than | equal | unordered | unordered
= EQ. = F F | T F No
<> .NE. # T T FI|T No
> .GT. > T F F F | Yes
>= .GE. > T FIT F | Yes
< LT. < F|T F F | Yes
<= LE. < F|T T F | Yes
? unordered ¥ F F | T No
<> 1G. T T ¥ Yes
<=> .LEG. T T T Yes
7> .UG. T F T No
?>= .UGE. T FIT T No
7< .UL. FiT T No
<= JULE. FIT T T No
7= .UE. F FIT T No
NOT(>) FIT T T Yes
NOT(>=) FIT FIT Yes
NOT(<) T FI|T T Yes
NOT(<=) T F T Yes
NOT(?) T T T F No
NOT(<>) F FI|T T Yes
NOT(<=>) F F F Yes
NOT(?>) FI|T T F No
NOT(?>=) FI|T F ¥ No
NOT(?<) T FI|T F No
NOT(?<=) T F ¥ F No
NOT(?=) T T ¥ ¥ No

Note that predicates come in pairs, each a logical negation of the other;
applying a prefix like "NOT" to negate a predicate in Table 4 reverses the
true/false sense of its associated entries, but leaves the last column's entry
unchanged.®

Implementations that provide predicates shall provide the first six

predicates in Table 4 and should provide the seventh, as well as a means of
logically negating predicates.

8There may appear to be two ways to write the logical negation of & predicate,
one using ‘NOT" explicitly and the other reversing the relational cperator. For exam-
ple, the logical negation of (X =Y) may be written either NOT(X =Y) or (X ?2<>7Y); in
this case both expressions are functionally equivalent to (X #Y). However, this coin-
cidence does not occur for the other predicates. For instance, the logical negation of
(X <Y) is just NOT{(X < Y); the reversed predicate (X ?>=7) is different in that it does
not signal an invalid operation exception when X and Y are “‘unordered’.
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6. Infinity, NaNs and signed zero

6.1. Infinity arithmetic. Infinity arithmetic shall be construed as the limit-
ing case of real arithmetic with operands of arbitrarily large magnitude,
when such a limit exists. Infinities shall be interpreted in the affine sense,
that is, —= < (every finite number) < +oo,

Arithmetic on = is always exact and therefore shall signal no exceptions,
except for the invalid operations specified for = in 7.1. The exceptions that
do pertain to « are signaled only when

(1) = is created from finite operands by overflow (7.3) or division by zero
(7.2), with the corresponding trap disabled, or

(2) = is an invalid operand (7.1).

6.2. Operations with NaNs. Two different kinds of NaN, signaling and quiet,
shall be supported in all operations. Signaling NaNs afford values for unini-
tialized variables and arithmetic-like enhancements (such as complex-affine
infinities or extremely wide range) that are not the subject of the standard.
'Quiet NaNs should, by means left to the implementor's discretion, afford re-
trospective diagnostic information inherited from invalid or unavailable data
and results. Propagation of the diagnostic information requires that infor-
mation contained in the NaNs be preserved through arithmetic operations
and floating-point format conversions.

Signaling NaNs shall be reserved operands that signal the invalid opera-
tion exception (7.1) for every operation listed in §5. Whether copying a sig-
naling NaN without a change of format signals the invalid operation exception
is the implementor’'s option.

Every operation involving a signaling NaN or invalid operation (7.1) shall,
if no trap occurs and if a floating-point result is to be delivered, deliver a
quiet NaN as its result.

Every operation involving one or two input NaNs, none of them signaling,
shall signal no exception but, if a floating-point result is to be delivered, shall
deliver as its result a quiet NaN, which should be one of the input NaNs. Note
that format conversions might be unable to deliver the same NaN. Quiet
NaNs do have effects similar to signaling NaNs on operations that do not
deliver a floating-point result; these operations, namely comparison and
conversion to a format that has no NaNs, are discussed in 5.4, 5.6, 5.7, and
7.1.

6.3. The sign bit. This standard does not interpret the sign of a NaN. Other-
wise the sign of a product or guotient is the Exclusive Or of the operands’
signs; and the sign of a sum, or of a difference r—y regarded as a sum
z +(—y ), differs from at most one of the addends' signs. These rules shall ap-
ply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of
two operands with like signs) is exactly zero, the sign of that sum (or
difference) shall be "+’ in all rounding modes except round toward —e, in
which mode that sign shall be “~'*. However, z+x = z—(—z) retains the
same sign as r even when  is zero.

Except that ~/—0 shall be -0, every valid square root shall have positive
sign.
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7. Exceptions

There are five types of exceptions that shall be signaled when detected.
The signal entails setting a status flag, taking a trap, or possibly doing both.
With each exception should be associated a trap under user control, as
specified in §8. The default response to an exception shall be to proceed
without a trap. This standard specifies results to be delivered in both trap-
ping and nontrapping situations. In sorme cases the result is different if a trap
is enabled.

For each type of exception the implementation shall provide a status
flag that shall be set on any occurrence of the corresponding exception when
no corresponding trap occurs. It shall be reset only at the user's request.
The user shall be able to test and to alter the status flags individually, and
should further be able to save and restore all five at one time.

The only exceptions that can coincide are inexact with overflow and
inexact with underfilow.

7.1. Invalid operation. The invalid operation exception is signaled if an
operand is invalid for the operation to be performed. The result, when the
exception occurs without a trap, shall be a quiet NaN (6.2) provided the desti-
nation has a floating-point format. The invalid operations are

(1) Any operation on a signaling NaN (6.2);

(2) ?ddi)tion or subtraction: magnitude subtraction of infinities like (+=) +
(3) Multiplication: 0 X o;

(4) Division: 0/0 or = /wx;

(5) Remainder: z REM y, where y is zero or z is infinite;

(6) Square root if the operand is less than zero;

(7) Conversion of a binary floating-point number to an integer or decimal
format when overflow, infinity, or NaN precludes a faithful representa-
tion in that format and this cannot otherwise be signaled; and

(B) Comparison via predicates involving **<'" or *>", without ““?"’, when the
operands are *‘unordered’ (5.7, Table 4).

7.2. Division by zero. If the divisor is zero and the dividend is a finite
nonzero number, then the division by zero exception shall be signaled. The
result, when no trap occurs, shall be a correctly signed « (6.3).

7.3. Overfiow. The overflow exception shall be signaled whenever the destina-
tion format's largest finite number is exceeded in magnitude by what would
have been the rounded floating-point result {(§4) were the exponent range un-
bounded. The result, when no trap occurs, shall be determined by the round-
ing mode and the sign of the intermediate result as follows:

(1) Round to nearest carries all overflows to = with the sign of the inter-
mediate result.

(2) Round toward O carries all overflows to the format’s largest finite
number with the sign of the intermediate result.

(3) Round toward —= carries positive overflows to the format’s largest finite
number, and carries negative overflows to —w.
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(4) Round toward += carries negative overflows to the format’'s most nega-
tive finite number, and carries positive overflows to +ee,

Trapped overflows on all operations except conversions shall deliver to
the trap handler the result obtained by dividing the infinitely precise result
by 2% and then rounding. The bias adjust a is 192 in the single, 1536 in the
double, and 3x2"? in the extended format, where n is the number of bits in
the exponent field.” Trapped overflow on conversion from a binary floating-
point format shall deliver to the trap handler a result in that or a wider for-
mat, possibly with the exponent bias adjusted, but rounded to the
destination’s precision. Trapped overflow on decimal to binary conversion
shall deliver to the trap handler a result in the widest supported format, pos-
sibly with the exponent bias adjusted, but rounded to the destination’s preci-
sion; when the result lies too far outside the range for the bias to be adjust-
ed, a quiet NaN shall be delivered instead.

7.4. Underflow. Two correlated events contribute to underflow. One is the
creation of a tiny nonzero result between +2 ™" which, because it is so tiny,
may cause some other exception later such as overflow upon division. The
other is extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers. The implementor may choose how these
events are detected, but shall detect these events in the same way for all
operations. Tininess may be detected either

1) “After rounding'’: when a nonzero result computed as though the ex-
g ug
ponent range were unbounded would lie strictly between 2™,

or

(2) “Before rounding’’: when a nonzero result computed as though both the
exponent range and the precision were unbounded would lie strictly
between +2 ™=,

Loss of accuracy may be detected as either

(83) A denormalization loss: when the delivered result differs from what
would have been computed were exponent range unbounded;

or

(4) An inexact result: when the delivered result differs from what would have
been computed were both exponent range and precision unbounded.
(This is the condition called inexact in 7.5.)

When an underflow trap is not implemented or is not enabled (the default
case) underflow shall be signaled (via the underflow flag) only when both tini-
ness and loss of accuracy have been detected. The method for detecting tini-
ness and loss of accuracy_does not affect the delivered result which might be
zero, denormalized or +2 ™2 When an underflow trap has been implemented
and is enabled, underflow shall be signaled when tininess is detected regard-
less of loss of accuracy. Trapped underflows on all operations except conver-
sion shall deliver to the trap handler the result obtained by multiplying the
infinitely precise result by 2% and then rounding. The bias adjust a is 192 in
the single, 1536 in the double, and 3x2" % in the extended format, where n is

"The bias adjust is chosen to translate over/underflowed values as nearly as pos-
sible to the middle of the exponent range so that, if desired, they can be used in sub-
sequent scaled operations with less risk of causing further exceptions.
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the number of bits in the exponent field.? Trapped underflows on conversion
shall be handled analogously to the handling of overflows on conversion.

7.5. Inexact. If the rounded result of an operation is not exact or if it
overflows without an overflow trap, then the inexact exception shall be sig-
naled. The rounded or overflowed result shall be delivered to the destination
or, if an inexact trap occurs, to the trap handler.

8. Traps

A user should be able to request a trap on any of the five exceptions by
specifying a handler for it. He should be able to request that an existing
handler be disabled, saved or restored. He should also be able to determine
whether a specific trap handler for a designated exception has been enabled.
When an exception whose trap is disabled is signaled, it shall be handled in
the manner specified in §7. When an exception whose trap is enabled is sig-
naled, the execution of the program in which the exception occurred shall be
suspended, the trap handler previously specified by the user shall be activat-
ed, and a result, if specified in §7, shall be delivered to it.

8.1. Trap handler. A trap handler should have the capabilities of a subrou-
tine that can return a value to be used in lieu of the exceptional operation’s
result; this result is undefined unless delivered by the trap handler. Similar-
ly, the flag(s) corresponding to the exceptions being signaled with their asso-
ciated traps enabled may be undefined unless set or reset by the trap
handler.

When a system traps, the trap handler should be able to determine
(1) Which exception(s) occurred on this operation;
() The kind of operation that was being performed;
(3) The destination’s format;

(4) In overflow, underflow, and inexact exceptions, the correctly rounded
result, including information that might not fit in the destination’s for-
mat; and

(5) In invalid operation and divide by zero exceptions, the operand values.

B.2. Precedence. If enabled, the overflow and underflow traps take pre-
cedence over a separate inexact trap.

8Note that a system whose underlying hardware always traps on underflow, pro-
ducing a rounded, bias-adjusted result, must indicate whether such a result is round-
ed up in magnitude in order that the correctly denormalized result may be produced
in system software when the user underflow trap is disabled.
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Appendix: Recommended functions and predicates

This appendix is not part of IEEE Standard 754
for Binary Floating-Point Arithmetic,
but is included for information only.

The following functions and predicates are recormmended as aids to pro-
gram portability across different systems, perhaps performing arithmetic
very differently. They are described generically; that is, the types of the
operands and results are inherent in the operands. Languages that require
explicit typing will have corresponding families of functions and predicates.

Some functions below, like the copy operation y := x without change of
format, may at the implementor’s option be treated as nonarithmetic opera-
tions which do not signal the invalid operation exception for signaling NaNs;
the functions in question are (1), (2), (6), and (7).

(1) copysign(z,y) returns z with the sign of y. Hence, abs(z) =
copysign(z,1.0), even if = is NaN.

(2) —z is = copied with its sign reversed, not O-z; the distinction is ger-
mane when z is +0 or NaN. Consequently, it would be a mistake to use
the sign bit to distinguish signaling NaNs from quiet NaNs.

(3) scalb(y,N) returns y x 2V for integral values N without computing 2N,

(4) logb(z) returns the unbiased exponent of z, a signed integer in the for-
mat of z, except that logb(NaN) is a NaN, logb(=) is +e=, and logb(0) is
— and signals the division by zero exception. When z is positive and
finite the expression scalb(z,—logb{(x)) lies strictly between 0 and 2; it is
less than 1 only when z is denormalized.

(5) nextafter{z,y) returns the next representable neighbor of z in the
direction toward y. The following special cases arise: if z=y, then the
result is z without any exception being signaled; otherwise, if either x or
vy is a quiet NaN, then the result is one or the other of the input NaNs.
Overflow is signaled when z is finite but nextafter(z,y) is infinite;
underfiow is signaled when nextafter(z,y) lies strictly between £2° ™ in
both cases, inexact is signaled.

(B) finite(z) returns the value TRUE if —= < z < +, and returns FALSE oth-
erwise.

(7) isnan(z), or equivalently z #z, returns the value TRUE if z is a NaN, and
returns FALSE otherwise.

(8) <>y is TRUE only when z<y or z>Yy, and is distinct from z#y, which
means NOT(z =y ) (Table 4).

(9) unordered(z,y), or z?y, returns the value TRUE if z is unordered with
y, and returns FALSE otherwise (Table 4).

(10)class(z) tells which of the following ten classes z falls into: signaling
NaN, quiet NaN, —=, negative normalized nonzero, negative denormal-
ized, -0, +0, positive denormalized, positive normalized nonzero, +.
This function is never exceptional, not even for signaling NaNs.




APPENDIX B

Test Vectors for P754 Arithmetic — Version 2.0

The initial version of this test data base for the proposed IEEE 754 binary
floating-point standard (draft 8.0) was developed for Zilog, Inc. and was
donated to the floating-point working group for dissemination. Errors in or
additions to the distributed data base should be reported to the agency of
distribution, with copies to Zilog, Inc., 1315 Dell Avenue, Campbell, CA, 95008.

There are sixteen files of test vectors, for the operations add (+), sub-
tract (-), multiply (*), divide (/). square root (V), compare (C), remainder
(%), round to integer (1), nextafter (N), absolute value (A), negate (~), copy-

sign (®), scalb (S), logb (L), and fraction part (F).

B.1



2+ =0> 2 -2 0K 0

2+ <2 -2 0K -0

2+ =0> 5 -5 0K 0O

2+ < 5 -5 0K -0

2+ ALL 1 70K 8

2+ ALL 5 -1 OK 4

2+ ALL 2 -5 OK -3

2+ ALL 5 -0 OK 5

2+ AlL 5 +0 OK 5

! Infinity vs Infinity.

2+ ALL H H OK H ok - effine sum
2+ ALL -H -H OK -H

2+ ALL -H H i Q different signs
2+ ALLH -H i Q

! Infinity vs huge.

2+ ALL H Hm1 OK H

2+ ALL H -Hm1 OK H
2+ ALL -H Hm1 OK -H
2+ ALL -H -Hmi OK -H
2+ ALL Hm1 H OK H

2+ ALL Hml -H OK -H
2+ ALL -Hm1 H OK H
2+ ALL -Hm1 -H 0K -H

! Infinity vs O.

2+ ALL H 0 OK H

2+ ALL H -0 OK H

2+ ALL -H 0 OK -H

2+ ALL -H -0 OK -H

2+ ALL O HOK H

2+ ALL -0 H OK H

2+ ALL 0 -H OK -H

2+ ALL -0 -H OK -H

! Infinity vs denormalized.
2+ ALL H Ed1 OK H

2+ ALL -H Ed1 OK -H
2+ ALL H -Ed1 OK H

2+ ALL -H -Ed1 OK -H
2+ ALL 0i3 H OK H

2+ ALL 0i3 -H OK -H

2+ ALL -0i3 H OK H

2+ ALL -0i3 -H OK -H

! Zero vs finite — watch that sign of 0
| is meaningless.

2+ ALL 0 Hmi1 OK Hm1l
2+ ALL -0 Hmi1 OK Hm1
2+ ALL -Hm1 0 OK -Hm1
2+ ALL -Hm1 -0 OK -Hm1
2+ ALL 1 -0 OK 1

2+ ALL -1 -0 OK -1

2+ ALL 010K 1

2+ ALL -0 -1 OK -1

| Zero vs denormalized — underflows.
2+ ALL 0 Ed1 OK Ed1
2+ ALL -0 Ed1 Q0K Ed1
2+ ALL 0 -Ed1 OK -Ed1
2+ ALL -0 -Ed1 OK -Ed1
2+ ALL 0i3 0 OK 0i3

2+ ALL 0i3 -0 OK 0i3

2+ ALL -0i3 0 OK -0i3

2+ ALL -0i3 -0 OK -0i3

! Zero vs tiny — just in case.

2+ ALL -0 -E OK -E

2+ ALLE O OK E

2+ ALL 0 -E OK -E

2+ ALL -E 0 OK -E

! Zero vs Zero - watch signs and
{ rounding modes.

2+ =0> 0 -0 0K O

2+ =0> -0 0 OK 0

2+ < 0 -0 0K -0

2+ < -0 0 0K -0

2+ ALLO O OK ©

2+ ALL -0 -0 OK -0

! Double a number -- may overflow so
{ watch rounding mode.

2+ => Hml Hml x0 H

2+ 0< Hm1l Hmil xo0 Hd1

2+ =< -Hm1l -Hm1l xo0 -H

2+ 0> -Hm1 -Hm1! xo0 -Hd1
2+ ALL Hmi1d2 Hm1i1d2 OK HdR
2+ ALL -Hmi1d2 -Hmid2 OK -Hd2
2+ => Hd2 Hd2 x0 H

2+ 0< Hd2 Hd2 xo Hdi

2+ =< -Hd2 -Hd2 %o -H

2+ 0> -Hd2 -Hd2 xo -Hd1

! Double an innocent number.
2+ ALL 110K 2

2+ ALL 33 0K 8

2+ ALL E E OK Ep1

2+ ALL Hm2 Hm2 OK Hmi1

! Double a tiny number — may underflow.

2+ ALL Edl Ed1 OK Epid2
2+ ALL -Ed1 -Ed1 OK -Epid2
2+ ALL 0i4 0i4 OK 0i8

2+ ALL -0i4 -0i4 OK -0i8

2+ ALL 0i1 0i1 OK 0i2

2+ ALL -0i1 -0i1 OK -0i2

¢ Cancellation to 0 — to plus 0.
2+ =0> Hm1 -Hmil 0K 0

2+ =0> -Hmi1d2 Hmid2 0K 0
2+ =0>1-10K 0

2+ =0> -3 30K O

2+ =0> E -E 0K O

2+ =0> -EE 0K 0

2+ =0> Ed4 -Ed4 OK 0

2+ =0> -Ed1 Ed1 0K 0 no underflow
2+ =0> 0i1 -0i1 OK 0O

2+ =0> -0i1 0i1 OK O

2+ =0> Hd1l -Hd1 0K 0

{ Cancellation to 0 — to minus 0.

2+ < Hm1 -Hmil 0K -0

2+ < -Hmi1d2 Hmid2 OK -0
2+ < 1 -1 0K -0

2+ < -3 3 0K -0

2+ < E-FE 0K -0

2+ < -EE 0K -0

2+ < Ed4 -Ed4 OK -0

2+ < -Ed1 Ed1 OK -0 no underfiow
24+ < 0i1 -0i1 OK -0

2+ < -0i1 0i1 OK -0

2+ < Hdi -Hd10K -0

t Cancel forcing normalization of LSB
{ (no rounding errors). Difference is in
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! last place of larger number.

{ Medium numbers...

2+ ALL 11 -1 OK 1ul

2+ ALL -1i1 1 OK -1n2

2+ ALL 1i1 -1i2 OK -1ul

2+ ALL -1i1 1i2 OK 1u1

2+ ALL 2 -2i1 OK -2u1

2+ ALL -2 2i1 0K 2u1

2+ ALL 2i4 -2i3 OK 2ul

2+ ALL -2i4 2i3 OK -2u1

2+ ALL 4d1 -4d2 OK 3ul

2+ ALL -4d1 4d2 OK -3ut

2+ ALL 2d4 -2d3 OK -1ul

2+ ALL -2d4 243 OK 1ul

! Huge numbers...

2+ ALL Hmilil ~-Hm1 OK Hmiul
2+ ALL -Hm1lil Hm1 OK -Hmiui
2+ ALL Hml1l -Hm1i2 0K -Hmiul
2+ ALL -Hm1i1 Hm1i2 0K Hm1lul
2+ ALL Hm2 -Hm2i1 OK -Hm2ul
2+ ALL -Hm2 Hm2i1 0K Hm?2u1l
2+ ALL Hm?2i4 -Hm2i3 0K Hm?2u1
2+ ALL -Hm2i4 Hm2i3 0K -Hmz2ul
2+ ALL Hm2d1 -Hm2d2 0K Hm3ul
2+ ALL -Hm2d1 Hm2d2 OK -Hm3u1l
2+ ALL -Hd2 Hdi OK Hdiul

2+ ALL Hd2 -Hdi OK -Hd1lul

! Tiny numbers...

2+ ALL -Ei1 E OK -Eul

2+ ALL Ei1 -E OK Eul

2+ AlLL -Ed1 E OK Eul

2+ ALL Ed1 -E OK -Eul

2+ ALL Ei1 -Ei2 0K -Eui

2+ ALL -Eil Ei2 OK Eul

2+ ALL Ed1 -Ed2 OK Eui

2+ ALL -Ed1 Ed2 OK -Eu1

2+ ALL Ed3 -Ed2 OK -Eui

2+ ALL -Ed3 Ed2 OK Eul

2+ ALL 0i2 -0i1 OK Em1

2+ ALL -0i2 0i1 OK -Eui

2+ ALL 0i3 -0i2 OK Eui

2+ ALL -0i3 0i2 OK -Eul

! Normalize from round bit — set up
! tests so that operands have

! exponents differing by 1 unit.

! Mediurn numbers...

2+ ALL 2 -2d1 OK mn

2+ ALL -2 241 OK -1n1

2+ ALL -2d1 2 OK 11

2+ ALL 2d1 -2 OK -1ut

2+ ALL 4i1 -4d1 OK 3u3

2+ ALL -4i1 4d1 OK -Su3

2+ ALL 4d1 -4i2 OK -3ub

2+ ALL -4d1 4i2 OK 3u5

2+ ALL 2i1 -1i1 OK 101

2+ ALL -2i1 111 OK -1i1

2+ ALL 2i2 -1i1 OK 1i3

2+ ALL -2i2 1i1 OK -1i3

2+ ALL 2i2 -1i3 OK 11

2+ ALL -2i2 1i8 0K -1i1

! Huge numbers...

2+ AlLL Hm2 -Hm2d1 OK HmS3ul
2+ ALL -Hm? Hm2d1 0K -Hm3u1
2+ ALL -Hmid1 Hmil OK Hm2uil

2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+

B.3

ALL Hmidi -Hm1l OK -Hm2u1
ALL Hm4il -Hm4d1 OK Hm5u3
ALL -Hm4il Hm4d1l 0K -Hm5u3
ALL Hm2d1 -Hm?2i2 0K -Hm3u5
ALL -Hm2d1 Hmz2i2 0K Hm3ub
ALL Hm?2i1 -Hm1lil OK -Hmz2i1
ALL -Hm?2i1 Hm1lil OK Hm?2i1
ALL Hmii2 -Hm2i1 OK Hm2i3
ALL -Hmi1i2 Hm2i1 0K -Hm2i3
ALL Hm2i2 -Hm3i3 0K Hm3i1
ALL -Hm2i2 Hm3i3 0K -Hm3i1

! Tiny numbers...

2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
24

ALL Ep1 -Epid1 0K Eul
ALL -Ep1 Epidi OK -Eul
ALL -Epidi Ep1 OK Eul
ALL Epid1 -Epi OK -Em1
ALL Ep1il -Epid1 OK Eu3
ALL -Ep1il Epldl OK -Eu3
ALL Ep2 -Ep2d1 OK Euz2
ALL -Ep2 Ep2d1 OK -Fu2
ALL -Ep2d1 Ep2 OK Eu?
ALL Ep2d1 -Ep2 OK -Eu2
ALL Ep2i1 -Ep2d1 OK Eub
ALL -Ep2i1 Ep2d1 OK -Eus
ALL Epid1 -Epii2 OK -Eus
ALL -Ep1d1 Epli2 OK Eub
ALL Epidi -Epili4 OK -Eup
ALL -Ep1d1 Epli4 OK Eud
ALL Ep1it -Ei1 OK Ei1
ALL -Ep1lil Ei1 OK -Ei1
ALL Epii2 -Ei1 OK Ei3
ALL -Ep1i2 Ei1 OK -Ei3
ALL Ep2i2 -Ep1i3 OK Epiiil
ALL -Ep2i2 Ep1i3 OK -Epiil

! Add magnitude:

! cases where one operand is off in sticky --
! rounding perhaps to an overflow.

t Huge vs medium.

2+
2+
2+
2+
24
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+

=0< Hm1l 1 x Hm1

> Hmi 1 x Hmilil

=0> -Hm1 -1 x -Hm1

< -Hm1l -1 x -Hmli1

=0< Hmid1 1 x Hmid1
> Hmild1l 1 x Hmi

=0> -Hmid1 -1 x -Hmid1i
< -Hmidi -1 x -Hmi
=0< Hd1 1 x Hd1

> Hd1 1 xo0 H signal overfiow
=0> -Hd1 -1 x -Hd1

< -Hdi -1 x0 -H

=0< Hd2 1 x Hd2

> Hd2 1 x Hda

=0> -Hd2 -1 x -Hd2

< -Hd?2 -1 x -Hd1

! Huge vs denormal.

2+
2+
2+
2+
2+
2+
2+
2+
2+

=0< 0i1 Hmil x Hmi

> 0i1 Hm1 x Hmiil

=0> -0i1 “Hm1 x -Hmi

< -0i1 -Hm1 x -Hmii1

=0< 0i1 Hmidi x Hmid1
> 011 Hmidl x Hmi

=0> -0i1 -Hm1id1 x -Hm1id1
< -0il -Hm1d1 x -Hm1
=0< 0i1 Hdi x Hdi



2+
2+
2+
2+

> 0i1 Hdl xo H signal overflow
=0> -0i1 -Hd1 x -Hd1

< -0i1 -Hd1 xo -H

=0< 0i1 Hd2 x Hd2

B4

!

¢ Add magnitude with difference in LSB
! 8o, except for denorms, round bit

! ig crucial. Helf-way cases arise.

2+ > 0i1 Hd2 x Hd:

2+ =0> -0i1 -Hd2 x -Hd2
2+ < -0i1 -Hd2 x -Hda

' Medium vs denormal.

2+ =0< 0i1 1 x 1

2+ > 0i1 1 x 111

2+ =0> -0i1 -1 x -1

2+ < -0i1 -1 x -1i1

2+ =0< 0i1 1d1 x 1d1

2+ > 0i1 1d1 x 1

2+ =0> -0i1 -1d1 x -1d1
2+ < -0i1 -1d1 x -1

2+ =0< 0i1 241 x 241

2+ > 0i1 2d1 x 2

2+ =0> -0i1 -2d1 x -2d1
2+ < -0i1 -2d1 x -2

2+ =0< 0i1 242 x 242

2+ > 0i1 2d2 x 2d1

2+ =0> -0i1 -2d2 x -2d2
2+ < -0i1 -2d2 x -2d1

1

| Magnitude subtract when an operand is
! in the sticky bit. The interesting cases
! will arise when directed rounding
! forces a nonzero cancellation.
! Huge and medium.

2+ => Hmil -1 x Hmi

2+ 0< Hmil -1 x Hmid1l
2+ =< -Hml1 1 x -Hm1

2+ 0> -Hm1 1 x -Hmidl
2+ => Hmid!l -1 x Hmidi
2+ 0< Hmid1 -1 x Hmid2
2+ =< -Hmid1 1 x -Hmid1
2+ 0> -Hmid1l 1 x -Hm1d2
2+ => Hd1 -1 x Hd1

2+ 0< Hd1 -1 x Hd2

2+ =< -Hd1 1 x -Hd1

2+ 0> -Hd1 1 x -Hd2

2+ => Hd2 -1 x Hd2

2+ 0< Hd2 -1 x Hd3

2+ =< -Hd2 1 x -Hd2

2+ 0> -Hd2 1 x -Hd3

! Huge and tiny.

2+ => Hdi -0i1 x Hd1

2+ 0< Hd1 -0i1 x Hd2

2+ =< -Hd1 0i1 x -Hd1

2+ 0> -Hdi 0i1 x -Hd2

2+ => -0i3 Hm1 x Hma1
2+ 0< -0i3 Hml x Hmd1
2+ =< 0i3 -Hm1 x -Hmi
2+ 0> 0i3 -Hm1 x -Hmidi
! Medium and tiny.

24+ => 1d1 -0i1 x 1d1

2+ 0< 141 -0i1 x 142

2+ =< -2d1 0i1 x -2d1

2+ 0> -2d1 0i1 x -242

2+ => -0i3 3 x 3

2+ 0< -0i3 3 x 3d1

2+ =< 0i3 -6 x -5

2+ 0> 013 -5 x -5d1

{ Medium cases.

2+
24
2+
24
2+
2+
2+
2+
2+
2+
2+
2+
2+
24
2+
2+

=0< 1li1 1 x 2

> 1i1 1 x 21
=0> -1i1 -1 x -2
< -1i1 -1 x -2i1
=0> -2 -2i1 x 4
< -2 -2i1 x -4i1
=0< 2 2i1 x 4

> 2 2i1 x 411

=> 1 1i3 x 2i2
0< 1 1i3 x 2i1
=< -1 -1i3 x -Ri2
0> -1 -1i8 x -2i1
=< -2i1 -2i2 x -4i2
0> -2i1 -2i2 x -4i1
=> 2i1 2i2 x 4i2
0< 2i1 2i2 x 4il

! Huge cases.

2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
24
2+
2+
2+
2+
2+
2+
2+
2+
2+

=> Hd2 Hdl xo H

0< Hdz Hd1l xo Hd1

=< -Hd2 -Hd1 xo -H

0> -Hd2 -Hd1l xo -Hd1

=> Hmidl Hml xo0 H

0< Hmidl Hmil x Hdi
=< -Hmi1d1 -Hm1 xo0 -H
0> -Hmid1 -Hmil x -Hd1
=> Hmilil Hml xo H

0< Hm1iil Hml xo Hd:
=< -Hm1il -Hm1 xo -H
0> -Hm1il -Hm1l xo -Hd1i
=0< Hm2i1 Hm2 x Hmi
> Hm2i1 Hm2 x Hmiil
=0> -Hm2i1 -Hm2 x -Hm1
< -Hm2i1 -Hm2 x -Hmiil
=0< Hm1dR2 Hmidl x Hd2
> Hmid2 Hmid1 x Hdi
=0> ~-Hm1d2 -Hm1ldi x -Hd2
< -Hm1d2 -Hmild1 x -Hd1

! Check rounding.

2+
2+
2+
24
2+
2+
2+
2+
2+
2+
2+
2+

> 2 1l x 201

=0< 2 lul x 2

=> 2i1 1ul x 2i2
0< 2i1 1ul x 2i1

=> 4d1 1ul x 4

0< 441 1ul x 441

> 4dl1 1uldix 4
0=< 4d1 1uld1l x 4d1
=< -44d1 -1ul x -4
0> -4d1 -1ul x -441
< -4d1 -1uldl x -4
0=> -4d1 -luldl x -44d1

INAN operands.

2+
2+
2+
2+
2+
2+
2+
2+

ALL Q 0 OK Q
ALL Q -0 OK Q
ALL 0 Q OK Q
ALL -0 Q OK Q
ALL Q 1 OK Q
ALL Q -1 OK Q
ALL 1 Q OK Q
ALL -1 Q OK Q



2+
2+
2+
2+
2+
2+
2+
2+
2+
24+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
2+
24
2+
2+
2+

oD O O
DO O Do OO

o
=

o

0P 0P

DODOO
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! First some easy integer cases.
2- ALL 1 -1 0K 2

2- ALL 1 -2 0K 3

2- ALL 2 -1 OK 3

2- ALL 2 -2 OK 4
2-=0>220K0
2-<220K-0

2- =0> 55 0K0

2- < 550K -0

2- ALL 1 -7 0K 8

2- ALL 510K 4

2- ALL 2 5 0K -8

2- ALL5 00K 5

2- ALL 5 -0 OK 5

{ Infinity vs Infinity.

2- ALL H -H OK H ok - affine sum
2- ALL -H H OK -H

2- ALL -H -H i Q different signs
2 ALLHHiIQ

! Infinity vs huge.

2- ALL H -Hm1 OK H

2- ALL H Hm1 OK H

2- ALL -H -Hm1 OK -H
2- ALL -H Hm1 OK -H
2- ALL Hm1 -H OK H

2- ALL Hm1 H OK -H

2- ALL -Hm1 -H OK H
2- ALL -Hm1 H OK -H

¢ Infinity vs 0.

2- ALL H -0 OK H

2- ALLH 00K H

2- ALL -H -0 OK -H

2- ALL -H 0 OK -H

2- ALL 0 -H OK H

2- ALL -0 -H OK H

2- ALL 0 H OK -H

2- ALL -0 H OK -H

! Infinity vs denormalized.
2- ALL H -Ed1 OK H

2- ALL -H -Ed1 OK -H
2- ALL H Ed1 OK H

2- ALL -H Ed1 OK -H

2- ALL 0i3 -H OK H

2- ALL 0i3 H OK -H

2- ALL -0i3 -H OK H

2- ALL -0i3 H OK -H

! Zero vs finite — watch that sign of
1 0 is meaningless.

2- ALL 0 -Hm! OK Hmi
2- ALL -0 -Hm1 OK Hmi1
2- ALL -Hm1l -0 OK -Hm1
2- ALL -Hm1 0 OK -Hm1
2- AL 1 00K 1

2- ALL -1 0 OK -1

2- ALL 0 -1 0K 1

2- ALL -0 1 OK -1

t Zero vs denormalized — underfiows.
2- ALL 0 -Ed1 OK Ed1
2- ALL -0 -Ed1 OK Edi
2- ALL 0 Ed1 OK -Ed1
2- ALL -0 Ed1 0K -Edi
2- ALL 0i3 -0 OK 0i3

2- ALL 0i3 0 OK 0i3

2- ALL -0i3 -0 OK -0i3
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2- ALL -0i3 0 OK -0i3

! Zero vs tiny — just in case.

2- ALL -0 E 0K -E

2- ALLE -0 OK E

2- ALL O E OK -E

2- ALL -E -0 OK -E

t Zero vs Zero -- watch signs and
! rounding modes.

2- =0> 0 0 OK 0O

2- =0> -0 -0 OK O

2- <00O0K-0

2- <-0-0 0K -0

2- ALL 0 -0 OK O

2- ALL -0 0 OK -0

| Double a number -- may overflow so
! watch rounding mode.

2- => Hml -Hmi xo H

2- 0< Hm1 -Hm1 xo Hd1

2- =< -Hm1 Hm1 xo0 -H

2- 0> -Hm1 Hmi xo -Hd1

2- ALL Hm1d2 -Hmid2 0K Hd2
2- ALL -Hm1d2 Hm1d2 OK -Hd2
2- => Hd2 -Hd2 xo H

2- 0< Hd2 -Hd2 zo0 Hd1

2- =< -Hd2 Hd2 xo0 -H

2- 0> -Hd2 Hd2 xo -Hd1

t Double an innocent number.

2- ALL 1 -1 0K 2

2- ALL 3-3 0K 6

2- ALL E -E OK Ep1

2- ALL Hm?2 -Hm2 OK Hmi1

! Double a tiny number — may underflow.
2- ALL Ed1 -Ed1 OK Epid2

2- ALL -Ed1 Ed1 OK -Epid2
2- ALL 0i4 -0i4 OK 0i8

2- ALL -0i4 014 OK -0i8

2- ALL 0i1 -0i1 OK 0i2

2- ALL -0i1 0i1 OK -0i2

! Cancellation to 0 — to plus 0.
2- =0> Hm1 Hml 0K O

2- =0> -Hm1d2 -Hm1d2 OK 0
2 =0>110K0

2- =0> -3-3 0K O

2- =0> E E OK ©

2- =0>-E-EOKO

2- =0> Ed4 Ed4 OK 0

2- =0> -Ed1 -Ed1 OK 0 no underflow
2- =0> 0i1 0i1 OK O

2- =0> -0i1 -0i1 QK O

2- =0> Hdl Hd10K 0

! Cancellation to 0 — to minus 0.

2- < Hml Hm1 OK -0

2- < -Hm1d2 -Hmid2 0K -0
2-<110K-0

2- €< -3-3 0K -0

2- < EEOK -0

2- < -E -E 0K -0

2- < Ed4 Ed4 OK -0

2- < -Edi -Ed1 OK -0 no underfiow
2- < 0i1 0i1 OK -0

2- < -0i1 -0i1 OK -0

2- < Hd1 Hd10K -0

{ Cancel lorcing normalization of LSB
! {no rounding errors). Difference is in



! last place of larger number.

t Medium numbers...

2- ALL 11 1 OK 11

2- ALL -1i1 -1 OK -1ul

2- ALL 1i1 12 OK -1ul

2- ALL ~1i1 -1i2 OK 1ul

2- ALL 2 2i1 OK -2u1

2- ALL -2 -2i1 OK 2wl

2- ALL 2i4 2i3 OK 2ul

2- ALL--2i4 -2i3 OK -2ul

2- ALL 4d1 442 OK 3ul

2- ALL -4d1 -4d2 OK -3Su1

2- ALL 2d4 243 0K -1ul

2- ALL -2d4 -2d3 OK 1ul

! Huge numbers...

2- ALL Hm1lil Hml OK Hmilul
2- ALL -Hm1ii1 -Hm1 OK -Hmiul
2- ALL Hm1i1 Hm1i2 OK -Hm1lul
2- ALL -Hm1il -Hm1i2 0K Hm1ul
2- ALL Hm2 Hm2i1 OK -Hm2ul
2- ALL -Hm2 -Hm2i1 OK Hm2ul
2- ALL Hm2i4 Hm2i3 0K Hm?2ul
2- ALL -Hm?i4 -HmZ2i3 0K -Hm2ul
2- ALL Hm2d1 Hm2d2 0K Hm3ul
2- ALL -Hm2d1 -Hm2d2 OK -Hm3ul
2- ALL -Hd2 -Hd1 OK Hd1ul

2- ALL Hd2 Hd1 OK -Hdiuil

! Tiny numbers...

2- ALL -Ei1 -E OK -Eul

2- ALL Ei1 E OK Eml

2- ALL -Ed1 -E OK Eul

2- ALL Ed1 E OK -Eul

2- ALL Ei1 Ei2 OK -Euml

2- ALL -Ei1 -Ei2 OK Eul

2- ALL Ed1 Ed2 OK Eul

2- ALL -Ed1 -Ed2 OK -Eul

2- ALL Ed3 Ed2 OK -Eul

2- ALL -Ed3 -Ed2 OK Eul

2- ALL 0i2 0i1 OK Eul

2- ALL -0i2 -0i1 OK -Eul

2- ALL 0i3 0i2 OK Eul

2- ALL -0i3 -0i2 OK -Eu1

! Normalize from round bit — set up tests
! so that operands have

! exponents differing by 1 unit.

! Medium numbers...

2- ALL 2 2d1 OK 1ul

2- ALL -2 -2d1 OK -1ul

2- ALL -2d1 -2 OK 1ul

2 ALL 2d1 2 OK -1u1l

2- ALL 4i1 4d1 OK 3u3

2- ALL -4i1 -4d1 OK -3u3

2- ALL 4d1 4i2 OK -3ub

2- ALL -4d1 -4i2 OK 3ub

2- ALL 2i1 11 OK 111

2- ALL -2i1 -1i1 OK -1i1

2- ALL 2i2 1i1 OK 13

2- ALL -2i2 -1i1 OK -1i3

2- ALL 2i2 13 0K 11

2- ALL -2i2 -1i3 OK -1i1

t Huge numbers...

2~ ALL Hm2 Hm2d1 OK Hm3ul
2- ALL -Hm2 -Hm2d1 OK -Hm3u1l
2- ALL -Hmi1d1l -Hm1 OK Hm2ul

2.
o
2-
2.
2-
2-
2-
o
2-
2.
2.
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ALL Hmildl Hmi OK -Hm2ul
ALL Hm4il Hm4d1l 0K Hmb5u3
ALL -Hm4il -Hm4d1l OK -Hm5u3
ALL Hm2d1 Hm2i2 0K -Hm3ub
ALL -Hm2d1 -Hm?2i2 0K Hm3u5
ALL Hm2i1 Hmiil 0K -Hmg2i1
ALL -Hm2i1 -Hm1i1 0K Hm2i1
ALL Hm1i2 Hm2i1 OK Hm2i3
ALL -Hm1i2 -Hm2i1 0K -Hm=2i3
ALL Hm?i2 Hm3i3 0K Hm3i1l
ALL -HmR2i2 -Hm3i3 0K -Hm3i1

! Tiny numbers...

o
2-
2-
P
2.
2-
2-
2
2
2.
2-
2-
2-
2.
2.
2-
2-
2.
2-
2-
2.
2-

ALL Ep1 Epid1 OK Eul
ALL -Ep1 -Epidl OK -Eul
ALL -Ep1d1 -Epl OK Eu1
ALL Epid1 Ep1 OK -Eul
ALL Ep1i1 Ep1di OK Eu3
ALL -Ep1i1 -Ep1d1 OK -Eu3
ALL Ep2 Ep2d1 OK Eu2
ALL -Ep2 -Ep2d1 OK -Eu2
ALL -Ep2d1 -Ep2 OK Eu?
ALL Ep2d1 Ep2 OK -Eu2
ALL Ep2i1 Ep2d1 OK Eu
ALL -Ep2i1 -Ep2d1 OK -Eu6
ALL Epid1 Epli2 OK -Eub
ALL -Ep1d1 -Epli2 OK Eus
ALL Epildl Epli4 OK -Eu®
ALL -Ep1d1 -Epli4 OK Eu8
ALL Epili1 Eil OK Eil

ALL -Epli1 -Ei1 OK -Ei1l
ALL Epi1i2 Ei1 OK Ei3

ALL -Ep1i2 -Eil OK -Ei3
ALL Ep2i2 Ep1i3 OK Epii1l
ALL -Ep2i2 -Ep1i8 0K -Epli1

! Add magnitude:

! cases where one operand is off in sticky -~
! rounding perhaps to an overflow.

! Huge vs medium.

2.
o-
2-
2-
2.
2-
2-
2-
2-
2-
-
o
2-
2-
2-
2.

=0< Hm1i -1 x Hml

> Hm1 -1 x Hmiil

=0> -Hm1l 1 x -Hm1

< -Hm1 1 x -Hmiil

=0< Hmid1 -1 x Hmid1
> Hmidl -1 x Hmi

=0> -Hmidl 1 x -Hm1id}
< -Hmid1 1 x -Hmi
=0< Hd1i -1 x Hd1

> Hdl -1 xo0 H signal overflow
=0> -Hd1 1 x -Hd1

< -Hd1 1 %0 -H

=0< Hd2 -1 x Hd2

> Hd2 -1 x Hd:

=0> -Hd2 1 x -H4d2

< -Hd2 1 x -Hda

! Huge vs denormal.

-
2-
2-
2-
2~
2~
2-
2-
2~

=0< 0i1 -Hm1l x Hmil

> 0i1 -Hm1 x Hmiii

=0> -0i1 Hmil x -Hmi

< -0i1 Hm1! x -Hmii1

=0< 0i1 -Hm1i1d1l x Hm1id1
> 0i1 -Hm1d1l x Hm1

=0> -0i1 Hmid1l x -Hmid1
< -0i1 Hmidl x -Hmi
=0< 0i1 -Hd1 x Hd:



-
2-
-
2-
2-
2-
2~

> 0i1 -Hd1 xo H signal overflow
=0> -0i1 Hd1 x -Hd1

< -0i1 Hd1l xo -H

=0< 0i1 -Hd2 x Hd2

> 0i1 -Hd2 x Hd1

=0> -0i1 Hd2 x -Hd2

< -0i1 Hd2 x -Hd1

! Medium vs denormal.

2~
2
2-
2~
2-
2-
2-
2~
2-
-
2~
-
2-
2-
2-
-

! Magnitude subtract when an operand

=0< 0i1 -1 x 1

> 0i1 -1 x 11

=0> -0i1 1 x 1

< -0i1 1 x -1i1

=0< 0i1 -1d1 x 1d1
> 0i1 -1d1 x 1

=0> -0i1 1d1 x -1d1
< -0i1 1d1 x -1
=0< 0i1 -2d1 x 241
> 0i1 -2d1 x 2

=0> -0i1 2d1 x -2d1
< -0i1 2d1 x -2
=0< 0i1 -2d2 x 242
> 0i1 -2d2 x 241
=0> -0i1 2d2 x -2d2
< -0i1 2d2 x -2d1

tis in the sticky bit. The interesting

! cases will arise when directed rounding

! forces a nonzero cancellation.
! Huge and medium.

2-
2-
2-
2.
2
2-
2
2.
2-
2-
2-
2
2.
2
2.
2-

=> Hml 1 x Hmi

0< Hml 1 x Hmidi

=< -Hm1l -1 x -Hmi

0> -Hm1il -1 x -Hmid1
=> Hmi1d1l 1 x Hmid1
0< Hmild1 1 x Hmid2
=< -Hmid1 -1 x -Hm1ild1
0> -Hmi1d1 -1 x -Hmi1d2
=> Hdl 1 x Hd1

0< Hd1 1 x Hd2

=< -Hd1 -1 x -Hd1

0> -Hdi -1 x -Hd2

=> Hd2 1 x Hd2

0< Hd2 1 x Hd3

=< -Hd2 -1 x -Hd2

0> -Hd2 -1 x -Hd3

{ Huge and tiny.

2-
2-
2-
2-
2-
2~
2~
2-

=> Hd1 0i1 x Hdi

0< Hd1 0i1 x Hd2

=< -Hd1 -0i1 x -Hd1
0> -Hd1 -0i1 x -Hd2
=> -0i3 -Hm1 x Hmil
0< -0i3 -Hm1 x Hmid1
=< 0i3 Hml x -Hmi
0> 0i3 Hm1 x -Hmid1

{ Medium and tiny.

2.
2.
2-
2-
2-
2.
2
2.

=> 1d1 0i1 x 1d1
0< 1d1 0i1 x 1d2
=< -2d1 -0i1 x -2d1
0> -2d1 -0i1 x -2d2
=> -0i3 -3 x 3

0< -0i3 -3 ¢ 3d1
=< 0i3 5 x -5

0> 0i3 5 x -5d1

t Add magnitude with difference in LSB so,
t except for denorms, round bit is crucial.
t Half-way cases arise.

{ Medium cases.

2- =0< 11 -1 x 2

2 > 1i1 -1 x 21

2- =0> -1i1 1 x -2

2- < -1i1 1 x -2i11

2- =0> -2 2i1 x -4

2- < -2 2i1 x -4i1

2 =0< 2 -2i1 x 4

2- > 2 -2i1 x 411

2- => 1 -1i3 x 2i2

2- 0< 1 -1i3 x 2i1

2- =< -1 1i3 x -2i2

2- 0> -1 13 x -2i1

2- =< -2i1 2i2 x -4i2

2- 0> -2i1 22 x -411

2- => 2i1 -2i2 x 4i2

2- 0< 2i1 -2i2 x 411

! Huge cases.

2- => Hd2 -Hdl x0 H

2- 0< Hd2 -Hd1 xo Hd1

2- =< -Hd2 Hd1 xo -H

2- 0> -Hd2 Hd1 xo -Hd1

2- => Hmidl -Hmil xo H
2- 0< Hmid1 -Hm1 x Hd1
2- =< -Hm1d1 Hml xo0 -H
2- 0> -Hmid1 Hm1 x -Hd1
2- => Hm1lil -Hmil x0 H
2- 0< Hm1il -Hm1 xo Hdl
2- =< -Hm1lil Hmi xo0 -H
2- 0> -Hm1il Hmil xo -Hd1
2- =0< Hm?2i1 -Hm2 x Hmi
2- > Hm2i1 -Hm?2 x Hma1i1l
2- =0> -Hm2i1 Hm2 x -Hm1i
2- < -Hm2i1 Hm?2 x -Hmiil
2~ =0< Hmi1d2 -Hmi1d1 x Hd2
2- > Hmid2 -Hmid1 x Hd1
2- =0> -Hmi1d2 Hmid1l x -Hdz2
2- < -Hm1d2 Hmid1l x -Hdi
¢ Check rounding.

2- > 2 -1ul x 211

2 =0< 2 -1lul x 2

2- => 2i1 -lul x 2i2

2- 0< 2i1 -1ul x 201

2- => 441 -1ul x 4

2- 0< 4d1 -1ul x 4d1

2- > 441 -1uldix 4

2- 0=< 4d1 -1uidi x 4d1
2~ =< -4d1 1ul x -4

2- 0> -4d1 1ul x -4d1

2- < -4d1 1uldlx -4

2- 0=> -441 1uldl x -441

! NeN operands.

2- ALLQ 00K Q

2- ALL Q -0 OK Q

2- ALL 0 Q 0K Q

2- ALL -0 Q OK Q

2- ALL Q 1 0K Q

2- ALL Q -1 0K Q

2- ALL1QOK @

2- ALL -1 Q OK Q

2- ALL Ed1 Q 0K Q
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! First some easy tests for consistency.

2% ALL 11 0K1

2* ALL 1 2 0K 2
2« ALL 210K 2
2* ALL 2 3 0K 8
2* Al1 32 0K 8
2* ALL 33 0K 8
! Check out sign manipulation.

2* ALL -1 1 OK -1
2¢ ALL -1 2 OK -2
2* ALL 2 -1 OK -2
2¢ ALL -2 3 OK -6
2* ALL 3 -2 0K -8
2* ALL -3 3 OK -8
2* ALL -1 -1 0K 1
2% ALL -1 -2 0K 2
2¢ ALL -2 -1 0K 2
2* ALL -2 -3 0K 8
2¢* ALL -3 -2 0K 8
2* ALL -8 -3 0K 8

{ Some zero tests, round mode is

!irrelevant.

2* ALL OO OK O

2* ALL -0 0 OK -0

2¢ ALL 0 -0 OK -0

2¢* ALL -0 -0 OK ©

{ Infinity tests, round mode
!irrelevant.

2* ALL HHOKH

2* ALL -H H 0K -H

2* ALL H -H 0K -H

2¢ ALL -H -H OK H
{Inf * 0 — always bad news.
2* ALLHO01Q

2+« ALL -0 H i -Q

2* ALL H -0 i -Q

2% ALL -0 -H i Q

! Inf ¢ small integer -> Inf.
2¢* ALL H 10K H

2* ALL -2 H 0K -H

2+« ALL H -3 OK -H

2¢« ALL -4 -H OK H

2¢* ALL 5 H OK H

2¢* ALL -H 6 0K -H

2¢ ALL 7 -H OK -H

2% ALL -H -8 OK H

t Inf ® huge -> Inf.

2¢ ALL Hmi1 H OK H
2¢ ALL -Hm2 H OK -H
2¢ ALL H -Hm1 OK -H
2¢ ALL -H -Hm2 0K H
2¢ ALL H Hmidl OK H
2¢ ALL -Hm2d1 H 0K -H
2+ ALL H -Hd1 OK -H
2* ALL -Hd1 -H OK H

{ Inf ¢ tiny -> Inf.

2* ALLEH OKH

2¢ ALL -Ep1 H OK -H
2¢ ALL H -Ep! OK -H
2¢ ALL -H -E OK H

2* ALL H Epi1d1 OK H
2¢ ALL -Ei1 H OK -H
2+* ALL H -Ei1 OK -H
2% ALL -Epi1d1 -H 0K H

V Inf * denormalized -> Inf.
2¢ ALL 0i1 H OK H

2¢ ALL -0i3 H OK -H
2* ALL H -0i2 OK -H
2¢ ALL -H -0i4 OK H
2* ALL H Edl1 OK H
2¢ ALL -Ed1 H OK -H
2* ALL H -Ed1 OK -H
2* ALL -Ed1 -H OK H

! 0 * small integer -> 0,
2* ALL 01 0KO

2¢ ALL -2 0 OK -0

2% ALL 0 -3 OK -0

2¢ ALL -4 -0 0K ©

2* ALL500KO

2¢ ALL -0 8 0K -0

2¢ ALL 7 -0 OK -0

2 ALL-0-80K 0O

! 0 * huge->0.

2* ALL Hm1 0 OK ©
2* ALL -Hm2 0 0K -0
2¢ ALL 0 -Hmi OK -0
2* ALL -0 -Hm2 0K 0
2¢ ALL 0 Hmidl 0K 0O
2+ ALL -Hm2d1 0 OK -0
2* ALL 0 -Hm2d1 OK -0
2% ALL -Hmid1 -0 0K ©
2* ALL Hd1 0 0K ©

2¢ ALL -Hd1 -0 OK ©
2¢* ALL 0 -Hd10K -0
2¢ ALL -0 Hd1 OK -0

1 0 * tiny -> 0.

2* ALLEOOK O

2* ALL -Ep1 0 OK -0
2* ALL 0 -Ep1 0K -0
2* ALL -0 -E OK O

2¢ ALL 0 Epid1 OK O
2* ALL -Ei1 0 OK -0
2% ALL 0 -Ei1 OK -0
2* ALL -Epidl -0 OK 0
! 0 * denormalized -> 0.
2¢ ALL 0i1 0 OK O

2¢ ALL -0i3 0 OK -0

2* ALL 0 -0i2 0K -0

2+ ALL -0 -0i4 OK O

2¢ ALL 0 Ed1 OK ©

2¢ ALL -Ed1 0 OK -0
2* ALL 0 -Ed1 OK -0
2¢ ALL -Ed1 -0 OK O

! Exact cases huge and 2.
2* ALL 2 Hm2 OK Hm1
2* ALL Hm2 -2 OK -Hm1

2* ALL -2 Hm2d1 OK -Hm1d1
2* ALL 2 -Hm2d3 OK -Hm1id3

2¢* ALL 2 Hm2 OK Hmi
2* ALL Hm2 -2 OK -Hm1

2¢ AlLL -2 Hm2d1 OK -Hmld1
2¢ ALL 2 -Hm2d3 0K -Hmid3

2¢* ALL 2 Hmid1 OK Hd1
2* ALL Hmid1 -2 OK -Hd1

2¢* ALL -2 Hm2i1 0K -Hmilil
2¢* ALL 2 -Hm2i3 OK -Hm1i3

2* ALL 2 Hmid1 OK Hd1
2¢* ALL Hmid1 -2 OK -Hdi

B.10



2* ALL -2 Hm2i1 OK -Hmlil
2* ALL 2 -Hm?i3 OK -Hm1ii3
! Exact cases huge and 4.

2* ALL 4 Hmzd1 OK Hd1
2¢ ALL -4 Hm2d1 OK -Hd1
2¢* ALL 4 -Hm2d1 OK -Hd1
2* ALL -4 -Hm2d1 OK Hd1
2* ALL 4 Hm2d1 OK Hd1
2* ALL -4 Hm2d1 OK -Hd1
2* ALL 4 -Hm2d1 OK -Hd1
2¢ ALL -4 -Hm2d1 OK Hd1
2¢* ALL Hm2d3 4 OK Hd3
2¢ ALL Hm2d3 -4 OK -Hd3
2¢ ALL -Hm2d3 4 0K -Hd3
2¢ ALL -Hm2d3 -4 OK Hd3
2* ALL Hm2d3 4 OK Hd3
2* ALL Hm243 -4 OK -Hd3
2¢ ALL -Hm2d3 4 0K -Hd3
- 2* ALL -Hm2d3 -4 OK Hd3
t Exact cases tiny and 2.

2* ALL 2 E OK Ep1

2¢ ALL E -2 OK -Ep1

2* ALL -2 Ei1 OK -Epii1
2* ALL 2 -Ei3 OK -Ep1i3
2* ALl 2 E OK Ep1

2* ALL E -2 0K -Epl

2¢ ALL -2 Ei9 OK -Ep1i8
2* ALL 2 -Ei5 OK -Eplis
2* ALL 2 Ei1 OK Eplil

2* ALL Ei1 -2 OK -Epiil
2* ALL -2 Ei5 OK -Eplid
2+ ALL 2 -Ei3 0K -Epli3
2* ALL 2 Ei1 OK Epiiil

2° ALL Ei1 -2 OK -Epiil
2* ALL -2 Ei5 OK -Eplib
2* ALL 2 -Ei3 0K -Ep1i3

! Just below denormalization threshold.
2* ALL Ed1 2 OK EpidR
2* ALL -2 Ed3 0K -Ep1ds
2* ALL -Ed3 -2 OK Epi1dé
2* ALL -2 Ed3 0K -Ep1d6
2* ALL Ed4 2 OK Ep1d8
2¢* ALL 2 -Ed3 0K -Epi1ds
! Normelizing tinies.

2¢ ALL 011 2 OK 0i2

2* ALL 3 0i2 OK 0i6

2* ALL -0i1 5 OK -0i5

2° ALL 1 -0i8 OK -0i9

2* ALL -0i4 -1 OK 0i4

2¢ ALL 4 0i2 OK 0i8

2¢ ALL (i1 2 OK 0i2

2¢ ALL 3 0i2 OK 0i6

2 ALL -0i1 5 OK -0i5

2¢ ALL 1 -0i8 OK -0i9

2¢* ALL -0i4 -1 OK 0i4

2* ALL 4 0i2 OK 08

2% ALL 011 2 OK 0i2

2% ALL 3 0i2 OK 0i8

2* ALL -0i1 5 OK -0i5

2* ALL 1 -0i9 OK -0i9

2* ALL -0i4 -1 OK 0i4

2° ALL 4 0i2 OK 0iB

2* ALL 0i1 2 OK 0i2

2* ALL 3 0i2 OK ¢i8
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2* ALL -0i1 5 OK -0i5

2* ALL 1 -0i8 OK -0iP

2+ ALL -0i4 -1 OK 0i4

2* ALL 4 0i2 0K 0i8

! 1.0 * various.

2* ALL 1 Epli3 OK Ep1i3
2* ALL -Epld2 1 OK -Epid2
2¢ ALL -1 Ei9 OK -Ei9

2* ALL -Ei1 -1 OK Ei1

2* ALL 1 Epli3 OK Ep1i3
2* ALL -Epid2 1 OK -Ep1d2
2¢ ALL -1 Ei9 OK -Eig

2* ALL -Ei1 -1 OK Ei1

2* ALL 1 Ed3 OK Ed3

2* ALL -0i2 1 QK -0i2

2¢ ALL -1 0i9 OK -0i9

2% ALL -Ed1 -1 OK Ed1

2¢* ALL 1 Ed3 OK Ed3

2¢ ALL -0i2 1 OK -0i2

2¢* ALL -1 0i8 OK -0i9

2* ALL -Ed1 -1 OK Ed1

¢t Now some tricky rounding cases
! involving 1.0 with some ulps.
! result = 1.00000...010/000...0001
2¢ =0< 1i1 1i1 x 12

2¢ > 1l 1i1 x 13

! Try signs...

2* =0> -1i1 11 x -1i2

2¢ < -1i1 11 x -13

2¢* =0> 1i1 -1i1 x -1i2

2* < 1i1 -1i1 x -1i3

2* =0< -1i1 -1i1 x 1i2

2% > -1i1 -1i1 x 13

! result = 1.0000..011]0000100
2¢ =0< 1i2 1i1 x 1i3

2¢ > 1i2 1i1 x 1i4

! Try signs...

2* =0> -1i2 1i1 x -1i8

2¢ < -1i2 1i1 x -1li4

2¢ =0> 11 -1i2 x -1i3

2* < 1i1 -1i2 x -1i4

2* =0< -1i2 -1i1 x 13

2¢* > -1i1 -1i2 x 14

2% > -1i2 -111 x 1i4

2¢ =0< -1i1 -1iZ x 13
t{m+kulpsof m)*(1+julpsofl)
i =m + (k + m®*j/2~floor(log m)) ulps
! of m + tiny.

2¢ => 3i1 1i1 x 33

2% 0< 3i1 111 x 3i2

2¢ >= 3i1 1i3 x 36

2°¢ 0< 3i1 18 x 3i5

2* =< -3i1 11 x -3i3

2¢ 0> -3i1 1i1 x -3i2

2¢ <= 3il1 -1i3 x -3i8

2¢ 0> 3i1 -1i3 x -3i5

2% > 5i1 1i1 x 5i3

2¢ =0< 5i1 1i1 x 5i2

2¢ > -Bi1 -1i1 x 5i3

2¢ =0« -5i1 -1i1 x 5i2

2¢ >= Ti1 1i1 x %3

2¢ <0 7i1 131 x 7i2

2% 0<= 3d1 1d1 x 3d2

2¢* > 3d1 1d1 x 3d1



2¢ 0< 3d1 143 x 3d4

2* => 3d1 1d3 x 343

2* 0>= -3d1 1d1 x -3d2

2% < -3d1 1d1 x -3d1

2* 0> 3d1 -1d3 x -3d4

2% =< 341 -1d3 x -34d3

2* => 341 1d2 x 3d2

2* 0< 3d1 1d2 x 3d3

2¢ 0<= 5d1 1d1 x 5d2

2* > 5d1 1d1 x 541

2¢* 0<= -5d1 -1d1 x 542

2* > -5d1 -1d1 x 5d1

2* <=0 7d1 1d1 x 7d2

2* > 7d1 1d1 x 7d1

2¢ => 7d1 1d4 x 7d4

2* 0< 7d1 1d4 x 7d5

! Some overflow conditions, watching
! round mode.

2* => Hm1 2 ox H

2¢* 0< Hmi 2i1 ox Hd1

2% =¢ -3d2 Hm1l ox -H

2¢ 0> Hm1 -4i5 ox -Hd1

2¢ => -5d2 -Hm1 ox H

2% 0< Hm1 6i1 ox Hd1

2¢ =< -7d7 Hmil ox -H

2¢ 0> Hm1 -Bi3 ox -Hd1

2* => -9i1 -Hm1 ox H

2* 0< Hm1 6 ox Hd1

2* =< -8 Hm1 ox -H

2* 0> Hmi1 -2 ox -Hd1i

2* 0< -7 -Hm1 ox Hdi

2* => Hmil 2 ox H

2¢ 0> -5 Hm1 ox -Hd1

2* 0> Hm1l -2 ox -Hd1

2¢ => -3 -Hm1 ox H

t Heavy overflow conditions,

! watching round mode.

2¢* => Hmi1 Hm1l xo0 H

2¢* =< -Hd3 Hm1l xo0 -H

2* =< Hm1l -Hm2i4 xo0 -H

2* => -Hm1id -Hm1lil ox H

2* => Hm1li® Hd8 xo H

2* =< -HmRd7 Hmil xo0 -H

2¢ =< Hm1 -Hm?2 xo0 -H

2¢ => -Hd1 -Hd1 xo H

2¢* 0< Hml Hm?2i8 xo Hd1

2° =< -Hm1d9® Hm2i1 xo -H

2¢ =< Hm1! -Hml xo0 -H

2% 0< -Hm2d7 -Hd1 xo Hd1

2¢* => Hm1l Hd2 x0 H

2¢ 0> -Hm2 Hm1l xo -Hd1

2* 0> Hmii® -HmRi2 xo -Hd1

2° => -Hd3 -Hm1lil xo H

! Mixed bag overflow conditions,

t watching round mode. Tricky cases
t require carelul look at power series
! expansion. Example - -Hmd1 * 1i1:
! In single...

-(2~127 (1 - 2~-24)) ¢ (1 + 2~-23) —>
-(2~127 (1 + 2~24 - 2~47) ) —>
-2~127 except when rounding <, in which
case -( 2~127 (1 + 2~-23) ); that is,
! -Hm or -Hmi1, respectively!

* =0> -Hmid1 1i1 x -Hmi

2* < -Hmid1 11 x -Hmii1
2¢ =0< -1d1 -Hd1 x HdR
2¢ > -1d1 -Hd1 x Hdi

2¢ < -Hm2d1 211 x -Hmii1
2¢ =0> -Hm2d1 2i1 x -Hm1
2¢ <= Hmi1d3 -2i8 xo0 -H
2* >0 Hm1d3 -2i8 xo0 -Hd1
2* =0< -Hm2d7 -441 x HdB
2¢ > -Hm2d7 -4d1 x Hd7
2¢ => 1i2 Hd2 x0 H

2* O0< 1i2 Hd2 xo Hdl

2* =< Hmii9 -8i2 xo0 -H

2* 0> Hm1lig -6i2 xo -Hd1
2° => -Hd3 -3i1 xo H

2¢ 0< -Hd3 -3i1 xo0 Hd1

! Exact and below denomalization
¢ threshold - no underfiow.
2* ALL E 142 0K Ed1

2* ALL 0i1 1 OK 0Oi1

2* ALL 1 -0i1 OK -0i1

2* ALL Epid2 1m1 OK Edi
2¢ ALL -Epild4 -1m1 0K Ed2
2+« ALL Epid2 -1m1 OK -Edi
2¢* ALL -Epid4 1m1 OK -Ed2
2+ ALL Ep1d8 1m1 OK Ed4
2+ ALL 018 1m3 OK 0i1

2¢* ALL 0i6 1m1 OK 0i3

2* ALL -0i8 1m3 OK -0i1
2% ALL 0i6 -1m1 OK -0i3

| Inexact, extreme underfilows.
2* =0< EExu 0

2* =0< -E-E xu 0

2* > E Epl xu 0i1

2* > -Epl -Ep1 xu 0i1

2* =0> -E E xu -0

2* =0> E -E xu -0

2* < -E Ep1 xu -0i1

2* < E -E xu -0i1

2* =0< Edi1 Ed2 xu ©

2* =0< -Ed1 -Ed2 xu 0

2* > Ed1 Ed2 xu 0i1

2¢* > -Ed1 -Ed2 xu 0i1

2* =0> -Ed9 Ep1i3 xu -0
2¢ =0> Edf -Ep1i3 xu -0
2* < -Ed9 Ep1i3 xu -0il

2¢ < Ed9 -Ep1i3 xu -0i1

2* > 0i1 Iml xu 0i1

2¢ =0< 0i1 Iml xu O

2¢ < Imil -0l xu -0i1

2¢* =0> Im1l -0i1 xu -0

2° <0 0i1 1d1 xu 0

2¢ => 0i1 1d1 xu 01

2% > 011 0i1 xu 011

2¢ =0< 0i1 Gi1 xu 0

2* >0 -0i1 1d1 xu -0

2¢ =< 0i1 -1d1 xu -0i1

2¢ < 0i1 -0i1 xu -0i1

2¢ =0> -0i1 0i1 xu -0

! Underfiow, barely.

2¢ 0< Epldl 1ml xu Edi
2* 0< -Epidi -1m1 xu Ed1
2° 0> -Epldl iml1 xu -Edi
2° >= Epidl imil xu E

2% <= Epidl -1ml xu -E
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2°
2¢
2¢
2¢
2¢
2¢

2¢
20
2¢
20
20
2°¢
z.

0< Ed1 1i1 xu Ed1

0> Ed1 -1i1 xu -Ed1

0< Eil 1d6 xu Ed3

> Ed2 1d4 xu Ed3

0< Ed4 1i1 xu Ed4

0< Eil 1d2 xu Ed1

! Underflow, unless detected as accuracy
! loss due to denormalization.

Ed2 11 xv Ed1

Ed2 -1i1 zv -Ed1

EdB 1i1 xv Ed7

-Ed§ 1i1 xv -Ed8

Ed8 -1i1 xv -Ed7

Ei1 1d6 xv Ed2

<=0 Ed2 1d4 xv Ed4

! Underflow, only if tininess is detected

>=
[ <-4
>=
=
<=
=>

! before rounding.

20
2
z‘
AL
2¢
2'

>= Ed1 11 xw E
<= -Ed1 11 xw -E
>= Ed8 18 xw E
<= EdB -1i8 xw -E
>= Eil1 1d2 xw E
>= Ei2 1d4 xw E

t NaN operands.

2¢
2
2°¢
2¢
2¢
2
2¢
2°¢
2¢
2
2¢
A
A
2¢
2°¢
2¢
A
2’
2e
2°¢
2¢
2°
2¢
20
AL
2%
2¢
2¢
2¢
20
2¢
20
2°¢
2¢
2¢
2%
2¢
2¢
29
29

ALL
ALL
ALL
ALL
ALL

Q 00K Q
Q -0 0KQ
0QOKQ
-0 Q OK Q
Q10KQ

Hd1 Q ©

Fa)
2
)
=
oopo0PoP oo

O

jas]

=}

~
DDDDDNWNN

A
2¢
2
2’
A
A
¢
2°¢
A
PAS
2%
2¢

ALL
ALL
ALL
ALL
ALL
ALL

ALL
ALL
ALL
ALL
ALL
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B.14

! First the consistericy checks. 2/ ALL Hd1 -H OK -0
2/ ALL 110K 1 2/ ALL -Hd1 -H OK ©
2/ ALL2 1 0K 2 !t Inf 7/ huge -> Inf.

27/ ALL 9 30K 3 27 ALL H Hm1 OK H
2/ ALL 5 5 0K 1 2/ ALL -H Hm2 OK -H
2/ ALL 8 2 OK 4 27 ALL H -Hm1 OK -H
! Check out sign menipulation. 2/ ALL -H -Hm2 OK H
27 ALL -1 1 0K 1 27 ALL H Hmid1l OK H
2/ ALL -2 1 0K -2 2/ ALL H -Hm2d1 OK -H
27 ALL 2 -1 OK -2 27 ALL H -Hd1 OK -H
2/ ALL -B 2 OK -4 2/ ALL -H -Hd1 OK H
27 ALL 3 -3 0K -1 ! Inf / tiny -> Inf.

27 ALL -7 7 0K -1 2/ ALL H E OK H

2/ ALL -1 -1 0K 1 2/ ALL -H Epi OK -H
2/ ALL -2 -1 0K 2 2/ ALL H -Ep1 OK -H
2/ ALL -6 -3 0K 2 2/ ALL -H -E OK H .
2/ ALL -9 -3 0K 3 2/ ALL H Ep1d1 OK H
! Some zero tests, round mode 2/ ALL -H Ei1 OK -H

! is irrelevant. 2/ ALL H -Ei1 OK -H
2/ ALL0 O 1 Q 2/ ALL -H -Epldl1 OK H
2/ ALL -0 01 -Q t Tiny 7/ Inf-> 0.

2/ ALL 0 -0 i1 -Q 2/ ALLEHOK 0O

27 ALL -0 -01 Q 2/ ALL -Ep1 H OK -0
! Infinity tests, round mode 2/ ALL Ep1 -H 0K -0
! irrelevent. 27 ALL -E -H OK ©

2/ ALLH HiQ 2/ ALL Epidi1 H OK ©
2/ ALL -H H i -Q 2/ ALL -Ei1 H OK -0
2/ ALLH -H i -Q 2/ ALL Ei1 -H 0K -0
2/ ALL -H -H i Q 2/ ALL -Epi1d1 -H OK ©
! Inf / 0 —> Inf with no problem. ! Inf / denormalized -> Inf.
2/ ALLH 0O OK H 2/ ALL H 0i1 OK H
2/ ALL -H 0 OK -H 2/ ALL -H 0i3 OK -H
2/ ALL H -0 OK -H 2/ ALL H -0i2 OK -H
2/ ALL -H -0 OK H 2/ ALL -H -0i4 OK H
10 / Inf —> 0 with no problem. 27 ALL H Ed1 OK H
2/ ALLOH OK O 2/ ALL -H Ed1 OK -H
2/ ALL -0 H 0K -0 2/ ALL H -Ed1 OK -H
2/ ALL 0 -H OK -0 2/ ALL -H -Ed1 OK H
2/ ALL -0 -H 0K © ! Denorm / Inf -> 0.

tInt 7 small integer -> Inf. 2/ ALL 0i1 HOK O

2/ ALL H 1 0K H 2/ ALL -0i3 H OK -0
2/ ALL -H 2 OK -H 2/ ALL 0i2 -H OK -0
2/ ALL H -3 0K -H 2/ ALL -0i4 -H OK 0O
2/ ALL -H -4 OK H 2/ ALL Ed1 H OK ©
2/ ALL H 5 OK H 2/ ALL -Ed1 H OK -0
2/ ALL -H 6 OK -H 2/ ALL Ed1 -H OK -0
2/ ALL H -7 OK -H 2/ ALL -Ed1 -H OK ©
2/ ALL -H -8 0K H t 0 7 small integer -> 0.
! Smallint / Inf -> 0. 2/ ALL0 1 0K O

2/ ALL 1 HOKO 2/ ALL -0 2 0K -0
2/ ALL -2 H 0K -0 2/ ALL 0 -3 OK -0
2/ ALL 3 -H OK -0 2/ ALL -0 -4 0K ©
2/ AlL -4 -H OK © 2/ ALL05 0K 0O

2/ ALL 5 H 0K O 2/ ALL -0 8 OK -0
2/ ALL -8 H OK -0 2/ ALL 0 -7 OK -0
2/ ALL 7 -H 0K -0 2/ ALL -0 -8 0K ©
2/ ALL -8 -H 0K © i Small int /7 0 -> Inf with DivBy0.
t Huge / Inf -> 0. 2/ ALL10 2z H

2/ ALL Hml1 H OK 0O 2/ ALL -2 0 z -H

2/ ALL -Hm2 H OK -0 2/ ALL 3 -0 z -H

2/ ALL Hmil -H OK -0 2/ ALL -4 -0 z H

2/ ALL -Hm2 -H 0K © 2/ ALL50 2z H

2/ ALL Hmidl H OK 0 2/ ALL -6 0 z -H

2/ ALL -Hm2d1 H OK -0 2/ ALL 7 -0 z -H




2/ ALL -8 -0 z H
10 7 huge -> 0.

R/
2/
2/

ALL 0 Hm! OK ©
ALL -0 Hm2 0K -0
ALL 0 -Hm1 OK -0

2/ ALL Hdl Hmid: OK 2
2/ ALL Hd1 -2 OK -Hmidi
2/ ALL -Hmi1il Hm2i1 OK -2
2/ ALL Hm1i3 -Hm?2i3 OK -2
2/ ALL Hdl Hmidl OX 2

27 ALL -0 -Hm2 OK 0 2/ ALL Hdl -2 OK -Hmid1
2/ ALL 0 Hmid1 OK 0 27 ALL -Hmilil Hmg2i1 0K -2
2/ ALL -0 Hmz2d1 OK -0 2/ ALL Hm1i8 -Hm?2i3 OK -2
2/ ALL 0 -Hm2d1 OK -0 t Exact cases huge and 4.

2/

ALL -0 -Hmid1 OK 0

! Huge 7/ 0 -> Inf with DivBy0.

2/
2/
74
2/

ALL Hmi1 0 z H
ALL -Hm2 0 z -H
ALL Hml -0 z -H
ALL -Hm2 -0 z H

27 ALL Hdl Hm2d1 OK 4
27 ALL -Hd1 Hm2d1 OK 4
2/ ALL Hd1 -Hm2d1 OK -4
2/ ALL -Hd1 -Hm2d1 OK 4
2/ ALL Hdl Hm2d1 OK 4
2/ ALL -Hd1 Hm2d1 OK -4

2/ ALL Hmid:1 0 z H 2/ ALL Hdl -Hm2d1 OK -4
2/ ALL -Hm2d1 0 z -H 27 ALL -Hdi -Hm2d1 OK 4
2/ ALL Hm2d1 -0 z -H 2/ ALL Hd3 4 OK Hm2d3
2/ ALL -Hmid1 -0 z H 27 ALL Hd3 -4 0K -Hm2d3

10 / tiny -> 0. 2/ ALL -Hd3 4 OK -Hm2d3
2/ ALL'O E OK 0 2/ ALL -Hd3 -4 OK Hmz2d3
2/ ALL -0 Ep1 OK -0 2/ ALL Hd3 4 OK Hm2d3

2/ ALL 0 -Ep1 OK -0 2/ ALL Hd3 -4 OK -Hm2d3
2/ ALL -0 -E OK 0 2/ ALL -Hd3 4 OK -Hm2d3
2/ ALL 0 Epid1 OK O 2/ ALL -Hd3 -4 OK Hmg2d3
2/ ALL -0 Ei1 OK -0 ! Exact cases tiny and 2.

2/
2/

ALL 0 -Ei1 OK -0
ALL -0 -Ep1d1 OK 0

! Tiny 7/ 0 -> Inf with DivByO.

2/

ALLEOz H

2/ ALL Epl E OK 2
2/ ALL Ep1 -2 OK -E
2/ ALL -Eplil1 Ei1 OK -2
2/ ALL Epli3 -2 OK -Ei3

2/ ALL -Ep1 0 z -H 2/ ALL Epl E OK 2

2/ ALL Ep1 -0 z -H 2/ ALL Epl -2 OK -E
27 ALL -E -0 z H 2/ ALL -Epli1 Ei1 OK -2
2/ ALL Epid1 0 z H 2/ ALL Ep1i3 -2 OK -Ei3
2/ ALL -Ei1 0 z -H 2/ ALL Epli1 Fi1 OK 2
2/ ALL Eil -0 z -H 2/ ALL Epii1 -2 OK -Ei1

2/
10
2/
2/
14

ALL -Epidl -0 z H
/ denormalized -> 0.
ALL 0 0i1 OK O
ALL -0 0i3 OK -0
ALL 0 -0i2 OK -0

2/ ALL -Ep1i5 Ei5 OK -2
2/ ALL Epli3 -Ei3 OK -2
2/ ALL Eplil Eil OK 2

2/ ALL Eplil -2 OK -Eil
2/ ALL -Epli5 Ei5 OK -2

27 ALL -0 -0i4 Q0K © 2/ ALL Ep1i3 -Ei3 0K -2
2/ ALL 0 Ed1 0K © 27 ALL Ed1 1m1 OK Epid2
2/ ALL -0 Ed1 OK -0 2/ ALL Ed1 1m8 OK Ep8dz2
2/ ALL 0 -Ed1 OK -0 t Huge / tiny -> overflow.

2/

{ Denormalized * 0 -> Inf, DivByO.

ALL -0 -Ed1 OK ©

2/ => Hml 1ml ox H
2/ 0< Hm!l 1ml ox Hdi

2/ ALL 0i1 0 z H 2/ => ~Hm1l -1ml1 ox H
2/ ALL -0i3 0 z -H 2/ 0< -Hm1 -1iml ox Hdl
2/ ALL 0i2 -0 z -H 2/ =< Hmil -1ml ox -H

2/
2/
2/
2/
2/

AlLL -0i4 -0z H
ALL Ed1 0z H

ALL -Ed1 0 z -H
ALL Ed1 -0 z -H
ALL -Ed1 -0 z H

!t Exact cases huge and 2.

2/
2/
2/
2/
2/

ALL Hmi1 2 OK Hmz2

ALL Hmi1 -2 OK -Hm2
ALL -Hmid1l 2 OK -Hm2d1
ALL Hmi1d3 -2 OK -Hm2d3
ALL Hm1 2 OK Hmz2

2/ =< -Hml 1ml ox -H
2/ 0> Hmi -1ml ox -Hd1
2/ 0> -Hml iml ox -Hd!
2/ => HmB Ep9 ox H
27 0< Hm® Ep8 ox Hd1
2/ => Hd1 0i1 ox H

2/ 0< Hdl 0i1 ox Hd1
2/ => Hml Edl ox H
2/ 0< Hm1 Edl ox Hdi
2/ => Hdl 1d1 ox H

2/ 0< Hd1l 1d1 ox Hdi

B.15

2/ ALL Hmi -2 OK -Hm2
2/ ALL -Hmid1 2 OK -Hm=2d1
2/ ALL Hm1d3 -2 0K -Hm2d3

! Will underfiow unless loss of accuracy
! ijs detected as a denormalization loss.
27 =0< E 111 xv Ed1



2/
2/
2/
_/
2/
2/
2/
2/

=0> -E 1i1 xv -Ed1
>= Ed2 1d2 xv Ed1
>= Ed9 1d2 xv Ed8
<= -Ed8 142 zv -Ed7
<=0 Ki1 1i2 xv Ed1
<=0 Ed1 1i2 xv Ed3
<=0 Ei2 1i6 xv Ed4
0< Ed1 1i1 v Ed2

! Tiny 7 huge -> underflow.

2/
2/
27
2/
2/
2/
2/
2/

=<0 0i1 Hdl xu 0
> 0i1 Hd1 xu 0i1
=<0 -0i1 -Hd1 xu 0
> -0i1 -Hd1 xu 0i1
=0> 0i1 -Hd1xu -0
< 0i1 -Hd1xu -0it
=0> -0i1 Hd1zxu -0
< -0i1 Hdi xu -0i1

I Tiny / 2.

74
2/
2/
2/
2/
2/
R/
2/

> 011 2 xu 0i1

=0< 0i1 2 xu O
> -0i1 -2 xu Oi1
=0< -0i1 -2 xu O
< Qi1 -2 xu -0i1
=0> 0i1 -2 xu -0
< -0i1 2 xu -0i1
=0> -0i1 2 xu -0

! Barely underfiow.

2/
2/
2/
R/
2/
2/
2/

t Denorm result but will not underfiow.

2/
2/
2/
27
2/
2/
2/
2/

0< Epidil 2 xu Ed1
0> Epidl -2 xu -Ed1
>= Epidl 2 xu E

> E 111 xu E

< -E 1l xu -E

> Ei1 1i2 xu E

> Ed1 1i2 xu Ed2

ALL Ep1d2 2 OK Ed1
ALL Ed1 1 OK Ed1
ALL 0i1 1m1 OK 0i2
ALL 0i1 1m3 OK 0i8
ALL 0i8 9 OK 0il
ALL 0i8 -9 OK -0il
ALL Ed1 -1 OK -Ed1
ALL -0i1 1m1 OK -0i2

! Tricky divides based on power
! series expansions
'1 /(1 + Nulp+) ~>

11~ (2Nulp-) + tiny.
2/ = 1 1i1 x 142
2/ 01 1i1 x 1d2
2/ < 1 1i1 x 1d2
2/ > 1 111 ¥ 1d1
2/ = 1 12 x 1d4
2/ 01 12 x 1d4
2/ < 11i2 x 1d4
2/ > 1 12 x 143
2/ = 1 1i3 x 1d8
27 0 1 1i38 x 146
2/ < 1 1i3 x 1d8
2/ > 1 113 x 1d5
2/ = 1 1i4 x 148
2/ 0 1 1i4 x 148
2/ < 1 1i4 x 148
2/ > 1 1li4 x 147
117 (1-Nu)-->

11+ (Q/2u+) + tiny.

2/ = 1 1d1 x 1i1
27/ 01 1d1 x 1

27 <11d1 x1

2/ > 1 1d1 x 11
2/ = 1 1d2 x 1i1
2/ 0 1 1d2 x 1i1
2/ < 11d2 x 111
2/ > 1 1d2 x 1i2
2/ = 1 1d3 x 12
2/ 01 1d3 x 1i1
2/ <1 1d3 x 11
27 > 1 1d3 x 1i2
2/ = 1 1d4 x 12
2/ 0 1 1d4 x 12
2/ <1 1d4 x 12
2/ > 1 1d4 x 18
2/ = 11d5 x 13
27 01 1d5 x 12
2/ <1 1d5 x 1i2
2/ > 1 1d5 x 13
2/ = 1 1d8 x 1i4
2/ 0 1 1d8 x 14
2/ <1 1d8 x 1li4
2/ > 1 1d8 x 15
27 = 1149 x 15
27 01 1d9 x 1i4
2/ <1 1d9 x 14
27/ > 1 1d8 x 15

t(1+Mus) /(2 +Nu+§ ->
tCase M > Q: (1 + Mu+) *
{ (1 - Nu+ + (Nu+)~2 - tiny) -->

11 4+ (M-Qu+ - (MN-NN’)(u+)—~2 + tiny —>

11 + (M-Q)u+ - tiny.
M+ Q=3

2/ = 12 11 x 11
2/ 0 12 1i1 x 1
2/ < 12 111 x 1
27 > 1i2 11 x 11

M+ Q=4

2/ = 1i3 11 x 12
2/ 0 113 11 x 111
2/ < 1i8 1i1 x 11
2/ > 113 11 x 12
M+ Q=5

2/ = 1i4 11 x 13
2/ 0 114 11 x 1i2
2/ < 1li4 11 x 1i2
2/ > 1i4 1i1 x 13
tM+ Q=98

2/ = 17 1i2 x 1i5
2/ 0 1i7 1i2 x 1i4
2/ < 17 1i2 x 1i4
27 > 17 1i2 x 115
1Q =17

2/ = 1i9 1iB x 1i1

27 0 19 18 x 1

2/ < 118 18 x 1

2/ > 18 18 x 111

1 (1 + Mulp+) /7 (1 + Nulp+) —>

! Case M <Q: (1 + 2Mulp-) ¢

! (1-2Nulp- + (2Nulp-)~2 - tiny) —>
11 -2(Q-Mulp- +

! 4(NN-MN)(ulp-)~2 + tiny ~>
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11 -2(QM)ulp- + tiny.

IM+Q=3

2/
2/

1d8 143 x 1d8
1d8 143 x 1d5

2/ = 1i1 1i2 x 1d2

2/ 0 111 12 x 1d2
2/ < 11 12 x 1d2
2/ > 1i1 1i2 x 1d1

tM+Q=4.

2/ = 1i1 13 x 1d4
27 0 11 13 x 1d4
2/ < 11 1i3 x 1d4
27 > 1i1 1i3 x 1d3
'M+Q=5.

2/ = 12 13 x 1d2
2/ 0 1i2 13 x 142
2/ < 1i2 1i3 x 142
2/ > 1i2 13 x 1d1
tM+Q=11.

2/ = 1i4 17 x 1d6
2/ 0 1i4 1i7 x 1d6
2/ < 1i4 17 x 148
2/ > 1i4 1i7 x 145
tM+ Q=14

2/ = 1i8 1i8 x 1d4

2/ 0 1i8 1i8 x

1d4

2/ < 1i6 1i8 x 1d4
2/ > 1i6 1iB x 143

1 (1-Mulp-) 7/ (1-Nulp-) —>
{Case M> Q: (1-Mulp-) *
! (1 + Nulp- 4+ (Nulp-)~2 + tiny) -->

11 - (M-Q)ulp- -

! (MN-NN){(ulp-)~2 + tiny -->

i1~ (M-Qulp- -
‘M+Q=3

2/ = 1d2 1d1
2/ 0 1d2 1d1
2/ < 142 1d1
2/ > 1d2 1d1
IM+Q=4

2/ = 1d3 1d1
27 0 143 1d1
2/ < 1d3 1d1
2/ > 1d3 1id1
IM+Q=5.

2/ = 1d3 1d2
2/ 0 1d3 1d2
2/ < 1d3 142
2/ > 1d3 142
2/ = 1d4 1d1
2/ 0 1d4 141
2/ < 1d4 1d1
2/ > 1d4 1d1
tH+Q =686

2/ = 1d4 142
2/ 0 1d4 142
2/ < 1d4 142
2/ > 1d4 142
IM+Q=7

2/ = 1d4 143
2/ 0 1d4 143
2/ < 1d4 143
2/ > 1d4 1d3
tM+ Q=11

2/ = 1d8 1d3
2/ 0 1d8 1d3

tiny.

1d1
1d2
1d2
1d1

Mo N oM

1dR
1d3
1d3
1d2

Mo Mo

1d1
1d2
1d2
1d1
1d3
1d4
1d4
143

[ T I A

1d2
1d3
1d3
1d2

Mo Mo

1d1
1d2
1d2
1d1

Mo Mo

x 1d5
x 1d6

2/ = 1d9 1d2
2/ 0 1d8 142
2/ < 1d8 1d2
27 > 1d9 1d2
M4+ Q=12

2/ = 148 1d4
27 0 1d8 144
2/ < 1d8 1d4
2/ > 1d8 1d4
'M+ Q =14,

2/ = 149 1d5
2/ 0 149 1d5
2/ < 1d9 1d5
2/ > 1d9 145

! (1-Mulp-) 7 (1 - Nulp-) >
'Case M < Q: (1- (M/2)ulp+) *
V(1 +(Q/2ulp+ +

! {((Q/2)ulp+)~2 + tiny) —>

X
x
X
x

X
X
X
X

P4
x
X
X

1dv
1d8
1d8
1d7

1d4
145
1d5
1d4

1d4
1d5
1d5
1d4

11+ (@ M)/2)ulp+ +

! (NN-MN)/4(ulp+)~2 + tiny -->
£ + (Q-M)/2ulp+ + tiny.

M+ Q=3

2/ = 1d1 1d2 x 1i}

27 0 1d1 142
27 < 1d1 142
2/ > 1d1 142
M+ Q=4

2/ = 1d1 1d3
27 0 1d1 143
27 < 1d1 143
2/ > 1d1 143

0 1d2 1d3
< 142 143
> 1d2 143
2/ = 1d1 1d4
0 1d1 144
< 1d1 1d4
2/ > 1d1 144
tM+Q=6
2/ = 1d2 1d4
2/ 0 142 144
2/ < 1d2 1d4
2/ > 1d2 1d4
tH+Q=7.
2/ = 143 1d4
27 0 1d3 1d4
2/ < 143 1d4
2/ > 143 1d4
M+ Q=8.
2/ = 1d1 1dv
2/ 0 1d1 1d7
2/ < 141 1d7
2/ > 1d1 1d7
ItM+Q =9
2/ = 1d2 1d7
2/ 0 1d2 1dv
27 < 1d2 1dv
2/ > 1d2 137
tM+ Q=10
2/ = 1d3 137

x
X
P4

MM B MMM MM Mg

MM Mg [ Y MoM Mo Mo M e

L]

1
1
1i1

111
111

1i1
12

1i1
1

1
1i1
1i2
1i1
1i1
1i2

1i1
11

11
1i2

1i1
1
1
11

13
1i3
1i3
1i4
113
1i2
1i2
1i3

1i2
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2/ 0 1d3 147 x
2/ < 143 147 x
2/ > 1d3 147 x

IM+Q =11,

2/ = 1d4 1d7
2/ 0 1d4 147
2/ < 1d4 147
2/ > 144 147
‘M +Q=12

2/ = 1d5 147
2/ 0 1d5 1d7
2/ < 1d5 147
2/ > 1d5 147
'M+Q=13

2/ = 1d6 147 x

MM MM

oM M

12
1i2
113

1i2
1i1

1i1
1i2
11
11

1i1
112

111

2/ 0 1d6 1d7 x 1
2/ < 1d6 1d7 x 1
2/ > 1d6 1d7 x 1il

1 + Mulp+

tM+Q =2
2/ = 1i1 1d1 x

27 0 131 1d1 x
2/ < 1il 1d1 x
2/ > 1i1 1d1 x
IM+Q=3

2/ = 1i1 1d2 x
2/ 0 111 1d2 x
2/ < 1i1 1d2 x
2/ > 11 1d2 x
2/ = 1i2 141 x
27 0 1i2 1d1 x
2/ < 1i2 1d1 x
27 > 1i2 141 x
IM+Q=4

2/ = 1i1 143 x
2/ 0 111 1d3 x
2/ < 1i1 1d3 x
2/ > 1i1 1d3 x
2/ = 1i3 1d1 x
2/ 0 13 1d1 x
2/ < 1i3 1d1 x
2/ > 1i3 1d1 x
2/ = 12 142 x
2/ 0 1i2 142 x
27 < 1i2 1d2 x
2/ > 1i2 1d2 x
tM+Q=-5

2/ = 1i3 142 x
2/ 0 13 142 x
2/ < 1i3 1d2 x
2/ > 113 1d2 x
2/ = 1i2 1d3 x
27 0 1i2 143 x
2/ < 1i2 1d3 x
2/ > 1i2 1d3 x
tM+Q =8

2/ = 1i3 1d3 x
2/ 0 1i3 1d3 x
2/ < 1i3 1d3 x
2/ > 1i3 143 x
2/ = 1i1 1d5 x

! 1+Mum+§/U—NMp0—>
*(1+(Q/2)ulp+ +

! ((Q72)ulp+)~2 + tiny) -->

'1 4+ (M + Q/2)ulp+ + tiny.

112
11
111
112

1i2
12
1i2
113
1i3
1i2
12
1i3

1i3
1i2
12
1i3
1i4
13
113
1i4
1i3
13
1i3
134

1i4
1i4
1i4
115
1i4
113
113
1i4

115
1i4
1i4
115
114

2/
2/
2/
2/
27
74
H74
2/
2/
2/
R/
R/
2/
2/
2/

1 (1~ Mulp-) 7 (1 + Nulp+) >
(1 - Mulp-) *(1-2Nulp- +

! (2Nulp-)~2 - tiny) -->

t1- (M + 2N)ulp- + tiny.

VACHVAOINVADOIVAO

1i1 145 x 13
1i1 1d5 x 1i3
1i1 1d5 x 14
1i5 1d1 x 1i6
115 141 x 1i5
115 1d1 x 1i5
115 1d1 x 1i6
112 1d4 x 1i4
1i2 144 x 1i4
112 1d4 x 14
1i2 1d4 x 1i5
1i4 1d2 x 1i5
134 1d2 x 1i5

1i4 1d2 x 1i5
1i4 1d2 x 1i8

tM+Q=2.

2/ = 1d1 1i1 x 1d3
27 0 1d1 11 x 143
2/ < 1d1 11 x 143
2/ > 1d1 1i1 x 1d2
tM+Q=3.

2/ = 1d2 11 x 1d4
2/ 0 142 11 x 144
2/ < 1d2 1i1 x 1d4
2/ > 1d2 1i1 x 1d3
2/ = 1d1 1i2 x 1d5
2/ 0 1d1 12 x 145
27 < 1d1 12 x 145
27 > 1d1 1i2 x 1d4
IM+Q=4.

2/ = 1d3 11 x 1d5
2/ 0 143 11 x 145
2/ < 143 11 x 1d5
2/ > 1d3 1i1 x 144
2/ = 1d1 13 x 147
2/ 0 1d1 13 x 147
2/ < 1d1 13 x 147
2/ > 1d1 13 x 148
2/ = 1d2 1i2 x 1d8
2/ 0 1d2 1i2 x 1d6
2/ < 1d2 1i2 x 1d8
2/ > 1d2 12 x 1d5
M+ Q=5

2/ = 1d4 11 x 1d8
2/ 0 1d4 1i1 x 1d8
2/ < 1d4 11 x 1d8
27 > 1d4 11 x 1d5
2/ = 1d1 1i4 x 1d®
2/ 0 141 1i4 x 149
2/ < 1d1 1i4 x 148
2/ > 141 1i4 x 148
2/ = 1d3 12 x 1d7
2/ 0 143 1i2 x 147
2/ < 1d3 1i2 x 147
2/ > 1d3 1i2 x 1d6
2/ = 1d2 1i3 x 1d8
2/ 0 1d2 1i3 x 1d8
2/ < 1d2 1i3 x 1d8
2/ > 1d2 13 x 1d7

! Nen operands.
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24
2/
2/
2/
2/
2/
2/
2/
R/
2/
2/
2/
2/
2/
2/
2/
2/
2/
27
2/
2/
2/
2/
2/
2/
2/
2/
2/
2/
27
2/
27
2/
2/
2/
27
2/
2/
2/
F74
27
2/
2/
27
74
R/
27
2/
2/

2/
2/

ALL

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

DHDDO

Fs)
t
oo}
(a9}
[eYelo¥e)
o0 0%

-
OO D RRRR

¥
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B.20

! Middle-range mumbers. 2% ALL Hm1 Hd1 OK -Hmid2
2% ALL 1 2 0K 1 2% ALL Hm2 Hm1 OK Hm2
2% ALL 1 -2 OK 1 2% ALL Hdi Hd2 OK Hdiul

2% ALL -1 2 OK -1 2% ALL Hd1i -Hd2 OK Hdiui

2% ALL -1 -2 0K -1 2% ALL -Hd1 Hd2 OX -Hdiul

2% ALL 3 2 0K -1 2% ALL -Hd1 -Hd2 OK -Hdiul

2% ALL 3 -2 OK -1 2% ALL Hmilul Hmlud4 OK Hmiul
2% ALL -3 2 0K 1 2% ALL Hd1 Hm1l OK -Hmilui
2% ALL -3 -2 OK 1 _ 2% ALL Hm1i3 Hm1i5 OK -Hm1u2
2% ALL 22 0K © 2% ALL Hmili4 Hm1i5 0K -Hmiul
2% ALL 2 -2 OK © 2% ALL Hm1li6 Hm1i5 OK Hmiul
2% ALL -2 2 0K -0 { Large and small numbers.

2% ALL -2 -2 0K -0 2% ALL Hd1 0i1 OK O

2% ALL 1i1 2 Q0K -1d2 2% ALL Hd1 -0i1 OK ©

2% ALL 3d1 2 OK 1d4 2% ALL -Hd10i1 OK -0

2% ALL 1 4 OK 1 2% ALL -Hd1-0i1 0K -0

2% ALL 2 4 OK 2 2% ALL Hd1 Euil OK O

2% ALL 3 4 0K -1 2% ALL Hd1 Epidl OK O

2% ALL 44 0K O 2% ALL Hdi1 E QK 0

2% ALL 5 4 OK 1 2% ALL Hmid1 Hm! OK -Hm=2u1
2% ALL 6 4 OK -2 2% ALL Hmi1d1 -Hm1 OK -Hm2ul
2% ALL 7 4 0K -1 2% ALL -Hm1d1 Hml OK Hm2ul
2% ALL B 4 OK 0O 2% ALL -Hm1d1-Hm1 OK Hm2u1
2% ALL 0 1m1 0K © ! Small numbers.

2% ALL 1m3 i1ml OK 1m3 2% ALL 0i1 0i4 OK 0i1

2% ALL 3m3 1m1 OK -1m3 2% ALL 0i1 -0i4 OK 0i1

2% ALL 5m3 1m1 OK 1m3 2% ALL -0i1 0i4 OK -0i1

! Step across jump. 2% ALL -0i1 -0i4 OK -0i1

2% ALL 2i1 4 OK -2d2 2% ALL 0i2 0i4 OK 0i2

2% ALL 2i1 -4 OK -2d2 2% ALL 0i3 0i4 OK -0i1

2% ALL -2i1 4 OK 2d2 2% ALL 0i3 -0i4 OK -0i1

2% ALL -2i1 -4 OK 2d2 2% ALL -0i3 0i4 OK 0i1

2% ALL 2i8 4 OK -2d8d8 2% ALL -0i3 -0i4 OK 0i1

2% ALL 8d1 4 OK 2d4 2% ALL 0i4 0i4 OK 0O

2% ALL 6d1 -4 OK 2d4 2% ALL 0i4 -0i4 OK 0

2% ALL -8d1 4 OK -2d4 2% ALL -0i4 -0i4 OK -0

2% ALL -8d1 ~4 OK -2d4 2% ALL -0i4 0i4 OK -0

2% AlLL 6d8 4 OK 2dB8d8dsds 2% ALL Epsd1 Ep8 OK -EpBul
2% ALL 1m2 1ml OK 1m2 2% ALL Ei1 Ed2 OK Eu3

2% ALL 11m2 iml OK -1d2m2 2% ALL E Ed2 OK Eu2
t(14x)7(1+y), x,y<<1. 2% ALL Ed4 Ed2 OK -Eu2

2% ALL 111 15 OK -1u4 2% ALL Ed4 -Ed2 OK -Eu2

2% ALL 1i1 -1i5 OK -1u4 2% ALL -Ed4 Ed2 OK Eu2

2% ALL -1i1 15 OK 1u4 2% ALL -Ed4 -Ed2 OK Eu2

2% ALL -1i1 -1i5 OK 1u4 2% ALL Ed1 Epid1 OK Edi

2% ALL 1i2 1i5 OK -1u3 2% ALL E Ep1dl OK -Ed1

2% ALL 13 1i5 OK -1u2 2% ALL Ei3 Ei5 OK -Bu2

2% ALL 1i4 1i5 OK -1ul 2% ALL Ei4 Ei5 0K -Em

2% ALL 1i6 1i5 OK 1ul 2% ALL Ei6 Ei5 0K Eu1

2% ALL 3d1 3 OK -3ul 27 ALL Epidi Epl OK -Eui

2% ALL 3d1 -3 OK -3ul ! Special case: invalid operations
2% ALL -3d1 3 OK 3u1 ! delivering NaNs.

2% ALL -3d1 -3 OK 3ul 2% ALL 00 i Q

2% ALL 2d1 2 OK -1ul 2% ALL 0-01 Q

2% ALL 1i1 1d2 OK 1u2 2% ALL -0 01 Q

2% ALL 1 1d2 OK 1ul 2% ALL -0 -0i Q

2% ALL 1d4 1d2 OK -1ul 2% ALL 1 011 Q

2% ALL 1d1 2d1 OK 1d1 2% ALL 1d1 01 Q

2% ALL 1 2d1 OK -1d2 2% ALL Hd1 0i Q

! Large numbers. 2% ALL Hd1 -0i Q

2% ALL Hm1i1 Hmild2 OK Hmiu2 2% ALL -Hd1 01 Q

2% ALL Hmi1l Hmid2 OK Hm1iul 2% ALL -Hd1 -01i Q

2% ALL Hm1ld4 Hmid2 OK -Hm1lu1l 2% ALL Ed1 01 Q

2% ALL Hmildl Hd1 OK Hmid1 2% ALL Bd1 -01 Q



2%
2%
2%
2%
2%
2%
2%
2%
2%
27
2%
2%
2%
2%
2%

ALL -Ed1 0 i Q
ALL -Ed1 -0 i
ALL 0i1 0§ Q
ALLH 01 Q
ALL H -0 i
ALL -H 0 i
ALL -H -0
ALL H

ALL H Q
ALL H -Hd1 i Q
ALL -H Hd1i Q
ALL -H -Hd1 i Q
ALL H Ed1 i Q
ALL H 0i1 i Q
ALLHHiQ

'0remy =0, yanumber <> 0.

2% ALL

2%
2%
2%
27
2%
2%
2%
2%
2%
2%
2%
2%

010KO
ALL 0 -1 0K ©
ALL -0 1 OK -0
ALL -0 -1 OK -0
ALL 0 1d1 OK O
ALL 0 Hd1 0K ©
ALL 0 Ed1 OK 0O
ALL 0 0i1 OK 0
ALL 0 -0i1 OK ©
ALL -0 0i1 OK -0
ALL -0 -0i1 OK -0
ALLOH OK 0
ALL 0 -H OK 0O

txrem INF = x, x a number <> 0.

2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
27
27
2%
2%

ALL 1 H 0K 1

ALL 1 -H 0K 1
ALL -1 H 0K -1
ALL -1 -H OK -1
ALL 1d1 H 0K 1d1
ALL Hd1 H OK Hda

2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
27
2%
2%
2%
2%
2%
27
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
27
2%

Hm1lil1 -3 0K ©

Hma1ii1l -0i3 0K 0

Hm1 -Hmiu3 0K -Hmiul
Hm1d2 -Hmi1u3 OK Hmlui
Ei1 -0i3 0K O

E -Eu3 0K -Eu1

Ed1 -Eu3 OK Eut

Fi1 ~Eu3 0K 0

Ei2 -Eu3 OK Euil

Ei3 -Eu3 0K -Eul

-Hmiil Hmiu3 0K -0
-Hm1i2 Hmiu3 OK -Hm1iul
-Hm1i3 Hmi1u3 0K Hmiul
-Hm1li1 3 OK -0

-Hm1i1 0i3 0X -0

-Hml Hmiu3 0K Hmilul
-Hm1d2 Hmiu3 OK -HmIlul
-Ei1 0i3 OX -0

-E Eu3 0K Eul

-Ed1 Eu3 0K -Eul

-Ei1 Eu3 0K -0

-Ei2 Eu3 0K -Eui

-Ei3 Eu3 0K Eul

-Hmlil -Hm1u3 OK -0
-Hm1i2 -Hm1u3 0K -Hm1ul
-Hm1i3 -Hm1u3 0K Hm1lul
-Hm1li1 -3 0K -0

-Hm1i1 -0i3 OK -0

-Hm1l -Hm1u3 0K Hm1iul
-Hmi1d2 -Hmi1u3 0K -Hm1lul

2% -Ei1 -0i3 OK -0
2% s -E -Eu3 OK Em1
2% s -Ed1 -Eu3 OK -Eul
2% -Ei1 -Eu3 0K -0

2%
2%

VWL LRV ®OLLDLYLLVVRELRBUOLUNLD LN B UL Y

S

-Ei2 -Eu3 OK -Eul
-Ei3 -Eu3 OK Eul

ALL
ALL
ALL
ALL

Hd1 -H OK Hd1
-Hd1 H 0K -Hd1
-Hd1 -H OK -Hd1
Ed1 H OK Ed1

! Vectors based on

' (x + 1) | (x~n + 1) for n odd;
! for significands with

! odd numbers of bits.

ALL 011 H OK 011
ALL 0i1 -H OK 0i1
ALL -0i1 H OK -0i1
ALL -0i1 -H OK -0i1

! Vectors based on
{{x+1)|(x~n+1)fornodd-
! for significands with even

| numbers of bits.

2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%

s Hm1il Hmiu3 0K ©

s Hm1i2 Hmiu3 0K Hmiul
s Hm1i3 Hmiu3 0K -Hm1luil
s Hmiilt 3 0K 0

s Hm1i1 0i3 OK 0

s Hm1 Hm1lu8 0K -Hm1lul
s Hm1d2 Hm1u3 0K Hm1ul
s Ei1 EuB3 0K 0

s E Eu3 OK -0i1

s Ed1 Eu3 OK 0i1

s Fi1 0i3 OK O

s Ei2 Eu3 OK Eul

s Fi3 Eu3 OK -Eul

s Hm1it -Hmiu3 0K 0

s Hm1i2 -Hm1u3 0K Hmiul
s Hm1i3 -Hm1u3 OK -Hmiul

2%

Hmi1d2 Hmilu3 OK 0

d
2% d Hm1i3 Hmilu3 0K Hmiul
2% d Hmli4 Hmiu3 OK -Hmiui
2% d Hm1i2 3 OK 0
2% d Hm1ii2 0i3 0K 0
2% d Hmld4 Hmiu3 OK -Hmiu1l
2% d Hm1l Hmilu3 OK Hmiul
2% d Ed1 EuB 0K ©
2% d Eil1 Eu3 OK -0it
2% d E Eu3 OK 0i1
2% d Ei2 0i3 0K 0
2% d Ei3 Fu3 0K Eul
2% d Eia Eu3 OK -Eul
2% d Hmid2 -Hmiu3 0K ©
2% d Hm1i3 -Hm1u3 0K Hmilul
2% d Hmli4 -Hmiu3 OK -Hmilul
2% d Hmili2 -3 0K O
2% d Hm1li2 -0i3 0K 0
2% d Hm1d4 -Hm1u3 0K -Hmiul
2% d Hm1 -Hm1u3 OK Hmiluil
2% d Ed1 -0i3 0K 0
2% 4 Ei1 -Eu3 0K -Eul
2% d E -Eu3 OK Eul

d

2%

Ei2 -Eu3 0K 0
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2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
27
2%
2%
2%
2%

Ei3 -Eu3 0K Eu1l
Ei4 -Eu3 0K -Em1
-Hm1d2 Hmiu3 0K -0

-Hm1i2 3 0K -0
-Hm1i2 0i3 0K -0

-Ed1 0i3 OK -0

-Ei1 Eu3 0K Eul

-E Eu3 0K -Eul

-Fi2 Eu3 0K -0

-Ei3 Bu3 OK -Eul

-Fi4 Eu3 0K Euil
~-Hm1d2 -Hmiu3 0K -0

-Hm1i3 Hmiu3 0K -Hmiu1
-Hm1i4 Hmiu3 OK Hmilul

-Hmi1d4 Hmi1u3 0K Hmiul
-Hmi Hmiu3 OK -Hmiul

2%
2%
2%
2%

-Hm1i3
~-Hm1i4
-Hmi1i2
-Hmii2

-Hmi1u3 OK -Hm1iul
-Hmi1u3 0K Hmiul
-3 0K -0

-0i3 0K -0

2%
2%
2%
2%
2%
2%

-Ei2 -0i3 OK -0

-Ei1 -Eu3 OK Eul

-E -Eu3 0K -Eul

-Ei2 -Eu3 0K -0

2% d -Ei3 -Eu3 0K -Eu1

2% d -Ei4 -Eu3 OK Eul

! NaN operands.

2% ALL Q 0 0K Q

2% ALL Q -0 OK Q

2% ALL 0 Q OK Q

2% ALL -0 Q 0K Q

2% ALL Q 1 OK Q

2% ALL Q -1 0K Q
Q
Q
K
K
K

[= PR+ P o W o VR o P o P o PR o Vi o D < P o T o P o PR a Wi o P o PR P o D o DY o DY VY o Pl = P = Y T o P = VY - B

2% ALL 1 Q OK
2% ALL -1 Q O
2% ALL Ed1 Q
2% ALL -Ed1Q
2% ALL Q Ed1
2% ALL Q -Ed1
2% ALL Q 0i1 OK
2% ALL Q -0i1 OK
2% ALL 0i1 Q OK
2% ALL -0i1 Q O
2% ALL Q Hd1 O
2% ALL Q -Hd1 OK
2% ALL Hd1 Q OK
2% ALL -Hd1Q OK
2% ALL Q H 0K
0
0

ODOLO

oopooPo®

2% ALL Q -H OK
2% ALL H
2% ALL -H Q
2% ALL Q
2% ALL S

S

0

D050

K
Q
2% ALL Q
2% ALL Q
2% ALL -0 S i Q
2% ALL S 11 Q
2% ALL S -1 i Q
2% ALL 1 Q
2% ALL -1 S i Q
2% ALL Ed1 S i Q
27 ALL -Ed1S i

-Hmild4 -Hm1u3 OK Hmiul
-Hm1l -Hmi1u3 0K -Hmilul

2%
2%
2%
2%
2%
27
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%
2%

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
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| First some easy integer cases.
2C ALL 11 OK =
2C ALL 1 2 OK <
2C ALL 2 1 OK >
2C AL 2 2 OK =
2C ALL 2 -2 OK >
2C ALL 5 -5 OK >
2C ALL 1 7 0K <
2C ALL 5 -1 OK >
2C ALL 2 -5 OK >
2C ALL 5 -0 OK >
2C ALL 5 +0 OK >
! Infinity vs Infinity.

2C ALL H H OK = ealways equal
2C ALL -H -H OK = always equal
2C ALL H -H 0K >

2C ALL -H H 0K <

! Infinity vs huge.

2C ALL H Hm1l OK >

2C ALL H -Hm1 OK >

2C ALL -H Hm1 0K <

2C ALL -H -Hm1 0K <

2C ALL H Hd1 0K >

2C ALL H -Hd1 OK >

2C ALL -H Hd1 OK <

2C ALL -H -Hd1 OK <

2C ALL Hm1 H 0K <

2C ALL Hm1 -H OK >

2C ALL -Hm1 H OK <

2C ALL -Hm1 -H OK >

! Infinity vs 0.

2C ALL H 0 0K >

2C ALL H -0 OK >

2C ALL -H 0 OK <

2C ALL-H -0 0
2C ALL 0 H OK «
2C ALL -0 H OK <
2C ALL 0 -H 0K >

2C ALL -0 -H OK >

! Infinity vs denormalized.

2C ALL H Ed1 OK >

2C ALL -H Ed1 0K <

2C ALL H -Ed1 OK >

2C ALL -H -Ed1 COK <

2C ALL H 0i1 OK >

2C ALL -H 011 OK <

2C ALL H -0i1 OK >

2C ALL -H -0i1 OK <

2C ALL Ed1 H OK <

2C ALL Ed1 -H OK »>

2C ALL -Ed1 H 0K <

2C ALL -Ed1 -H OK >

! Zero vs finite — watch that sign
! o 0 is meaningless.

2C ALL 0 Hm1 OK <

2C ALL -0 Hm1 OK <

2C ALL -Hm1 0 OK <

2C ALL -Hm1 -0 0K <

2C ALL 1 -0 OK >

2C ALL -1 -0 OK <

2C ALL 0 1 OK <

2C ALL -0 -1 OK >

! Zero vs denormalized.

2C ALL 0 Ed1 0K <

K <

B.23

2C ALL -0 Ed1 OK <

2C ALL 0 -Ed1 OK >

2C ALL -0 -Ed1 OK >

2C ALL 0 0i1 0K <

2C ALL -0 0i1 OK <

2C ALL 0 -0i1 OK >

2C ALL -0 -0i1 OK >

2C ALL Ed1 0 OK >

2C ALL Ed1 -0 OK >

2C ALL -Ed1 0 0K <

2C ALL -Ed1 -0 OK <

! Zero vs tiny — just in case.
2C ALL -0 -E OK >

2C ALL E 0 OK >

2C ALL 0 -E OK >

2C ALL -E 0 OK <

! Zero vs Zero -- watch signs
! and rounding modes.

2C ALL 0 -0 OK
2C ALL -0 0 OK
2C ALL 0 -0 OK
2C ALL -0 0 0K =

! Big cancellations.

2C ALL Hml Hmi OK =
2C ALL Hm1 Hmi1 0K =
2C ALL -Hm1 -Hm1 0K
2C ALL -Hm1 -Hm1 0K
2C ALL Hmld2 Hmid2 OK =
2C ALL -Hmi1d2 -Hm1d2 OK =
2C ALL Hd1 Hd1 OK =
2C ALL Hd1 Hd1 OK =
2C ALL -Hdi -Hd1 0K
2C ALL -Hd1 -Hd1 OK
! Medium cencellations,
2C ALL 11 OK =

2C ALL 1m1 1m1 OK =
2C ALL 33 0K =

2C ALL E E OK =

2C ALL Hm2 Hm2 0K =

! Tiny cancellations -- might
! have underflowed.

2C ALL Ed1 Ed1 OK =

2C ALL -Ed1 -Ed1 OK =
2C ALL Ci4 0i4 OK =
2C ALL -0i4 -0i4 OK
2C ALL 0Oi1 0i1 0K =
2C ALL -0i1 -0i1 OK
! Doublings.

2C ALL Hm1 -Hm1 OK >

2C ALL -Hm1d2 Hmid2 0K <
2C ALL 1 -1 OK >

2C ALL -3 83 0K <

2C ALL E -E OK >

2C ALL -E E OK <

2C ALL Ed4 -Ed4 OK >

2C ALL -Ed1 Ed1 OK <

2C ALL 0i1 -0i1 OK >

2C ALL -0i1 0i1 0K <

! Cancellation with diff in LSB

! Difference is in last place of

! larger number.

! Medium numbers...

2C ALL 11 1 OK >

2C ALL -1i1 -1 OK <

mn
Won

it



2C ALL 1i1 182 OK <

2C ALL -1i1 -1i2 OK >

2C ALL 2 2i1 0K <

2C ALL -2 -2i1 OK >

2C ALL 2i4 2i3 0K >

2C ALL -214 -2i3 0K <

2C ALL 4d1 4d2 OK >

2C ALL -4d1 -4d2 OK <

2C ALL 2d4 2d3 OK <

2C ALL -2d4 -2d3 OK >

! Huge numbers...

2C ALL Hm1lil Hm1 OK >
2C ALL -Hm1il -Hm1 OK <
2C ALL Hmi1lil Hmli2 OK <
2C ALL -Hmiil -Hm1li2 0K >
2C ALL Hm2 Hm2i1 OK <
2C ALL -Hm2 -Hm2i1 OK >
2C ALL Hm?i4 Hm2i3 0K >
2C ALL -Hm?i4 -Hm2i3 0K <
2C ALL Hm2d1 Hm2d2 OK >
2C ALL -Hm2d1 -Hm2d2 0K <
2C ALL -Hd2 -Hd1 OK >

2C ALL Hd2 Hd1 OK <

! Tiny numbers...

2C ALL -Ei1 -E OK <

2C ALL Ei1 E OK >

2C ALL -Ed1 -E OK >

2C ALL Ed1 E OK <

2C ALL Ei1 Ei2 OK <

2C ALL -Ei1 -Ei2 OK >

2C ALL Ed1 Ed2 OK >

2C ALL -Ed1 -Ed2 OK <

2C ALL Ed3 Ed2 OK <

2C ALL -Ed3 -Ed2 OK >

2C ALL 0i2 0i1 OK >

2C ALL -0i2 -0i1 OK <

2C ALL 0i3 0i2 0K >

2C ALL -0i3 -0i2 OK <

t Normalize from round bit — set up
! tests so that operands have

! exponents differing by 1 unit.
{ Medium mumbers...

2C ALL 2 2d1 OK >

2C ALL -2 -2d1 OK <

2C ALL -2d1 -2 OK >

2C ALL 2d1 2 OK <

2C ALL 4i1 4d1 OK >

2C ALL ~4i1 -4d1 OK <

2C ALL 4d1 4i2 0K <

2C ALL -4d1 -4i2 OK >

2C
2C
2C
2C
_C
2C
2C

ALL
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-Hm2d1 -Hm2i2 0K >
Hm?i1 Hm1iil 0K <
-HmRi1 -Hm1iil 0K >
Hmii2 Hm2i1 OK >
-Hm1i2 -Hm2i1 0K <
Hm2i2 Hm3i3 OK >
-Hm2i2 -Hm3i3 0K <

! Tiny numbers...

2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
!

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

Epl Epidl OK >
-Ep1 -Ep1d1 0K <
-Ep1di -Ep1 OK >
Epidil Epl OK <
Ep1i1 Epid1l OK >
-Ep1il -Epidl OK <
Ep2 Ep2d1 OK >
-Ep2 -Ep2d1 OK <
-Ep2d1 -Ep2 OK >
Ep2d1 Ep2 OK <«
Ep2i1 Ep2d1 QK >
-Ep2i1 -Ep2d1 OK <
Epid1 Epli2 OK <
-Epi1d1 -Ep1i2 OK >
Epidl Eplida OK <
-Ep1d1 -Ep1li4 OK >
Ep1i1 Ei1 0K >
-Bp1i1 -Eil 0K <
Ep1i2 Eil OK >
-Ep1i2 -Ei1 OK <«
Ep2i2 Epli3 OK >
-EpR2i2 -Ep1i3 OK <

! Add magnitude cases where one operand
! is off in sticky -- rounding

! perhaps to an overflow.

!t Huge vs medium

2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

Hmil 1 OK >
-Hm1 -1 0K <
Hmid1 -1 OK >
Hmid1 1 OK >
-Hmidl 1 0K <
-Hmid1 -1 OK <
Hd1 1 OK >
Hd1 -1 OK >
-Hd1 1 0K «
-Hd1 -1 OK <
Hd2 -1 0K >
Hd2 1 OK >
-Hd2 1 0K <
-Hd2 -1 OK <

! Huge vs tiny.

2C
2C
2C

ALL
ALL
ALL

2i1 1i1 OK >
-2i1 -1i1 OK <
2i2 111 OK >

2C ALL 0i1 Hm1 OK <
2C ALL 0i1 -Hm1 OK >
2C ALL -0i1 Hml OK <

2C ALL -2i2 -1i1 0K <

2C ALL 2i2 113 0K >

2C ALL -2i2 -1i8 0K <

! Huge numbers...

2C ALL Hm2 Hmzd1 OK >
2C ALL -Hm2 -Hm2d1 OK <
2C ALL -Hmidl -Hm1 OK >
2C ALL Hm1dil Hml OK <
2C ALL Hm4il Hma4d1l OK >
2C ALL -Hm4i1l -Hm4d1 OK <
2C ALL Hm2d1 Hmzi2 0K <

2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

-0i1 -Hm1 OK >
0i1 Hmidi OK <
0i1 -Hmid1 OK >
-0i1 Hmidl OK <
-0i1 -Hm1d1 OK >
0i1 Hd1 OK <
0i1 -Hd1 OK >
-0i1 Hd1 OK <
-0i1 -Hd1 OK >
0i1 Hd2 OK <

0i1 -Hd2 OK >



2C ALL -0i1 Hd2 OK <
2C ALL -0i1 -Hd2 OK >
t Medium vs tiny.

2C ALL 0i1 1 OK <

2C ALL 0i1 -1 OK >
2C ALL -0i1 1 OK <
2C ALL -0i1 -1 OK >
2C ALL 0i1 1d1 OK <
2C ALL 0i1 -1d1 OK >
2C ALL -0i1 1d1 OK <
2C ALL -0i1 -1d1 OK >
2C ALL 0i1 2d1 OK <
2C ALL 0i1 -2d1 OK >
2C ALL -0i1 2d1 OK <
2C ALL -0i1 -2d1 OK >
2C ALL 0i1 2d2 OK <
2C ALL 0i1 -2d2 OK >
2C ALL -0i1 2d2 OK <
2C ALL -0i1 -2d2 OK >
!

!t Magnitude subtract when an operand

!is in the sticky bit.

! The interesting cases will arise
! when directed rounding
{ forces & nonzero cancellation.
{ Huge and medium.

2C ALL Hml 1 OK >

2C ALL Hm1 -1 OK >
2C ALL -Hm1 1 OK <
2C ALL -Hm1 -1 OK <
2C ALL Hmid1 1 OK >
2C ALL Hmid1 -1 OK >
2C ALL -Hmid1 1 0K <
2C ALL -Hmid1 -1 0K <
2C ALL Hd1 1 OK >

2C ALL Hd1 -1 OK >
2C ALL -Hd1 1 OK <
2C ALL -Hd1 -1 OK <
2C ALL Hd2 1 OK >

2C ALL Hd2 -1 OK >

2C ALL -Hd2 1 OK <
2C ALL -Hd2 -1 OK <

! Huge and tiny.

2C ALL Hd1 0i1 OK >
2C ALL Hd1 -0i1 OK >
2C ALL -Hd1 0i1 OK <
2C ALL -Hd1 -0i1 OK <
2C ALL 0i3 Hmil OK <
2C ALL -0i3 Hml 0K <
2C ALL 0i3 -Hm1 0K >
2C ALL -0i3 -Hm1 OK >
! Medium and tiny.

2C ALL 1d1 0i1 OK >
2C ALL 1d1 -0i1 OK >
2C ALL 2d1 0i1 OK >
2C ALL -2d1 0i1 OK <
2C ALL 0i3 3 0K <

2C ALL -0i3 3 0K <

2C ALL 0i3 5 0K <

2C ALL 0i3 -5 0K >

!

! Add magnitude with difference in
1 LSB so, except for denorms,
! round bit is crucial.

¢ Half-way cases arise.
! Medium cases.

2C ALL 1i1 1 OK >
2C ALL 1i1 -1 OK >
2C ALL -1i1 1 OK <
2C ALL -1i1 -1 OK <
2C ALL -2 2i{1 OK <
2C ALL -2 -2i1 0K >
2C ALL 2 -2i1 OK >
2C ALL 2 2i1 0K <
2C ALL 1 18 0K <
2C ALL 1 -1i3 OK >
2C ALL -1 1i3 OK <
2C ALL -1 -1i3 OX >
2C ALL -2i1 -2i2 0K
2C ALL -2i1 2i2 0K
2C ALL 2i1 -2i2 0K
2C ALL 2i1 2i2 0K <

! Huge cases.

2C ALL Hd2 Hd1 OK <

2C ALL Hd2 -Hdi1 OK >

2C ALL -Hd2 Hd1 0K <

2C ALL -Hd2 -Hdi1 0K >

2C ALL Hmid1l Hmi 0K <
2C ALL Hmid1 -Hmi1 0K >
2C ALL -Hmid1l Hm1l 0K <
2C ALL -Hmid1 -Hm1 OK >
2C ALL Hm1il1 Hmi OK >

2C ALL Hm1lil -Hm1 OK >
2C ALL -Hm1il Hmil 0K <
2C ALL -Hm1iit -Hm1 OK <
2C ALL Hm2i1 Hm2 0K >

2C ALL Hm2i1 -Hm2 0K >
2C ALL -Hm2i1 Hm2 0K <
2C ALL -Hm2i1 -Hm2 0K <
2C ALL Hmi1d2 Hmid1l 0K <
2C ALL Hmid2 -Hmid1 0K >
2C ALL -Hmi1d2 Hm1i1d1 0K <
2C ALL -Hmid2 -Hmid1 OK >
! NaN operands.

2C ALL Q 0 OK ?
2C ALL Q -0 OK ?
2C ALL 0 Q 0K 7
2C ALL -0 Q OK ?
2C ALL Q 1 0K ?
2C ALL Q-1 0K 7
2C ALL 1 Q 0K 2
2C ALL -1 Q OK ?
2C ALL Ed1 Q 0K
2C ALL -Ed1Q 0K
2C ALL Q Ed1 0K
2C ALL Q -Ed10K 7
2C ALL Q 0i1 0K 7
2C ALL Q -0i1 OK 7
2C ALL 0i1 Q OK ?
2C ALL -0i1 Q OK 7
2C ALL @ Hd1 OK 7
2C ALL Q -Hd1 0K ?
2C ALL Hd1 Q OK ?
2C ALL -Hd1Q OK ?
2C ALL Q H OK 2
2C ALL @ -H OK ?
2C ALL H Q OK ?
2C ALL -H Q

>
<
>



2C
2C
2C
2C
2C

2C
2C
2C
2C
2C
2C
2C
_C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C
2C

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

B.26



i

e
LY
(24
3.
S.
B
o
[+ ]
w
a
g

g
rooo®

1p4

8 0 OK 1m4
4p6 0 OK 2p3

L 4m8 O OK 2m3

L 8p8 0 OK 3p4
ALL om8 0 OK 3m4
2V ALL 9p9p8 O OK 3p8
2V ALL 9m9m9 0 OK 3m9
! And the usual zero business.
2V ALL 40 0 OK +0

2V ALL -0 0 OK -0

! And tests for infinity.

2V ALL +H 0 OK +H

2V ALL -H 01 Q

! Case: 2~EVEN * (1 + Nulp+) —>
1 2~(EVEN/2)

! (1 + (1/2)Nulp+ -

! (1/8)(Nulp+)~2 + tiny)
{1+ 1ulp—~> 1+ 0.5ulp - tiny.
2V =0< 11 0 x 1

2V > 111 0 x 11

t1 4+ 2ulp ~> 1+ lulp - tiny.
2V => 1i2 0 x 1il

2V 0< 1i2 0 x 1

114 3ulp~->1+ 1.5ulp - tiny.
2V =0< 13 0 x 1i1

2V > 113 0 x 12

11+ 4ulp->1+ 2ulp - tiny.
2V => 1i4 0 x 1i2

2V 0< 114 0 x 1i1
{(1+5up)—>1+25ulp-..
2V =0< 15 0 x 1i2

2V > 1i5 0 x 13
t(1+86ulp)~>1+3ulp-...
2V => 18 0 x 1i3

2V 0< 1i6 0 x 1i2
'(+7ulp)--> 1+ 3.5ulp - ...
2V =0< 17 0 x 13

2V > 1i7 0 x 1i4

! sqrt(1 - Nulp-) —>
t1-(1/2)Nulp--

! (1/8)(Nulp-)~2 - tiny
{1-1ulp- —>

1 1-0.5ulp- - tiny.

2V =0< 1d1 0 x 1d1

2V > 1d1 0 x 1

11-2ulp- ~>

I 1- 1ulp-- tiny.

2V => 1d2 0 x 1d1

2V 0< 142 0 x 142
11-3ulp- —>
!1-1.5ulp- - tiny.

2V =0< 1d3 0 x 1d2

2V > 1d3 0 x 1d1
I1-4ulp- —>

11~ 2ulp-- tiny.

2V => 1d4 0 x 142

2V 0< 1d4 0 x 1d3
I1-5ulp- —>

'1-2.5ulp- - tiny.

EEEEEE
aé-wtn-b-»-

222332388
&

2V =0< 145 0 x 143
2V > 1d5 0 x 1d2
1'1-6ulp- —>

! 1 - 3ulp- - tiny.

2V => 1d6 0 x 1d3
2V 0< 1d8 0 x 1d4
11-7ulp- —>

! 1-3.5ulp- - tiny.

2V =0< 147 0 x 1d4
2V > 1d7 0 x 1d3
t1-Bulp- -->

! 1- 4ulp- - tiny.

2V => 1dB 0 x 1d4
2V 0< 1dB 0 x 1d5
11-gulp- —>

! 1-4.5ulp- - tiny.

2V =0< 1d9 0 x 1d5
2V > 1d9 0 x 1d4

! Invalid negative cases.
2V ALL -1 01 Q
2V ALL 212 0 i Q
2V ALL -314 01 Q
2V ALL 4d5 01 Q
2V ALL -1ul 01 Q
2V ALL -1u2 0 i Q
2V ALL -1u3 01 @
2V ALL -Hmii2 0 i
2V ALL -Hmg2i2 0 i
2V ALL -Hmid1 0 i
2V ALL -Hm2d4 0 i
2V ALL -Ep1in
2V ALL -Epid3
2V ALL -Ep1
2V ALL -Ep1
2V ALL -Ed4
2V ALL -Ed3

2V ALL -Ed1
2V ALL -Ed4
2V ALL -Ed3
2V ALL -Ed7
2V ALL -Eds
2V ALL -0i1 0 i
2V ALL -0i1 0 i
2V ALL -0i9 0 i
2V ALL -0i7 0 i
2V ALL -0i5 0 i
2V ALL -0i2 0 i
! NaN operand.
2V ALL Q 0 OK
2V ALL S 01 Q
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! Exact cases.

2 ALL
2l ALL
20 ALL
20 ALL
20 ALL
20 ALL
21 ALL
21 ALL
21 ALL
2l ALL
2l ALL
2] ALL
20 AlL
20 AlL
21 ALL
2] ALL

100K 1

Hd1l 0 OK Hd:

-1 0 0K -1

-Hd10 OK -Hd1

9p9 0 OK 8p8

-9p9 0 OK -9p8

000K O

-0 0 OK -0

Hm® 0 OK Hmp

Hmod1 0 OK Hm8d1
Hmodg 0 OK HmBds
Hm9d8d8 0 OK HmBdad8
-Hm® 0 0K -Hm§
-Hm8d1 0 OK -Hmed1
~Hm8d9 0 0K -HmBde
-Hm9dedo 0 OK -Hm9dede

! Infinities.

21 ALL HOOK H

2] ALL -H 0 OK -H

! Inexact cases.

2] =0< 11 0 x 1

2l > 111 0x 2

2l => 1d1 0 x 1
210 1d1 0 x O

2l =< -1d1 0 x -1

21 0> -1d1 0 x -0

2l =0> -1i1 0 x -1

2l < -1i1 0 x -2

20> EO0 x 1

Al =0< E0x 0O

2l < -E 0 x -1

21 =0> -E 0 x -0

21 > Bd1 0 x 1

2l =0< Ed1 0 x O

2l < -Ed1 0 x 1

21 =0> -Ed1 0 x -0

21 =0< 0i1 0 x O

21 > 0i1 0 x 1

20 =0> -0i1 0 x -0

2l < 0i1 0 x -1

Al > 81 0x 9

2l 0=< Bi1 0 x 8

2l < -Bi1 0 x -8

2] 0=> -Bi1 0 x -B

2l => 8d1 0x 8

21 0< Bd1 0 x 7

2l =< -8d1 0 x -8

21 0> -8d1 0 x -7

21 => 1pHdB O x 1pB
2] =< -1p8d8 0 x -1pB
2l => 1p9p8d10 x 1pHpd
2l =< -1p8pHd10 x -1pBp9
2] =<0 1pBiB 0 x 1ph
2] =>0 -1pBiB 0 x -1pB
2] =<0 1pBpBil 0 x 1pHp8
2l =>0 -1p8pBi1 0 x -1pHp8
!t Half-way ceses.

2 > 1Im1 0 x 1

2] =0< Im1 0x 0O

2l < -Im1 0 x -1

2] =0> -1m1 0 x -0
21 >= 3m1 0 x 2

21 <0 3m1 0 x 1

21 >0 -3m1 0 x -1
2] =< -83m1 0 x -2
2l > 9m1 0 x 5

21 =0< 8m1 0 x 4
21l < -8m1 0 x -5
2l =0> -8m1 0 x -4

2l = 1mlil1 0 x 1
21 = -1mli1 0 x -1
2] = 83midl 0 x 1
2] = -3mid1 0 x -1
2 = 9mlil10 x 5
2l = -fm1ii10 x -5
! NAN operand.

21 ALL Q 0 0K Q
21 ALL S 01i Q
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! CopySign test vectors:
t

28
20
20
28
20
20
20
2®
20
20
2@
28
20
2@
20
2@
20
20
20
20
2o
28
28
20
20
20
20
20
2@
20
2@
28
20
28
20
e
28
20
20
20
20
20
28
e
20
28
2@

=z,

ALL 110K 1

ALL 1 -1 OK -1

ALL -1 1 OK 1

ALL -1 -1 0K -1
ALL 1 011 OK 1

ALL 1 -0i1 OK -1
ALL -1 0i1 OK 1
ALL -1 -0i1 OK -1
ALL 1 Hd1 OK 1
ALL 1 -Hd1 0K -1
ALL -1 Hd1 OK 1
ALL -1 -Hd1 OK -1
ALL 1 H OK 1

ALL 1 -H OK -1

ALL -1 H OK 1

ALL -1 -H OK -1
ALL 1 0 0K 1

ALL 1 -0 OK -1

ALL -1 0 OK 1

ALL -1 -0 OK 1
ALL 0i1 1 OK 0i1
ALL 0i1 -1 OK -0i1
ALL -0i1 1 OK 0il
ALL -0i1 -1 OK -0i1
ALL 0i1 H OK 0i1
ALL 0i1 -H OK -0i1
ALL -0i1 H OK 0i1
ALL -0i1 -H OK -0i1
ALL 0i1 0 OK 0i1
ALL 0i1 -0 OK -0i1
ALL -0i1 0 OK 0Oi1
ALL -0i1 -0 OK -0i1
ALL Hd1 E OK Hdi
ALL Hd1 -E OK -Hd1
ALL -Hd1 E OK Hd1
ALL -Hd1 -E OK -Hd1
ALL Hd1 H OK Hd:
ALL Hd1 -H OK -Hd1
ALL -Hd1 H OK Hd1
ALL -Hd1 -H OK -Hd1
ALL Hd1 0 OK Hd1
ALL Hd1 -0 OK -Hd1
ALL -Hd1 0 OK Hdi
ALL -Hd1 -0 OK -Hd1
ALL H1 OK H

ALL H -1 OK -H
ALL -H 1 OK H

ALL -H -1 OK -H
ALL H Ed1 OK H
ALL H -Ed1 OK -H
ALL -H Ed1 OK H
ALL -H -Ed1 OK -H
ALL HO OKH

ALL H -0 OK -H
ALL -H 0 OK H

ALL -H -0 OK -H
ALL H H OK H

ALL H -H OK -H
ALL -H H OK H
ALL -H -H OK -H

aNs — FPTEST checks that NaNs

! are returned and with no exceptions.

2@
2@
2@
28
20
28
20
20
20
2@
2@
20
20
2@
20
2®
2@
20
28
20
20
2@
2@
20
20
20
2®
20
28
20
28
20
20
2@
2
20
20
2@
28
20
2@
28
2@

ALL
ALL
AL

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

Q10KQ
Q -1 OK -Q

L-Q 10K Q

-Q -1 0K -Q
Q 0i1 OK Q
Q -0i1 OK -Q
-Q 0i1 OK Q
-Q -0i1 OK -Q
Q H 0K Q
Q -H OK -q
-Q H 0K Q
-Q -H 0K -Q
Q 0 0K q
Q -0 OK -Q
-Q 00K Q
-Q -0 0K -Q
S10KS
S -1 OK -S
-S10KS
-8 -1 OK -S
S 0i1 OK S
S -0i1 OK -S
-S 0i1 OK S
-S -0i1 OK -S
S H OK S
S -H OK -S
-S H OK S
-S -H 0K -8
S 0 OK S
S -0 OK -S
-S 0 0K S
-S -0 OK -§
1 Q0K 1
1-Q 0K -1
1S 0K 1
1 -8 0K -1
-1 QOK 1
-1 -Q 0K -1
-15 0K 1
-1 -S 0K -1
HQOKH
H -Q OK -H
HS 0K H
H -S OK -H
-H Q OK H
-H -Q OK -H
-H'S OK H
-H -S 0K -H
SQOKS
S -Q OK -S
SS OK S
S -S OK -S
-SQOKS
S -Q OK -8
-SS 0K S
-S -S 0K -8
QQOKQ
Q-Q 0K -Q
QS 0K Q
Q -S 0K -Q
-Q Q0K Q
-Q -Q 0K -Q
-Q S OK Q
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208 ALL -Q -S OK -Q



t

! Negete test vectors:

t

2~ ALL 1 0 0K 1

2~ ALL -1 0 0K 1

2~ ALL Ed1 0 OK -Ed1
2~ ALL -Ed1 0 OK Ed1
2~ ALL 0i1 0 OK -0i1
2~ ALL -Di1 0 OK 0i1
2~ ALL Hm1 0 OK -Hm1
2~ ALL -Hm1 0 OK Hmi
2~ ALL Hd1 0 OK -Hd1-
2~ ALL -Hd1 0 OK Hdi
2~ ALL H 0 OK -H

2~ ALL -H 0 OK H-

2~ ALL 0 0 OK -0

2~ ALL -0 0 OK 0O

! NaNs — FPTEST checks only that

! NaNs are produced and with no exceptions.

2~ ALL -Q 0 0K Q
2~ ALL Q 0 OK -Q
2~ ALL -8 0 OK S
2~ ALL 8 0 OK -8
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{ Absolute value test vectors:

i

2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL
2A ALL

! NaNs — FPTEST checks that results
! are NaNs with no exceptions.

2A ALL
2A ALL
2A ALL
2A ALL

100K 1

-1 00K 1

Ed1 0 0K Ed1
-Ed1 0 OK Ed1
0i1 0 OK 0i1
-0i1 0 OK 0Oi1
Hmil 0 0K Hmi
-Hmi 0 0K Hmi1
Hd1 0 OK Hda1
-Hd1 0 OK Hdi
HOOKH

-H 0OKH
000K O

-0 0 0K 0

Q 00K Q
-Q 0 0K Q
S 00K S
-S§ 0 0K S
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! Nextafter Test Vectors:
1

| From 1.

2N ALL 1 2 OK 11
2N ALL 1 0 OK 1d1
2N ALL 1 -0 OK 1d1
2N ALL 1 1i1 OK 11
2N ALL 1 1d1 OK 1id1
2N ALL 1 Hm1 OKX 1i1
2N ALL 1 Hd1 OX 1i1
2N ALL 11 0K 1

2N ALL 1 -Hdi OK 1id1
2N ALL 1 E OK 1d1
2N ALL 1 Ed1 OK 1d:
2N ALL 1 0i1 OK 1di
2N ALL 1 -1 OK 1d1
2N ALL 1 -H OK 1d1
2N ALL 1 H OK 1i1

| From -1.

2N ALL -1 -2 OK -1i1
2N ALL -1 0 OK -1d1
2N ALL -1 -0 OK -1d1
2N ALL -1 -1it OK -1i1
2N ALL -1 -1d1 OK -1d1
2N ALL -1 Hm1 OK -1d1
2N ALL -1 Hd1 OK -1d1
2N ALL -1 1 OK -1d1
2N ALL -1 -Hd1 OK -1i1
2N ALL -1 E OK -1d1
2N ALL -1 Ed1 OK -1d1
2N ALL -1 0i1 OK -1d1
2N ALL -1 -1 OK -1

2N ALL -1 H OK -1d1
2N ALL -1 -H OK -1i1

! From 1 + Iulp of 1.

2N ALL 111 2 0K 1i2
2N ALL 111 0 OK 1

2N ALL 111 12 OK 12
2N ALL 111 1 OK 1

2N ALL 111 Hm1 0K 1i2
2N ALL 1i1 Hd1 OK 1i2
2N ALL 1i1 -1i1 OK 1
2N ALL 11 -Hd1 OK 1
2N ALL 111 E 0K 1

N ALL 11 Ed1 OK 1
2N ALL 1i1 0i1 OK 1
2N ALL 1i1 1i1 OK 11
2N ALL 1i1 H OK 1i2
2N ALL 11 -H OK 1

! From 1 - lulp- of 1.

2N ALL 1d1 2 OK 1

2N ALL 1d1 0 OK 1d2
2N ALL 1d1 1 OK 1

2N ALL 1d1 1d2 OK 1d2
2N ALL 1d1 Hm1 OK 1
2N ALL 1d1 Hd: OK 1~
2N ALL 1d1 -1d1 OK 1d2
2N ALL 1d1 -Hd1 OK 1d2
2N ALL 1d1 E OK 1d2
2N ALL 1d1 Ed1 OK 1d2
2N ALL 1d1 0i1 OK 1d2
2N ALL 1d1 1d1 OK 1d:
2N ALL 1d1 H 0K 1

2N ALL 1d1 -H 0K 1d2

! From largest power of 2.

2N ALL Hml Hm2 OK Hmid1
2N ALL Hm1l 0 OK Hmidi

2N ALL Hm1l Hmidi OK Hm1id1
2N ALL Hm1 Hm1 OK Hmi
2N ALL Hm1 Hd1 OK Hmiiil
2N ALL Hm1l -Hm1 OK Hmid1
2N ALL Hmil -Hd1 OK Hmid1
2N ALL Hml E OK Hmid1

2N ALL Hm1l Ed1 OK Hmid1 -
2N ALL Hmi1 0i1 OK Hmid1
2N ALL Hm1 H OK Hmiii

2N ALL Hmil -H OK Hmid1

! From largest number.

2N ALL Hdi Hmi OK Hdz

2N ALL Hd1l 0 OK Hd2

2N ALL Hd1 -0 OK Hd2

2N ALL Hdil Hd2 OK Hd2

2N ALL Hd1 Hd1 OK Hd:

2N ALL Hd1 -Hdi1 OK Hd2

2N ALL Hd1 E QK Hd2

2N ALL Hd1 Ed1 OK Hd2

2N ALL Hd1 0i1 OK Hd2

2N ALL Hd1 H ox H

2N ALL Hdi -H OK Hd2

2N ALL -Hd1 -H ox -H

2N ALL -Hd1 H OK -Hdz2

! From smallest normalized number.

2N ALL E 2 OK Ei1
2N ALL E 0 xu Ed1

2N ALL E -0 xu Ed1
2N ALL E Ei1 OK Ei
2N ALL E Ed1 xu Ed}
2N ALL E Hm1 OK Eil
2N ALL E Hd1 OK FEi1
2N ALL E -E xu Ed1
2N ALL E -Hd1 xu Ed1
2N ALL E EOK E

2N ALL E 0i1 xu Ed1
2N ALL E H OK Ei1
2N ALL E -H xu Ed1

! From largest denormalized number.

2N ALL Ed1 2 OK E

2N ALL Ed1 0 xu Ed2

2N ALL Ed1 E OK E

2N ALL Ed1 Ed2 xu Ed2
2N ALL Ed1 Hmi1 OK E
2N ALL Edi Hd1 OK E
2N ALL Ed1 -Ed1 xu Ed2
2N ALL Ed1 -Hdi xu Ed2
2N ALL Ed1 Ed1 OK Edi
2N ALL Ed1 0i1 xu Ed2
2N ALL Ed1 H OK E

2N ALL Edi1 -H xu Ed2
2N ALL -Ed1 -2 OK -E

2N ALL -Ed1 -0 xu -Ed2
2N ALL -Ed1 -E OK -E

2N ALL -Ed1 -Ed2 xu -Ed2
2N ALL -Ed1 -Hm1l OK -E
2N ALL -Ed1 -Hd1 OK -E
2N ALL -Edi Ed1 xu -Ed2
2N ALL -Ed1 Hd1 xu -Ed2
2N ALL -Ed1 -Ed1 OK -Ed1
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2N ALL -Ed1 -0i1 xu -Ed2 2N ALL -H -Hd1 OK -Hd1i
2N ALL -Ed1 -H 0K -E 2N ALL -H Hdi OK -Hd1
2N ALL -Ed1 H xu -Ed2 2N ALL -H -E OK -Hd1
! From smallest denormalized number. 2N ALL -H -Ed1 OK -Hd1
2N ALL 0i1 2 xu 02 2N ALL -H -0i1 OK -Hd1:
2N ALL 0i1 0 xu O 2N ALL -H H OK -Hd1i
2N ALL 0i1 0i2 xu 0i2 2N ALL -H -H OK -H
2N ALL 0i1 Hmi! xu 0i2 ! Next-afters

2N ALL -0i1 -0 xu -0 2N ALL Q 0 0K Q
2N ALL -0i1 -0i2 xu -0i2 2N ALL Q -0 0K Q
2N ALL -0i1 -Hm1 xu -0i2 2N ALL 0 Q 0K Q

2N ALL 0i1 Hd1 xu 0i2 2N ALL -0 Q OK Q
2N ALL 0i1 0xu O 2N ALL Q1 0K Q
2N ALL 0i1 -0 xu O 2N ALL Q -1 0K Q
2N ALL -0i1 -0 xu -0 2N ALL 1 Q 0K Q

2N ALL -0i1 0 xu -0 2N ALL -1 Q 0K Q
2N ALL 0i1 -Hd1 xu © 2N ALL Ed1 Q 0K Q
2N ALL 0il E xu 0i2 2N ALL -Ed1Q OK Q
2N ALL 0i1 Ed1 xu 02 2N ALL Q Bd1 0K Q
2N ALL 0i1 0i1 OK 0i1 2N ALL Q -Ed1 0K Q
2N ALL 0i1 H xu 02 2N ALL Q 0i1 0K Q
2N ALL 0i1 -H xu 0O 2N ALL qQ -0i1 0K Q
{ From 0. 2N ALL 0i1 Q OK Q
2N ALL 0 2 xu 0ii 2N ALL -0i1 Q OK Q
2N ALL OO OK O 2N ALL Q Hd1 0K Q
2N ALL 0 -0 0K 0 2N ALL Q -Hdi1 0K Q
2N ALL O 0i1 xu 0i1 2N ALL Hdi1 Q OK Q
2N ALL 0 -0i1 xu -0i1 2N ALL -Hd1Q 0K Q
2N ALL 0 Hm1 xu 0i1 2N ALL Q H 0K Q
2N ALL 0 Hd1 xu 0i1 2N ALL Q -H 0K Q
2N ALL 0 -Hd1 xu -0i1 2N ALL H Q 0X Q

2N ALL 0 E xu 0i1 2N ALL -H Q 0K Q
2N ALL 0 Ed1 xu 011 2N ALL Q Q 0K Q
2N ALL 0 H xu 0i1 2N ALL S 0i Q

2N ALL 0 -H xu -0i1 2N ALL S -0i Q

! From -0. 2N ALL 0 S i Q

2N ALL -0 2 xu 0i1 2N ALL -0 S i Q

2N ALL -0 -0 OK -0 2N ALL S 11 Q

2N ALL -0 0 0K -0 2N ALL 8-11iQ

2N ALL -0 0il xu 0il 2N ALL 1 Si Q

2N ALL -0 -0i1 xu -0i1 2N ALL -1 8iQ

2N ALL -0 Hm1! xu 0i1 2N ALL Ed1 Si Q
2N ALL -0 Hd1l xu 0i) 2N ALL -Ed1S5 i Q

2N ALL -0 -Hd1 xu -0i1 2N ALL S Ed1 i Q

2N ALL -0 B xu Oi1 2N ALL S -Ed1i Q
2N ALL -0 Ed1 xu 0il 2N ALL S 0i1 i Q

2N ALL -0 H xu 0i1 2N ALL S -0i1 i Q
2N ALL -0 -H xu -0i1 2N ALL 0i1 Si Q

t From infinity. 2N ALL -0i1 S i Q

2N ALL H 2 OK Hd: 2N ALL S Hd1 i Q
2N ALL H 0 OK Hd: 2N ALL S -Hd1i Q
2N ALL H -0 0K Hd1 2N ALL Hd1 8 i Q
2N ALL H Hmi1 OK Hd1i 2N ALL -Hd1S1i Q

2N ALL H Hd1 OK Hdi 2N ALL S HiQ

2N ALL H -Hdi OK Hd1i 2N ALL S -H i Q

2N ALL H E OK Hdi 2N ALL HS i Q

2N ALL H Ed1 OK Hdi 2N ALL -H Si Q

2N ALL H 0i1 OK Hd1i 2N ALL QS i Q

2N ALL H HOKH 2N ALL 8 Qi Q

2N ALL H -H 0K Hdi 2N ALL SSsiQ

2N ALL -H 2 OK -Hd1
2N ALL -H 0 OK -Hd1
2N ALL -H -0 OK -Hdi
2N ALL -H -Hm1 OK -Hd1



! Scalb test vectors. Those with
t2nd arguments that overfiow
! the integer format are commented
! out, since the response to
| floating->integer conversion on
| overflow is system-dependent
!

! Warm ups.

23 ALL 110K 2

28 ALL -1 1 OK -2

28 ALL 1 -1 OK imil

28 ALL -1 -1 OK -1m1

2S ALL 1 30K 8

25 ALL 1 -3 OK 1m3

2S ALL 9 9 OK 9p9

25 ALL © -6 OK 9m#

25 ALL 7 8 OK 7p8

28 ALL -7 -8B OK -Tm8

25 ALL 5 0 0K 5

23 ALL 5 -0 0K 5

2S5 ALL -5 -0 0K -5

! Big numbers.

253 ALL Hm1 -8 OK Hms8
25 ALL Hm® 8 OK Hmi
28 ALL Hd1 -9 OK Hdim®
28 ALL Hdim® 8 OK Hdi
2S ALL -Hd1 -8 OK -Hdim®
25 ALL -Hd1m® 8 OK -Hd1
28 ALL Hd1 0 OK Hdi

28 ALL Hdi1 -0 OK Hd:

! Overfiows.

28 >= Hm1 1 x0 H

28 <= -Hml 1 %o -H

2S s>= 1 Ip7 x0 H

28 s<= -1 1p7 xo -H

128 >= 1 Hm® x0 H

2S ds>= 1 1p8p5 %0 H
128 >= 1 Hd1 xo H

25 ds<= -1 1p9p5 xo -H
128 <= -1 Hd1l x0 -H

128 >= 1m® HmB xo0 H
25 >= Hd1 1 xo H

25 >= Hmb 8 x0 H

2S ds>= E 1pBp5 x0 H
2S ds>= Ed1 1p8p5 x0 H
2S ds>= 0i1 1p8p5 x0 H
28 ds<= -0i1 1pBp5 xo0 -H
{28 >= E Hm1l xo0 H

128 >= Ed1 Hm1l %0 H
{28 >= 0i1 Hml x0 H
128 <= -0i1 Hm1 xo -H
25 <0 Hm1 1 xo Hdi

25 >0 -Hm1 1 xo0 -Hd1i

23 s<0 1 1p7 x0 Hd1

25 8>0 -1 1p7 xo0 -Hd1
128 <0 1 HmS xo Hdi

28 ds<0 1 1p8p5 xo Hdl
128 <0 1 Hdl xo Hdi

25 ds>0 -1 1p8p5 zo0 -Hd1
128 >0 -1 Hd1 xo -Hd1
!28 <0 1m® HmS xo Hdi
2S <0 Hd!l 1 zo Hd1i

28 <0 Hm$8 8 xo Hd1

28 ds<0 E 1p8p5 xo Hd1

B.35

2S ds<0 Ed1 1p8p5 xo0 Hd)
28 ds<0 0i1 1p9p5 xo Hd1
28 ds>0 -0i1 1p8p5 xo -Hd1
125 <0 E Hml xo Hd1
125 <0 Edi Hm1 xo0 Hd1
!'25 <0 0i1 Hm1 xo Hd1
128 >0 -0i1 Hm1 x0 -Hd1
! Tiny operand.

25 s E 1p7 0K 4

2S s Edl 1p7 OK 1d2p2
25 s -Ed1 1p7 OK -1d2p2
2S5 d E 1p7p3 OK 4

25 d Ed1 1p7p3 OK 1d2p2
28 d -Ed1 1p7p3 OK -1d2p2
23 ALL 0i1 1 OK 0i2

2S ALL -0i1 1 OK -0i2

25 ALL 0i2 -1 OK 0i1

2S ALL 0i1 3 OK 0i8

25 ALL 0i8 -3 OK 0i1

25 ALL Ed1 1 OK Epid2
28 ALL Epid2 -1 OK Ed1
28 ALL Edi 0 OK Edi

23 ALL Ed1 -0 OK Ed1

¢t Underflows,

25 <=0 0i1 -1 xu O

2S5 > 0i1 -1 xu 0i1

25 >=0 -0i1 -1 xu -0

RS <« -0i1 -1 xu -0i1

25 <0 0i3 -2 xu O

2S5 => 0i3 -2 xu 0i1

25 <=0 0i8 -3 xu 0i1

25 > 0i9 -3 xu 0i2

28 => 0i3 -1 xu 0i2

2S5 0< 0i3 -1 xu 0it

28 >= Epidl -1 xu E

2S 0< Epidi -1 xu Edi
2S >= Ep8dl -8 mu E

2S 0< Ep8dil -8 xu Ed1
25 <=0ds 1 -1p9p5 xu 0
25 >ds 1 -1p8p5 xu 0il
125 <=0 1 -Hml1 xu 0
'25 > 1 -Hm) xu 0i}

28 <= -Ep9Hdi -6 xu -E
25 0> -Ep9d1 -8 xu -Ed1
28 >=0ds -1 -1p®p5 xu -0
28 <ds -1 -1pBp5 xu -0il
28 <=0ds E -1p8p5 xu 0
28 >ds E -1p9p5 xu 001
28 <=0ds 0i1 -1pBp5 xu 0
28 >ds 0i1 -1pBp5 xu 0i1
28 >=0ds -0i1 -1p@p5 xu -0
28 <ds -0i1 -1p%p5 xu -0il
125 >=0 -1 -Hm1 xu -0

< -1 -Hm1 xu -0i1
<=0 E -Hm1 xu 0

> E -Hm1 xu 0il
<=0 0i1 -Hd1 xu 0

> 0i1 -Hd1 xu 0i1
>=0 -0i1 -Hd1 xu -0
! < -0i1 -Hd1 xu -0i1

! Infinity operands.

25 ALL Ho OK H

2S ALL H -0 OK H

25 ALL -H 0 OK -H

B
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2S ALL -H -0 OK -H
2S ALL H 1 0K H

2S5 ALL H 1p8p5 OK H
2S ALL H -1p8p5 OK H
28 ALL -H 1p8p5 OK -H
2S ALL -H -1p9p5 OK -H
12S ALL H Hd1 OK H
125 ALL H -Hd1 OK H
t2S ALL -H Hdi OK -H
125 ALL -H -Hd1 OK -H
128 ALL 1 HOK H
125 ALL Hd1 H OK H
125 ALL 0i1 H OK H
12S ALL H HOK H
125 ALL -H H OK -H
125 ALL H -H i Q

12S ALL O Hi Q

{ Zeros.

2S ALL 01 OK O

2S ALL 0 1p9p5 0K O
2S ALL O -1p8p5 OK O
125 ALL 0 Hd1 OK ©
125 ALL O -Hd1 0K 0O
2S5 ALL 0 0 OK O

2S5 ALL 0 -0 0K 0

25 ALL -0 1 0K -0

S ALL -0 Hd1 OK -0
S ALL -0 -Hd1 OK -0
L -0 -0 Q0K -0

L -0 0 0K -0

N - —
2R R
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Q10KQ

Q 1p9p5 OK Q

Q -1p%p5 OK Q
H 0K Q
-Hd1 OK Q
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{ Test vectors for the fraction part

! of number as if with infinite range.

i Mid-range.
2F ALL 1 0 OK 1
2F ALL -1 0 OK -1

_F
2F
2F
2F
_F
2F
2F
2F
_F
aF
2F
_2F
2F
_F
2F
2F
2F
2F
_F
’F
_F
2F
2F
2F
F
2F
2F
2F
2F

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

| Small.

2F
2F
2F
2F
2F
_F
2F
2F
eF
2F
_2F
2F
2F

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

{ Large.

2F
2F
2eF
2F
2F
_F
2F
2F

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

200K1

3 0 OK 3mi1

4 00K 1

5 0 OK 5m2

8 0 OK 6m2

7 0 OK 7m2

-7 0 OK -7m2

8 00K 1

8 0 OK 9m3

1i1 0 OK 111

2i1 0 0K 111

3i1 0 OK 3miil
4i1 0 OK 11

5i1 0 OK 5m2i1
8i1 0 OK 8mz2i1
71 0 OK 7Tmg2il
B8i1 0 OK 1i1

8i1 0 OK 8ma3i1
-8i1 0 OK -8m3i1
1d1 0 OK 241
2d1 0 CK 241
3d1 0 0K 3dimi
4d1 0 OK 241
5d1 0 OK 5dim2
8d1 0 OK 6d1m=2
7d1 0 OK 7d1m2
8d1 0 OK 241
-8d1 0 OK -2d1
8d1 0 OK 8d1m3
E0O0K1

-E 0 0K -1

Ei1 0 OK 11
Ed1 0 OK 2d2
Ei8 0 OK 1B
Ed4 0 OK 2d8
0i1 0 0K 1

-0i1 0 0K -1

0i8 0 0K 1

0i8 0 OK m3

Epidl 0 OK 2d1
Ep1d® 0 OK 2de
Eplil 0 OK 1i1

Hmil 0 OK 1
Hd1 0 OK 2d1
-Hm1 0 OK -1
-Hd1 0 OK -24d1
Hdo 0 OK 2ds
Hmiil 0 OK 1i1
Hm1ii8 0 OK 1i8
Hmid1l 0 OK 2d1
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! LogB test vectors
2L ALL 100K O
2L ALL 20 0K 1

2L ALL -2 0 OK 1

2L ALL 3 0 OK 1

2L ALL 4 0 OK 2

2L ALL 5 0 OK 2

2L ALL 8 0 OK 2

2L ALL 7 0 OK 2

2L ALL 8 0 OK 3

2L ALL 9 0 OK 3

2L ALL 1p9 0 OK 8

2L ALL 2pB 0 OK 9

2L ALL 3pB 0 OK

2L ALL -3p8 0 OK 9
2L ALL 4p7 0 OK ©

2L ALL 5p7 0 OK 9

2L ALL 6p7 0 OK 8

2L ALL 7p7 O OK 9

2L ALL Bp6 0 OK 9

2L ALL 9p8 0 OK 9

2L ALL 1p9d1 0 OK B
2L ALL 2pBd1 0 OK B
2L ALL 3p8d1 0 OK 9
2L ALL 4p7d1 0 OK B
2L ALL -4p7d1 0 OK 8
2L ALL 5p7d1 0 OK 9
2L ALL 8p7d1 0 OK 9
2L ALL 7p7d1 0 OK 9
2L ALL 8p8dl1 0 OK 8
2L ALL 9p6d1 0 OK
2L ALL 1m1 0 OK -1
2L ALL 3m1 0 OK 0
2L ALL 3m2 0 OK -1
2L ALL 9m1 0 OK 2
2L ALL 8m2 0 OK 1
2L ALL 9m3 0 OK 0
2L ALL 9m4 0 OK -1
2L ALL 9m5 0 OK -2
2L ALL 9m6 0 OK -3
2L ALL -9m6 0 OK -3
2L ALL 9m7 0 OK -4
2L ALL 8m8 0 OK -5
2L ALL 1d1 0 OK -1
2L ALL 2d1 0 OK 0
2L ALL 3d1 0 OK 1

2L ALL 4d1 0 OK 1

2L ALL 5d1 0 OK 2

2L ALL 6d1 0 OK 2
2L ALL 7d1 0 OK 2
2L ALL Bd1 0 OK 2
2L ALL -8d1 0 OK 2
2L ALL 8d1 0 OK 3
2L ALL 1m1d1 0 OK -2
2L ALL 3m1d1 0 OK 0
2L ALL 3m2d1 0 OK -1
2L ALL 9m1d1 0 OK 2
2L ALL 9m2d1 0 OK 1
2L ALL 9m3d1 0 OK O
2L ALL 9mad1 0 OK -1
2L ALL 9m5d1 0 OK -2
2L ALL 8m6d1 0 OK -3
2L ALL 8m7d1 0 OK -4
2L ALL 9mBd1 0 OK -5
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2L ALL -9m7d1 0 OK -4

2L ALL 1p8pB 0 OK 1p4

2L ALL 1pBpBpBpB O OK 1p5

2L ALL 1p8pBp8pBpBpBp8p8 0 OK 1p6

2L ALL 1p8p8pBpBpBpBpBpSis 0 OK 1p6

2L ALL -1p8p8pBpBp8pBpBp8sis 0 OK 1p6

2L ALL 1mB8m8 0 OK -1p4

2L ALL 1m8mBmBmB 0 OK -1p5

2L ALL 1mBmBmBmBmBmBmBmB 0 0K -1p6 .
2L ALL 1mBm8mBmBmBmBmBmEis 0 OK -1p6
2L ALL -ImBmBmBmBmBmBmBmSEis 0 0K -1p6
! Exceptional cases.

2L ALL Q 0 0K Q

2L ALL S 01iQ

2L ALL H 0 OK H

2L ALL -H 0 OK H

2L ALL OO z -H

2L £ -0 0 z -H



®

APPENDIX C

Test Program for P754 Arithmetic — Version 2.0

** FPTEST: Program to test IEEE floating—point units.

*e
L2 4

Fritten by Jim Thomas and Jerome Coonen, 5 Jan 83.

** Qverview: FPTEST is a general Pascal p'rogram suitable for testing
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different floating—point unils. FPTEST calls certain procedures and
SJunctions from a unit FP; these are specific to the system being
tested.

One input file contains a list of filenames of test files.

These files contain test vectors, one per line.

Each test vector specifies environment, operands, arithmetic
operation, correct reswlt, and correct ezception flags for a
given test. FPTEST sets the environment,

performs the operation on the operands, checks the

result and flags obtained with those specified in the test vector
and reports discrepancies to a specified output file.

Use: FPTEST begins with a series of questions for the user:

Verbose? —— printing all is slow but aids debugging.

Check flags? —— check flags as well as numeric results?

Stop on errs? —— or continue, listing all to the output file.
Single? Double? Extended? —— which formats are to be tested?
File with list of test files?

Output file?

*¢ Test Vectors: An example:

e
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*%
L 24
.e
L 1
se
L 1
L 14
L1
L 12
(A
ve
L 2 4
eo
*e
'Y
&%
ve
L2 4

Version
& Op  Modes Oprmdl OprndZ2 Flags Result Comment

a2+ = 4d] u3 =z 4 check rounding

Each test vector conststs of seven fields: version number

and operator; rounding mode and precisions; Ist operand; 2nd operand;
Jlags; result; and comment. The fields are separated by white

space (blanks and’or tabs); thus, no field but the last may be blank,
and ondy the last field can itself contain white space. Fach line

in a file of test vectors must be blank, a test vector, or a comment

line beginnig with an exclamation point (!).

In the example,
version =2
operator = addition (+)
rounding = round to nearest (=)
precision = single (s)
Ist operand = 4 decremented by 1in its least significant bit,
to single precision (4d1)
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2nd operand = 3 units in the last place of 1, to single
precision (1u3)

Slag = inezact (z)

result =4

comment = check rounding.
Operators:

The operators available with this version of FPTEST are +, —, *,
7, V(square root), % (remainder), I (round to integer), N (nezt—
after), ~ (negate), @ (copy sign), A (absolute value), S (scald),
L (logdb), F (fraction part), and C (compare).

** Modes:

¢®
(1)
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e
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The rounding modes are = (to nearest), > (toward +INF),

< (toward —INF), and O (toward zero). The precisions are

s (single), d (double), and e (extended). Both operands and the
"correct” result will be constructed in the specified precision.
The test vector is processed only if its precision is one of those
initially requested by the user. If no rounding mode is specified
then all are tested, and similarly for the precisions. The
placekeeper ALL is used when there are no mode or precision
restrictions.

*¢ Flags:

e
s
**
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$e
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e
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The flags are i (invalid), o {overflow), = (inezact),

z (divide by zero), and u, v, and w (underflow). 4w’ flag
indicates that underflow must be signaled only if the
Jloating—point implementation tests for tininess before rounding.
47V flag indicates that underflow must be signaled

unless the floating—point detects underflow as a loss of

accuracy due to denormalization. 4w’ indicates that

all implementations must signal underflow. OKindicates

no ezceptions signaled. :

*¢ Numeric Value Specifiers:

L1
L 24
(4
¢s
%
[ 24
*¢
L4 4
L4
e
(44
L 4
&
¢®
LA 4
¢
&%
[ 44
L4 J
L2 4
L 44
%

These specifiers are scanned left to right. They consist

of an optional sign, a root number, and one or more optional
modifiers for the root number. The sign is specified by + or —
as usual, though the + may be omitied. The root number is
0,1,2 8 4,85 6, 7 8 9 H(infinity), E (the smallest
normalized power of 2, Q (a quiet NaN), and S (a signaling NaN).
FEach modifier is a letter, i (increment in the last place),

d (decrement in the last place), u (units in the last place),

P (plus exponent bias), or m (minus exponent bias), followed by
a single digit. " Units in the last place” refers to bingry units.
The following examples illustrate the notation:

J2 = Jincremented by 2units in its last place, i.e. the
2nd representable number after 3.
1u3 = 3 units in the last place of 1, e.g. 3 * 2~—23in single.
Hd1 = the largest finite number.
Hm 1 = the largest power of 2.
Ed1 = the largest denormal number.
0i! = the smallest positive denormal number.
Sml=3%*2~~1=]1VE
Gp3=9*2~3= 72
—1d1 = the Ist number greater than —I (note that the minus is



C.3

ve applied last).

[ 44

*

program FPTEST; FPTEST
uses

FPScft, {*interface to software floating—point arithmetic *}
FP, [{*interface to test routines *}

{o
** Type Sir8, string| 6], is defined in fp. The XXXStr values
*¢ are parsed from LinBuf. The XXXIim values lirmnit tests

** to certain rounding modes and precisions. PossErrs is
¢* the list of possible error flags.
*

PossErrs, RndLim, Prclim, PreStr, FlgStr, CFlgStr : Str8;

(t

** Type Sir90, string| 90], is defined in fo. LinBuf is the input
** duffer for test vectors, TmpBuf is for /0 utilities, and the

** StrXXX variables are the string values in LinBuf representing
** numerical arguments.

*

LinBuf, TmpBuf, StrArgl, StrArg2, StrRes : Str9g0;

f*

** Type UnpForm is defined in fp. The UnpXXX variables contain
** values from the corresponding StrXXX variables. The following
**integer variables refer to the UnpXXX record, for a given

** precision.

*

UnpArg1, UnpArg2, UnpRes : UnpForm;

MaxExp, MinExp, SigBits, LowBit, LowByte : integer;

*

** Type PckForm is defined in fp. The PckXXX variables contain
** values packed from the corresponding Unp XXX variables.

L4

PckArgl, PckArg2, PckRes, PckFndRes : PckForm;

!o

¢* UflowType is defined in fp. I tells which of the three
*¢ P754 definitions of underflow is in effect.

L J

UflowOpt : UflowType;

WhiteSpace : set of char; {® contains <space> and <tab> *|

€

*¢ FlgErr and NumErr record errors; ChkFlgErr determines whether
*¢ flags are o be checked; StopOnErr determines whether to stop

** on further errors. Verbose requests same. The LinOut flag

*¢ records whether input line and unpacked values mask has been
*¢ printed yet.

*}

FlgErr, NumErr, ChkFlgErr, StopOnErr,
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Verbose, LinBufOut : boolean;

*

** The Xptr are indezes info argument and line buffer strings.
** Dots, errors and successful tests are counted by XXXCnt.

L
aptr, Iptr, DotCnt, FlgErrCnt, NumErrCnt, OKCnt : integer;

L2
*¢ pc and rc are the current precision and rounding characters.
** rev and operator are the revision number and arithmetic
¢+ operator parsed from LinBuf. The XXXRes are the results
** of comparisons.
*

pc, rc, rev, operator, CmpRes, CCmpRes : char;

%

¢+ [ist File contains a list of potential nFile’s containing
** test vectors. Error reports are written to OutFile.

*

ListFile, InFile, OutFile : text;

*¢ Called by AddUlps and AddEzp to normalize an UnpForm.

g

var

begin

end,;

procedure Normalize(var r : UnpForm); Normalize

i, c, t : integer;

while (r.man[1] < 128) and (r.exp > MinExp) do

begin
c:=0;
for i := MANLEN downto 1 do
begin
t:=r.manfi] *2 + ¢;
if t > 255 then
r.man[i} := t — 256;
c:=1
end
else
r.manfi] := t;
c:=0
end
end,
r.exp:=r.exp—1
end
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io

*¢ Called by BuildNum.

** Add n ulps to the number in UnpForm r and normalize the result
** as much as possible. This routine is complicated by the need

** {o do bit operations using Pascal types.

L]

procedure AddUlps(var r : UnpForm; n : integer); Add UlpS

var
c, i, ], t:integer;

begin
if n >= 0 then
L 4

** Add one wlp at a time up to n. This is much easier
** than t~ying to add all at once. Integer c propagates
** the carry—out from byte to byte.

L]

fori:=1tondo

begin
¢ := LowBit;
for j := LowByte downto 1 do
begin
t := r.manlj] + c;
if t > 255 then
begin
r.man[j] :=t — 256;
c:=1
end
else
r.man[j] ;= t;
c:=0
end
end;
ifc =1 then {* Carry out of left end? *)
begin
r.man| 1] := 128;
r.exp :=r.exp-+1
end
end

else {*n < 0%

fori:=1to-ndo

begin
¢ := LowBit;
for j := LowByte downto 1 do
begin

t := r.man[j] —c;

ift < O then

begin
r.man[j] ;= t + 258;
c:=1

end

else



end;

*

r.man{j] := t;
c:=0
end
end,
if (r.man[1] < 128) and (r.exp > MinExp) then
begin
r.man[1] == r.man[1] + 128;
rexp :=r.exp-—1
end
end,;
Normalize(r)

** Called by BuildNum.

** Add n to the exponent of UnpForm r, taking account of

** the bottom of the exponent range. If the number must

** be denormalized, shift right by a given number of bytes and
** then normalize to the extent possible.

.

procedure AddExp(var r : UnpForm; n : integer); AddESEp
var
i, j: integer;
begin
r.exp := r.exp +n;
if r.exp < MinExp then
begin
i:=((MinExp — r.exp) div 8) + 1;
for j := MANLEN downto (i + 1) do
r.man[j] := r.man[j — i};
forj:=1toido
r.man[j] := 0;
r.exp :=r.exp + {i * 8)
end;
Normalize(r)
end;
&
*s Called by BuildNum.
] .
procedure HexFloating(s: Str30; var r: UnpForm); HexFlo &t’L’I’Lg

var

begin

i, val : integer;
HiNib, more : boolean;

C6
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apir := aptr + 1, {* skip over §%|

HiNib := true; {* place first nibble in high half of byte %}

i =1 f*index of first man[] ¢}
mere := true;

while more and (aptr <= length(s)) do
begin

case s[aptr] of

'ol' llf. ’21' '3/' 14" ’5’, ’6" )71. IBl. ’9’:
val := ord(s[aptr]) — ord(’0’);

IA’, ’Bl‘ IC)' IDI' ‘EI' /FI:
val := ord(s[aptr]) — ord{"A") + 10;

‘a" ‘bl' IC). ’d/’ Iel, If’:
val := ord(s[aptr]}) - ord{(“a’) + 10;

otherwise more := false
end,

if more then

begin
if HiNib then
val := val * 18 {* left—align nibble in byte *|
else
im=i-1; [*recover fromlasti =i+ 1%
r.man[i] := r.man[i] + val;
i=i+1;
HiNib := not HiNib;
aptr:=aptr+ 1
end
end,;
r.exp := G,

i:=1; {*ezponent sign carrier *|
if aptr <= length(s) then
begin
if s[aptr] = ’~’ then
begin
aptr := aptr + 1;
if aptr <= length(s) then
if s[aptr] = “+* then
aptr :=aptr + 1
else if s[aptr] = '~ then
begin

aptr :=aptr + 1,
i=-1

end;

more = true;
while more and (aptr <= length(s)) deo
if (ord("0") <= ord(s[aptr]))
and (ord('9") >= ord(s[aptr])) then
begin

r.exp := (r.exp * 10)
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+ (ord(s{aptr]) — ord(*0%));
aptr := aptr + 1

end
else
more := false
end

end,

r.exp :=r.exp *i;
aptr := aptr — 1 {* because will increment upon return *|

end;

*

** Called by Build UnpOps.
*

procedure BuildNum(s: Str90; var r: UnpForm), Build Num
var

i:integer;
begin

aptr := 1; §*indez into argument string *|

r.sgn:=0;
if s[aptr] =+’ then
aptr ;= aptr + 1
else if s[aptr] = '~ then
begin
r.sgn:= 1,
aptr := aptr + 1
end,

fori:= 1 to MANLEN do
r.man[i] := C;

case s[aptr] of

‘0”: r.exp := MinExp;

‘1’: begin r.exp := 0; rman[1] := 128 end;
‘2’: begin r.exp := 1; r.man[1] := 128 end;
‘3 begin r.exp := 1; rman[1] := 192 end;
‘4’: begin r.exp = 2; rman[l] := 128 end;
’5’: begin r.exp = 2, r.man{1] := 160 end;
’6’: begin r.exp ;= 2, r.man 1] = 192 end;
“7’. begin r.exp := 2; r.man[1] := 224 end,
‘8’: begin r.exp := 3 r.man[1] := 128 end;
‘9’: begin r.exp := 3; r.man 1' := 144 end;

‘e’, ‘’E’: begin r. exp = MmExp, r.man[1] := 128 end;
‘h’, ‘H’: begin r.exp := MaxExp; r.man[1] := 128 end,
‘g, ‘Q’: begin r.exp := MaxExp; rrman[1]:=1 end,

‘ ’ , °S’: begin r.exp := MaxExp; r.man{1] := 65 end,

’8': HexFloating(s, r)

end;

aptr ;= aptr + 1;

while aptr < length(s) do




end,

{0
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case s[aptr] of
‘1’ AddUlps(r, ord(s{aptr+1}) — ord(*0%));
‘d": AddUlps(r, ord(*0") — ord(s[aptr+1]));

u
begin
fori:= 1 to MANLEN do
r.man[i] := 0;
AddUlps(r, ord(s[aptr+1]) — ord(’0"))
end,

‘p”: AddExp(r, ord(s[aptr+1]) — ord("0"));
‘m’: AddExp(r, ord(“0”) — ord(s[aptr+1]))
end;

aptr := aptr +2

*¢ Called by ErrReport and Build Inp Ops.
!
procedure DispMask; DLSpM(ZS'C

begin

end;

-

writeln{OutFile);
writeln(OutFile, ‘rev: *, rev, * op: *, operator);

writeln(OutFile, “Modes: *, RndLim, * Precs: *, PrcLim);

»

writeln(OutFile, “FlgStr : *, FlgStr, © );
FpShow(PckArgl, TmpBuf, pc);
write{OutFile, “PckArg1 ", TmpBuf);
FpShow(PckArg?2, TmpBuf, pc);
writeln{OutFile, © PckArg?2 :*, TmpBuf)

** Called by FrrReport.
£

proceduare DispRes; .DI‘SPRGS

begin

end;

writeln{OutFile);
writeln(OutFile, ‘Rnd:’, rc, * CFlags:’, CFlgStr, * Flags:’, FlgStr);

if operator = ‘C’ then

else
begin

end

writeln{OutFile,”"Computed: *,CCmpRes, © Should be: *, CmpRes)

FpShow(PckFndRes, TmpBuf, pc);
write(OutFile, ‘Computed: *, TmpBuf);
FpShow(PckRes, TmpBuf, pc).
writeln(OutFile, © Should be: ’, TmpBuf)



¢¢ Called by TestLoop.

** First, the string operands are built in the generic unpacked
** format UnpForm, then they are packed into the variant record
*¢ PckForm according to the precision pc.

)¢

procedure BuildUnpOps;
var
i:integer;
begin
case pc of
lsf:
begin
end,
ld’:
begin
end,
leI:
begin
end
end,

MaxExp := 128;
MinExp := ~126;

SigBits := 24;
LowBit := 1;
LowByte := 3

MaxExp := 1024;
MinExp := —-1022;

SigBits := 53;
LowBit :=§;
LowByte := 7

MaxExp := EXTMAXEXP;
MinExp := EXTMINEXP;
SigBits := EXTSIGBITS;

LowBit :=1;

i:= (EXTSIGBITS mod 8);

while (i mod 8) <> O do

begin
LowBit := LowBit + LowBit;
i=i+ 1

end,;
LowByte := (EXTSIGBITS + 7) div 8

BuildNum(StrArg1, UnpArgl);
FpPack{UnpArg1, PckArgl, pc);

BuildNum(StrArg2, UnpArg?2);
FpPack(UnpArg2, PckArg?, pc);

if operator <> °C’ then

C.10

Build Unp Ops
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BuildNum(StrRes, UnpRes);
FpPack(UnpRes, PckRes, pc)
end,

if Verbose then
DispMask

*

** Called by TestLoop to
** set rounding mode, clear error flags, and compule.

*

procedure ComputeResult; Compute Result
begin

FpSetRound(rc),

FpClearFlags;

case operator of
‘+’: FpAdd (PckArgl, PckArg2, PckFndRes, pc);
‘—*. FpSub (PckArgl, PckArg2, PckFndRes, pe);
‘. FpMu (PckArgl, PckArg2, PckFndRes, pc);
7' FpDiv (PckArgl, PckArg2, PckFndRes, pc);
“V°: FpSqrt (PckArgl, PckFndRes, pc);
‘%’ FpRem (PckArgl, PckArg2, PckFndRes, pc);
‘C: FpCmp (PckArgil, PckArg2, CCmpRes, pc);
‘I FpInt (PckArgl, PckFndRes, pc);
‘N’: FpNxt (PckArgl, PckArg2, PckFndRes, pc);
‘~: FpNeg (PckArgi, PckFndRes, pc);
‘@ FpCpySgn(PckArgl, PckArg?2, PckFndRes, pc);
‘S’ FpScl (PckArgl, PckArg2, PckFndRes, pc);
’L’: FpLog (PckArgl, PckFndRes, pc);
‘A’: FpAbs (PckArgl, PckFndRes, pc);
‘F*: FpFre (PckArgl, PckFndRes, pc)

end,

L4

** Called by TestLoop to check the error flags.
L]
proceduare FlgChk; Fl g Chk

var
i:integer;
ChrStr : string[1];

begin
CFlgStr :=**;
FlgErr := false;

fori .= 1 to length(PossErrs) do
if FplfX(PossErrs[i]) then
begin
ChrStr := copy(PossErrs, i, 1);
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CFlgStr := concat{CFlgStr, ChrStr);
FlgErr := FlgErr or (pos(ChrStr, FlgStr) = 0)
end;

FlgErr := ChkFlgErr and (FlgErr or (length(FlgStr) <> length(CFlgStr)))
end,

L

s+ Called by TestLoop to check the numerical result.
*+ Jf both operands are NANs, they needn’t be equal.
*+ Comparisons have a one—character result.
*
procedure NumChk; NumChk
begin
if operator <> ‘C’ then
NumErr := not FpEqual(PckFndRes, PckRes, pc);
if FpIsNAN(PckFndRes, pc) and FpIsNAN(PckRes, pc) then

NumErr := false
end

NumErr := CCmpRes <> CmpRes
end,

*

** Called by ErrReport and main program.
*¢ Asks user Yes’/No guestion, defauliing to yes.

*

function InYesNo(Query : Str90) : boolean; InYesNo
begin

writeln;

write(Query, © [default Y]? *);

readln(TmpBuf);

InYesNo = true;
if (length{(TmpBuf) > 0) then
InYesNo := not (TmpBuf{1] in ['n”, "N°])
end,

-

** Called by Testloop.

*¢ If OK, print a dot (mo more than 50 per line).

** Dtherwise display bad news and stop if requested.
L4

procedure ErrReport; E'r'r‘Report

if not (FigErr or NumErr) then
begin
OKCnt := OKCnt + 1;
DotCnt := DotCnt + 1;
if DotCnt > 50 then
begin
DotCnt := (;
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writeln(OutFile)
end;
write(OutFile, *.)
end;
if (FIgErr or NumErr) and (not LinBufOut) then
begin
LinBufOut := true;
writeln(OutFile);
writeln(OutFile, LinBuf);
DispMask
end,;

if Verbose or FlgErr or NumErr then
DispRes;

if NumErr then

NumErrCnt := NumErrCnt + 1;
writeln{OutFile, 'NUM ERROR’)

end,
if FlgErr then
begin
FlgErrCnt := FlgErrCnt + 1;
writeln{OutFile, “FLAG ERROR")
end;

if (FlgErr or NumErr) and StopOnErr then
StopOnErr := InYesNo(’Keep stopping on errors”)
end;

®

** Called by Readloop.
** For a given parsed input line, coordinate the tests for
** each desired precision ond rounding mode, and check results.

*

procedure TestLoop; Testlo op

var
i, ir, ip: integer;
begin
10
*¢ For each precision, run the tests for this line.
*
for ip := 1 to length(PrcLim) do

bepin
pc = PreLimlip];

BuildUnpOps;

for ir := 1 to length{RndLim) do
begin
re := RndLim[ir];
ComputeResult;




FlgChk;

NumChk;

ErrReport
end

end;

-
¢¢ Called by ParselLine to getl revsion number and operator.
¢+ If revision number is invalid, then force an illegal
** operator code.
L
procedure GetOperator;
begin
rev := LinBuf[lptr];
Iptr ;= lptr + 1;
operator := LinBuf[lptr];
Iptr := Iptr + 1;

if rev <> ‘2’ then
operator := !

»’

end;

LJ

** Called by Parseline to setl rounding mode and precisions.
*¢ If no rounding modes are specified, test all four.

*+ If no precisions are specified, test all of PrcStr;

** otherwise test only those specified that are in PrcSir.

** WARNING: if none of the specified precisions are in

** PrcStr, then test no precisions at all.

*

procedure GetModes;

var

Prclost : boolean;
ChrStr : string[1];

begin

while LinBuf[lptr] in WhiteSpace do
Iptr ;= Iptr + 1;

RndLim =77

PrcLim ="

Prclost = false;

while not (LinBufflptr] in WhiteSpace) do

begin
ChrStr := copy(LinBu{, lptr, 1);
ease ChrStr{1] of

’=" ’Ol. /<l' I>I:
RndLim := concat{RndLim, ChrStr);

C.14

GetOperator

GetModes
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‘s" ’dl‘ Iel:
if pos(ChrStr, PreStr) <> 0 then
Prclim := concat{PrcLim, ChrStr)
else
Prclost := true
end;

Iptr:=lptr + 1
end,

if length(RndLim) = O then
RndLim :=‘=<>0";

if (not Prclost) and {length{PrcLim) = 0) then
PrcLim := PrcStr

*

*¢* Called by Parseline to get operand strings verbatim.

** This routine simple retrieves the nezt non—whife subtring
**of LinBuf.

*

procedare GetVerbatim(var s: Stro0); GetVerbatim

var
oldptr : integer;

begin
while LinBuf[lptr] in WhiteSpace do
Iptr := Iptr + 1;

oldptr :=Iptr; {* Start of numeric string. *|

while not (LinBuf[lptr] in WhiteSpace) do
Iptr = lIptr + 1;

s := copy(LinBuf, oldptr, (Iptr — ocldptr))
end;

io
*¢ Called by Parseline to place flags in a string.
*)
procedure GetFlags; Ge tFlags
var

c: char;

ChrStr : string[1];
begin

while LinBuf[lptr] in WhiteSpace do

Iptr := Iptr + 1;

FlgStr := ",
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ChrStr:= ‘1", {* Dummy one—character string. *)

while not (LinBuf[lptr] in WhiteSpace) do
begin
¢ := LinBuf]lptr];

®

** Of the 3 underflow flags, u ——> v ——> w.
. *% Set the character in FigStr to ‘u” if
** ynderflow should occur for the system tested.
*
if (¢ = ‘w") and (UflowOpt = UFLBEFORE) then
c:="v
else if (c = *v’) and (UflowOpt <> UFLIDEAL) then

#

c:=‘u’;
ChrStr[1] := ¢;
if cin ['x’, “i%, "0’, ‘v’, "2’] then

FlgStr := concat(FlgStr, ChrStr);

Iptr := Iptr + 1 {* Skip over flag character. *}

*

** Called by Readloop to parse the line of input.
*®

procedure Parseline; Parse Line
begin

Iptr :=1; {* Indez into LinBuf. *|

GetOperator;

GetModes;

GetVerbatim(StrArg1);

GetVerbatim(StrArg?);

GetFlags;

GetVerbatim(StrRes);

if operator = °C’ then  §{* Compare has character result. *}
CmpRes := StrRes[1];

if Verbose then |* End line started by parse routines. *|
writeln(OutFile)
end;

L4
*¢ Called by main program to process test vectors.
*

procedure Readloop; Readlo op

begin
repeat
readIn{ListFile, TmpBuf);
writeln(OutFile);
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writeln{OutFile, ‘Input file: *, TmpBuf);
reset{InFile, TmpBuf);

repeat
readin(InFile, LinBuf);
LinBuf := concat{LinBuf, * *);
{* end with white space *|

if Verbose then

writeln(OutFile);
writeln{OutFile, LinBuf);
end;
LinBufQOut := Verbose;

{* Skip lines too short (blank) or starting with *F *)
if (length(LinBuf) > 8) and (LinBuf[1] <> ‘) then
begin

Parseline;
TestLoop
end
until eof(InFile),

clese(InFile)
until eof(ListFile);
end,

begin {* main program *|
{*
** nitialize constants and counters.
"

WhiteSpace := [ chr(32), chr(9) ]; {* space and tab chars *)

PossErrs = “iouxz’;
UflowOpt := UFLBEFORE;
DotCnt  :=0;

FlgErrCnt := 0;
NumErrCnt = 0;

OKCnt ={;

Verbose := InYesNo(“Verbese?);
ChkFlgErr := InYesNo("Check flags’);
StopOnErr := InYesNo(’Stop on errors®);

PreStr =%
if InYesNo(’Test Single”) then
PreStr = ’s";

if InYesNo(’Test Double’) then
PreStr = concat(PreStr, “d”);
if InYesNo(’Test Extended”) then
PreStr = concat{PrcStr, ‘e’);

writeln;

write{’File with list of test files [default TLIST.TEXT]: *);
readIn(TmpBuf);

if length(TmpBuf) = 0 then



TmpBuf := “TLIST.TEXT";
reset(ListFile, TmpBuf);

writeln;
write("Output file [default CONSOLE:]: *);
readln(TmpBuf);
if length(TmpBuf) = 0 then

TmpBuf := ‘“CONSOLE:’;
rewrite(OutFile, TmpBuf);

Readloop;

writeln{OutFile);

writeln(OutFile);

writeln(OutFile, “Successful tests: °, OKCnt);
writeln(OutFile, “Numerical Errors: *, NumErrCnt);
writeln(OutFile, ‘Flag Errors:  ’, FlgErrCnt);

close(QutFile);
close(ListFile)

C.18
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** FP: Unit to be used by the program FPTEST for testing the

L4 J
L3d
*%
**
.o
(4
L2 J
¢
&
ot
¥
*%
e
e
*e
"¢
[ 2]
*

SANE floating—point unit for Apple computers.
Written by Jim Thomas and Jerome Coonen, 5 Jan 83.

FP uses the SANE Interface and should not require modification
unless the SANE Interface or the parameters (in INTERFACE below)
change.

The ordering of the bytes in a floating—point number differs

Jor different computers. On the III, the bytes, from low address

to high, run from least io most significant. The order is just

the opposite for Lisa. This matters in FpFack, which

converts from type UnpForm to PckForm and in FpShow, which displays
a number as a string of hex digits (most to least significant).

For the arithmetic routines that logically OF a 1 into

a double number’s least significant bit, the constant LSW

indicates which is the least significant word

of a doubdle formal number.

unit FP;
INTERFACE
uses FPSoft;
const
L 2
** SYSTEM—-DEPENDENT: indez of least significant word of a double
** format number. O for IIl, 3 for Lisa.
*
LSw =(;
EXTMAXEXP = 16384;
EXTMINEXP = —16383;
EXTSIGBITS = 64,
MANLEN =9; {*MANLEN = (EXTSIGBITS + 7)div 8 + 14
type

UflowType = (UFLIDEAL, UFLAFTER, UFLBEFCRE);
Str90 = string[90]};
Str8 = string[8);

UnpForm =
record
sgn: 0..1; {® O for +and I for — ¢
exp: integer; {* unbiased *%|
man: packed array [ 1. MANLEN] of 0..255
{* explicit 1-bit to left of binary point ¥}
end,

PckForm =
record
case char of
‘s”: (s : Single);
‘d”: (d : Double);
‘e”: (e : Extended);
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’b”: (b : packed array {0..9] of 0..255)

end,
procedure FpPack (var x : UnpForm; war a : PckForm; pc : char); FpPack
procedure FpShow {var a: PckForm; var v : Str90; pc : char); FpShow
procedure FpClearFlags; Fp(Clearflags
function FpIfX (err : char) : boolean; Fp[fX
procedure FpSetRound (rndc : char); FPSB t Round
function FpEqual (war a,b : PckForm; pc : char) : boolean; Fquual
function FpIsNAN (var a: PckForm; pc : char) : beolean; Fp[SNAN
procedure FpAdd (war a,b,c : PckForm; pc : char); FpAdd
procedure FpSub  (var a,b,c : PckForm; pc : char); FpS’ZLb
procedure FpMul (var a,b,c : PckForm; pc : char); FpMul
procedure FpDiv  (var a,b,c : PckForm; pc : char), FPDL'U
procedure FpRem (war ab,c : PckForm; pe : char); Fp}?em
procedure FpNxt  (var a,b,c : PckForm; pc : char); FpNIEt
procedure FpScl (war a,b,c : PckForm; pc : char); FPSCZ
procedure Fplog (var a,c : PckForm,; pe : char); FpLOg
procedure FpSqrt (var a,c : PckForm; pc : char); FpSth
procedure Fplnt (var a,c : PckForm; pc : char); Fp[nt
procedure FpCpySgn (var a,b,c : PckForm; pc : char); Fp C}oySgn
procedure FpNeg (var a,c : PckForm; pc : char); FpNeg
procedure FpAbs (var a,c : PckForm; pc : char); F})Abs
procedure Fpfrc (var a,c : PckForm; pc : char), FpFrc
procedure FpCmp (vara,b : PckForm; var ¢ : char; pc : char); Fp Cmp

IMPLEMENTATION

L
** The following variables are used as local temporaries in the
** routines that follow. They are declared globally for convenience.
*
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var
t, t0: Extendegq;
EnvSav : Environ;
RndSav : RoundDir;

®

** Pack number in UnpForm z into PckForm a with precision pc.

** SYSTEM DEPENDENCY : The ordering of bytes in a floating—point
** "word" is the vital issue here.

*

procedure FpPack {* (var z : UnpForm; var a : PckForm; pc : char) ¥|; FpPCLC/C

war
i, bexp : integer;
begin
case pc of
‘s’
begin
bexp := x.exp+127;
a.b[3] := bexp div 2 + 1268*x.sgn;
a.b[2] := (bexp mod 2)*128 + x.man[1] mod 128;
a.b[1] := x. man[2];
a.b[0] := x. man[3];
if (x man[1]<128) and (bexp=1) then a.b[2] := a.b[2]—128
end;
‘d’:
begin
bexp := x.exp+1023;
a.b[7] := bexp div 16 + 128*x.sgn;
a.b[6] := (bexp mod 16)*16 + (x.man[1] div 8) mod 16;
fori:=5 downto 0 do
a.b[i] := (x.man[6-i] mod 8)*32
+ x.man[7-i] div 8;
if (x man[1]<128) and (bexp=1) then a.b{6] := a b[6]-16
end;
Je’
begin
bexp := x.exp+16383;
a.b[9] := bexp div 256 + 128%x.sgn;
a.b[8] := bexp mod 256;
fori:=7 downto 0 do a.b[i] := x.man[8-i];
if (x.exp = EXTMAXEXP) and (x.man[1] > 127) then
ab[7]:=a.b[7]-128
end
end

!'

** Called by FpShow; returns the hex digit for the nibble n.
“
function Nib2Hex(n : integer) : char; Nib2Hex
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begin
if n < 10 then
Nib2Hex := chr{ord("0") + n)
else
Nib2Hex := chr{ord(“A”) + n — 10);
end;

!o

** Return with v equal the hezadecimal representation o f a.
** SYSTEM DEPENDENCY : order of bytes presumed here.
Y

procedure FpShow §* (var a : PckForm, var v : Str90; pc : char) *; FpShow
var
i, last : integer;
s : string{3];
begin
case pc of
’s’: last = G;
‘d”: last :=7;
‘e’ last ;=@
end;
vi=’
for i := last downto 0 do
bepin ..
s = ;
s[2] := Nib2Hex(a.b[i] div 16);
s[3] := Nib2Hex(a.b[i] mod 16);
v := concat(v, s)
end
end,

‘o

*¢ Clear flags.
[ J
procedure FpClearFlags; ‘ FpClearFlags

var
xcp : Exception;

begin
for xcp = INVALID to INEXACT do
SetXcep(xcep,false)

end;

L4
¢* Return true iff err flag is set.
*



function FpifX {* (err : char) : boolean *{;

begin
case err of
‘u”: FplX := TestXcp(UNDERFLOW);
‘0’: FpliX := TestXcp(OVERFLOW);
‘%1 FplfX := TestXcp(INEXACT);
‘i FpIfX := TestXcp(INVALID);
‘2’: FpliX := TestXcp(DIVBYZERO)
end

end,

*
** Set rounding modes.

*
procedure FpSetRound §* (rndc : char) ¢,

begin
case rndc of
‘=’ SetRnd(TONEAREST);
*>’: SetRnd(UPWARD);
‘<’: SetRnd(DOWNWARD);
‘0"t SetRnd(TOWARDZERO)
end

end,

(0
** Return true iff a and b are bif—for—bit equal.

*

function FpEqual {* (a,b : PckForm, pc : char) : boolean *|;

var
i, last : integer;
begin
case pc of
‘s”: last = 1;
‘d’: last :=3;
‘e’ last =4
end;
FpEqual := true;
fori:= 0 tolast do
if a.e[i] <> b.e[i] then
FpEqual := false
end;

to
¢¢ Return true iff e is a Nai.
!

- C.23

FplfX

FpSet Round

FpFEqual




C.24

function FpIsNAN {* (var a : PckForm,; pc : char) : boolean *|; F; p] sNAN

var
sign : integer;

begin
case pc of
‘s’: FpIsNAN := (ClassS(a.s,sign)=QNAN) or (ClassS(a.s,sign)=SNAN);
‘d”: FpIsNAN := (ClassD(a.d,sign)=QNAN) or (ClassD(a.d,sign)=SNAN);
‘e’: FpIsNAN := (ClassX(a.e,sign)=QNAN) or (ClassX(a.e,sign)=SNAN)
end

end;

*

*+ FPoperations :

[ 44

**  Perform c¢ <—-——aoperalionb where a, b, and ¢ have precision pc.

**+ The actual procedure is move b to extended, operate on the extended
*v  walue with a, and move the result to c. Care is taken to avoid double
**  roundings in double precision by simulaiing atomic operations.

*
{*

**c = a+b
i
procedure FpAdd {* (var a,b,c : PckForm; pc : char) %, FpAdd
begin
case pc of
‘s
begin
S2X(a.s,t);
AddS(b.s,t);
X2S(t,c.s)
end,
‘d”
begin
D2X(a.d,t);
AddD(b.d,t);
if TestXcp(INEXACT) then
begin
RndSav := GetRnd;
SetRnd(TOWARDZERO);
D2X{a.d,1);
AddD(b.4,t);
if not odd(t{LSW]) then
t[LSW] := t[LSW] + 1;
SetRnd(RndSav)
end,
X2D(t,c.d)
end;
Ie/:
begin

c.e ' =ae;

AddX(b.e,c.e)
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end
end
end;
f*
**c ;= a~b
%
procedure FpSub {* (var a,b,c : PckForm; pc : char) *}; ' F})Sub
begin
case pc of
IS/:
begin
S2X(a.s,t);
SubS(b s,t);
X25(t,c.s)
end;
‘a”
begin
D2X(a.d,t);
SubD(b.4,1);
if TestXcp(INEXACT) then
begin
RndSav := GetRnd;
SetRnd{TOWARDZERO);
D2X(a.4,t);
SubD(b.4,t);
if not odd{t{LSW]) then
t[LSW] = t[LSW] + 1;
SetRnd(RndSav)
end;
X2D(t,c.d)
end;
‘e’
begin
ce = ae;
SubX(b.e,c.€)
end
end
end;
!o
*® o o= a®* b
L
precedure FpMul {* (var a,b,c - PckForm,; pc : char) *|; FpMul
begin

ease pc of
IS!:

end,;

S2X(a.s,t);
MulS(b.s,t);
X25(t,c.8)




Idl:
begin
end,
Je/:
begin
end
end
end,
it
*tc = a/b

*

procedure FpDiv {* (vor a,b,c : PckForm; pc : char) *;

begin
case pc of

8
begin

end;

;da:

begin

begin

end;
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RndSav := GetRnd;

SetRnd(TOWARDZERO);

D2X(a.q,t);

MulD(b.4,t);

if TestXcp(INEXACT) and (not odd(t[LSW]))then
t{LSW] = t[LSW] + 1;

SetRnd(RndSav);

X2D(t,c.d)

c.e (= a.e,

MulX(b.e,c.e)

FpDiv

S2X(a.s,t);
DivS(b.s,t);
X25(t,c.s5)

RndSav := GetRnd;

SetRnd(TOWARDZERO);

D2X(a.d,t);

DivD(b.d. t);

if TestXcp(INEXACT) and (not odd(t[LSW])) then
t{LSW] := t[LSW] + 1;

SetRnd(RndSav);

X2D(t,c.4)

c.e = a.e,

DivX(b.e,c.e)
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{0
**c == aremb
*
procedure FpRem {* (var a,b,c : PckForm,; pc : char) %); FpKEem
var
quo : integer;
begin
case pc of
’sl:
begin
S2X(a.s,t);
S2X(b.s,t0);
RemX(t0,t,quo);
X25(t,c.s)
end,
Id):
begin {* double rounding ignored *|
D2X(a.4,t);
D2X(b.d,t0);
RemX(t0,t,quo);
X2D(t,c.d)
end;
Ief:
begin
c.e = ae;
RemX(b.e,c.e,quo)
end
end
end,
*
*tc = sqrifa)
*
procedure FpSqrt {* (var a,c - PckForm; pc : char) *; FpSQTIf
begin
case pc of
!s’:
begin
SZX(a.s,b);
SqrtX(t);
X25(t,c.s)
end;
’di:
begin

REndSav = GetRnd;

SetRnd{TOWARDZERO);

DeX(a.d,t);

SqrtX(t);

if TestXcp(INEXACT) and (not odd(t[LS¥])) then
t[LSW] := t[LSW] + 1;
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SetRnd(RndSav);
X2D(t,c.d)
end,;
leI:
begin
c.e = a.eg;
SgrtX(c.e)
end
end
end;
’t
** ¢ = arounded to an integer
*
procedure Fpint §* (var a,c : PckForm, pc : char) %i; Fp[nt
begin
case pc of
lsl:
begin
S2X(a.s,t);
RintX(t);
X23(t,c.5)
end;
Idl:
begin
D2X{(a.d,t);
RintX{t),
X2D(t,c.d)
end;
Iel:
begin
c.e == a.e;
RintX(c.e)
end
end
end,
‘o
¢* ¢ = nezxt representable value froma to b.
%
procedure FpNxt {* (var a,b,¢c - PckForm, pc : char) *|; Fk)N.’JSt
begin
c:= g
case pc of

’s’: NextS{c.s,b.5);
‘d”: NextD(c.d,b.4d);
‘e’: NextX(c.e,b.e)

end,



procedure FpScl {* (var a,b,¢c : PckForm; pc : char) *;

var
n:integer;
begin
case pc of
’s”: )
begin
S2ZX(b.s,t);
X2I(t,n);
S2X(a.s,t);
ScalbX(m,t);
X25(t,c.s)
end;
‘d):
begin
D2X(b.4,t);
X2I(t,n);
D2X(a.d,t);
ScalbX(n,t);
X2D(t,c.d)
end,;
'el:
begin
X2I(b.e,n);
c.e = ae;
ScalbX(n,c.e)
end
end
end;
io
**c = binaryeaxponentofa

*

procedure Fplog {* (var a,c

begin
case pc of
ISI:
begin
end,
Idl:
begin

: PckForm, pc : char) *;

S2X{a.s,t);
LogbX(t);
X2S(t,c.5)

D2X(a.4,t);
LogbX(t);
X2D(t,c.d)

C.29

FpScl

FpLog
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end,
Ie):
begin
c.e = ae;
LogbX(c.e)
end
end
end,
!t
**n = logbla)
‘;c ;= scalb{~n, a)
*
procedure FpFrc {* (var a,c : PckForm; pc : char) *{; FPFTC
var
n: integer;
begin
case pc of
’sl:
begin
SZX(a.s,t);
t0 =t
LogbX(t0);
X2I(t0,n);
ScalbX(—n,t);
X25(t,c.s)
end;
ld’:
begin
D2X(a.d,t);
10 =t
LogbX{(t0);
X21{t0,n);
ScalbX(—n,t);
X2D(t,c.d)
end,
le’:
begin
t:=a.e
10 =t
LogbX(t0);
X21(t0,n);
ScalbX{—n,t);
ce:=t
end
end

end;



C.31

*

** The next three procedures, FpCpySgn, FipNeg, and FpAbs are
** set up to unezceptional, even for signaling NANs. The

** arithmetic environment is save and restored across the calls.
** If the source operand is a signaling NAN, a quiet NAN is

** returned, but is sign is appropriately tweaked.

Y

{0
**c = awiththe signofb

*

procedure FpCpySgn {¢ (var a,b,c : FPekForm, pc :char) *|; Fp @ySgTL

var
sgn : integer;

begin
case pc of
‘s”
begin
GetEnv(EnvSav);
S52X(a.s,t0);
S2X(b.s,1);
SetEnv(EnvSav);
CpySgnX(t0,t);
X2S8(10,c.5)
end;
‘d”
begin
GetEnv(EnvSav);
D2X(a.d,t0);
D2X(b.d.t);
SetEnv(EnvSav);
CpySgnX(t0,t);
X2D(t0,c.d)
end;
‘e
begin
ce:=ae;
CpySgnX(c.e,b.e)
end
end
end;

io

** ¢ = a, but with opposite sign

!

proceduare FpNeg {* (var a,c : PckForm; pc : char) |, FpN@g

var
sgn : integer;
begin
case pc of



begin
end;
ldf:
begin
end;
IeI:
begin
end
end
end;
ic
**c = absolute value of a

*

procedure FpAbs {* (var a,c : PckForm; pc : char) *};

var
sgn : integer;
begin
case pc of
Isl:
begin
end,
ldf:
begin

end;

GetEnv(EnvSav);
S2X(a.s,t);
SetEnv(EnvSav);
NegX(t);
X25(t,c.s)

GetEnv(EnvSav);
D2X(a.d,t);
SetEnv(EnvSav);
NegX(t);
X2D(t,c.d)

ce:=ae;
NegX(c.e)

GetEnv(EnvSav);
S2X(a.s,t);
SetEnv(EnvSav);
AbsX(t);
X2S(t,c.8)

GetEnv(EnvSav);

C.32

FpAbs

{* to awvoid invalid on signaling NaNs —— a quiet *|

D2X(a.d,t);

{* NaN is returned but FPTEST does not notice *|

SetEnv(EnvSav);
AbsX(t);
X2D{t,c.d)
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ce:= ae;
AbsX(c.e)
end
end
end;

to

** Comparisons :

** This rather elaborate setl of procedures tests two kinds of comparison:
*% (1) Condition code —— us in the test vectors.

** (2) Predicates.

¢+ P754 specifies which of the predicates should signal invalid on

** unordered (one operand is NAN). The predicates available through

** the type RelOp are:

* GT——>LT~—%L, GL—= <>, EQ—— =, GF —— >=, LF —— <=,

**  GEL =— <=>, UNORD —— unordered.

** /T all tests are satisfied, the appropriate condition =, <, >, ?

** is returned to COmpKRes (via parameter ¢); otherwise ! is returned.

*

procedure FpCmp §* (var a,b - PckFormvar ¢ : char; pc : char) *i; Fp Ofﬂp

const
UNORDFLAGS = “1ii0iii0’;
INVFLAGS = ‘iiiiiiii’;
OKFLAGS = ‘00000000

var
rslts,t : integer;
rel : RelOp;
flgs0,flgs1,flgs : Str9Q;
ae,be : Extended,;

L
** Save flags as astring of 1, 0, u, z, and 2.
L 4

procedure SavFlgs(var figs : Strg0); SavFlgs

var
xcp : Strg;
i :integer;

begin
xcp = ‘iouxz’;
flgs :="7;
fori:=1toS5do
if FpliX(xcpli]) then
flgs := concat(flgs, copy(xcp, i, 1));
if flgs="" then
flgs =0’
end,
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L4

** Kestore flags according to the string : flgs.

Y

procedare RstFlgs(flgs : Str80); RSt.FZgS
wvar i : integer;

begin
fpclearflags;
if flgs<>’0” then
fori:= 1 to length(flgs) da
case flgs[i] of

‘i SetXcp(INVALID,true);
‘0" SetXcp(OVERFLOW,true);
‘u”: SetXcp{UNDERFLOW,true);
“x’: SetXcp(INEXACT,true);
‘z’: SetXcp(DIVBYZERO,true)

*

** Clear all flags and signal inexact.
*

procedure Markinx; Markinx
begin

FpClearFlags;

SetXcp(INEXACT, true)
end,

begin {* FpCmp *}
case pc of
’s”: begin S52X(a.s,ae); SZX(b.s,be) end;
‘d”: begin D2X(a.d,ae); D2X(b.d,be) end;
‘e’: begin ae := a.¢; be ‘= b.e end

end,
rsits := Q;
flgs := ",
SavFlgs(flgs0);
{* SYSTEM DEPENDENCY : linear ordering of relationals *}
ti=1;
for rel := GT to UNORD do
begin
RstFlgs(flgs0);
if CmmpX(ae,rel,be) then
rsits := rslts + ;
t:=t*2;
SavFlgs(figs1);
flgs := concat(flgs, flgs1)
end,
c = X%

ease rslts of



128: if RelX(ae,be) = UNORD the
85: if RelX{ae,be) = GT then c:
102: if RelX(ae,be) = LT then ¢ :
120: if RelX(ae,be) = EQ then c :

end;

=]

_ 0.

c: ;
r5e
‘<

nn

’

’
»

.,

case rslts of
128:

if FpIsNAN(a,pc) or FpIsNAN(b,pc) then

if (flgs <> INVFLAGS) and (flgs <> UNORDFLAGS) then
MarkInx
: else
else if flgs <> UNORDFLAGS then
Markinx;
85,102,120:
if (flgs <> OKFLAGS) and (flgs <> INVFLAGS) then
MarkInx;
end

end;

end {* of unit fp *|.
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UNIT FPSoft;
{* Interface to floating—point software library. *

INTERFACE
CONST

SIGDIGLEN = 20;  { Mazimum length of SigDig. }
DECSTRLEN = 80; { Mazimum length of DecStr. |

TYPE

** Numeric types.

- e e e e ———— ._..i

Single = array [0..1] of integer;
Double = array[0..3] of integer;
Extended = array [0..4] of integer;

** Decimal string type and intermediate decimal
** type, representing the value:
¢«  (~1)~sgn* 10~ezp * dig

SigDig = string [SIGDIGLENT;
DecStr = string [DECSTRLEN];

Decimal =
record
sgn:0..1; | Sign (0 for pos, 1 for neg). |
exp : integer; | Exponent. }
sig : SigDig | String of significant digits. |
end;

Environ = integer;
RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO);
RelOp = (GT, LT, GL, EQ, GE, LE, GEL, UNORD);
> < <> = >= <= <=>}
Exception = (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERO, INEXACT);

NumClass = (SNAN, QNAN, INFINITE, ZERO, NORMAL, DENORMAL);
DecForm =
record
style : {FLOAT, FIXED);
digits : integer
end,

procedare AddS (x : Single; war y : Extended); AddS
procedure AddD (x : Double; war y : Extended); AddD
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procedure AddX (x : Extended; var y : Extended); AddX
ty =y+z]

procedure SubS (x : Single; wary : Extended); SubS

procedure SubD (x : Double; wary : Extended); SubD

procedure SubX (x : Extended; var y : Extended); S’LLbX
ly =y-z| _

procedure MulS (x : Single; wary: Extended); MulS

procedure MulD (x : Double; wvary: Exténded); MulD

procedure MulX (x : Extended; var y : Extended); MulX
ty =y*z]

procedure DivS (x : Single; wary : Extended); DL’US

procedure DivD (x : Double; wary : Extended); DivD

procedure DivX (x : Extended; vary : Extended); DivX
ty =y/z|

function CmpX (x : Extended; r : RelOp; y : Extended) : boolean: CTTLpX
tzry]

function RelX (x, y : Extended) : RelOp; FelX

{ z RelXy, where RelX in[GT, LT, EQ. UNORD)] }

** Conversions between Extended and
** the other numeric types.

procedure S2X (x : Single; vary : Extended); S2X

procedure D2X (x : Double; var y : Extended); D2Xx

procedure X2X (x : Extended; var y : Extended); X2X
{ ¥ '= z (arithmetic assignment) |

procedure X25 (x : Extended; var y : Single); X2S

procedure X2D (x : Extended; var y : Double); X2D

{ ¥ '= z (arithmetic assignment) |

** Numerical ‘library’ procedures and functions.

i . ot e e e e e s s e e e et e e e e e e e i

procedure RemX (x : Extended; var y : Extended; var quo : integer); FemX
{ newy = remainder of ((oldy)/ z), such that lnew y| <= |z|/ 2;
quo = low order seven bils of integer quotient y/ z,
so that —127 <= quo <= 127. |

procedure SqrtX (var x : Extended); SthX



{z :=sqrt (z)}
procedure RintX (wvar x: Extended);
f z := rounded value of x|
procedure NegX (var x : Extended);

fz:=-z]
procedare AbsX (war x : Extended);
{z:=]z]}

procedure CpySgnX (var x : Extended, y : Extended);
f z := x with the sign of y |

procedure NextS (var x: Single; y: Single);
procedure NextD (var x: Double; y: Double);

procedure NextX (var x : Extended; y : Extended);
| x ;= nezxt representable value from z toward y |

function ClassS (x: Single; war sgn: integer) : NumClass;
function ClassD (x: Double; warsgn: integer) : NumClass;

function ClassX (x: Extended; var sgn : integer) : NumClass;
§ sgn = sign of z (0 for pos, 1 for neg) |

procedure ScalbX (n : integer; var y : Extended);
ty=y*2n]

procedure LoghX (var x : Extended);
| returns unbiased exponent of x |

** Manipulations of the static numeric state.

procedure SetRnd (r : RoundDir);

procedure SetEnv (var e : Environ);

fonction GetRnd : RoundDir;

procedure GetEnv (var e : Environ);

function TestXcp (x : Exception) : boolean;
procedure SetXcp (x : Exception; OnOif : boolean);
function TestHIt (x : Exception) : boolean;
procedure SetHlt (x : Exception; OnOff : boclean);
IMPLEMENTATION

f..
END.
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RintX
NegX
AbsX
CpySgnX

NextS
NextD
NextX -

ClassS
ClassD
ClassX

ScalbX
LogbX

SetRknd
SetEnv
GelFEnd

Gel Fnv

TestXcp
SetXcp

Test Hlt

Set Hlt




APPENDIX D

Pascal Unit for Correctly Rounded Binary-Decimal Conversions

UNIT CorrBD;

*

*¢ Correctly rounded conversions between unpacked binary and
*¢ decimal floating—point formats. Numbers have the Jorm:

** (—1)~sign * radiz~ezp * significand

** with an implicit radiz point after the first digit (decimal )
**or bit (binary). Numbers need not be normalized in this

** unpacked format. Results are normalized unless underflow
** causes denormalization. Translations between the unpacked
*¢ formats are not part of this unit.

*®

** Each conversion is governed by an environment record with
** rounding and underflow information. These are dealt with

** according to proposed IEEFE floating—point standards P754

** (binary) and P854 (radiz—independent). That is, underflowed
**values are denormalized and overflowed values are set to

** gither the format's largest value or to the next bigger value

** (the latier is intended to represent IEEE infinity).

L 4

** Version 1.0 17 January 82 Jerome T. Coonen

"

INTERFACE

{*
** The constants specify properties of the binary and decimal

** formats. Adecimal value is a packed array of BCD digits.

** 4 binary value is a packed array of bytes, with 8 bits per

** byte in this implementation.

¥

** The constants DEXPMAX and BEXPMAX are not tight bounds.
** Rather, they limit the width of the decimal and binary buffers
** that must be used to hold input values. The bounds should

** at least cover the range of exponents of all representable

** numbers tn a NORMALIZED form.

*

CONST
DDIGLEN

= 9; | maz decimal precision |
DEXPMAX = ¢

9, | maz magnitude of decimal ezponent |

BBITLEN =24; {maz binary precision in bits }

BEXPMAX = 150; { maz magnitude of binary ezponent |
BITSDIG =8; { bits per machine ‘digit’ (byte) |

BDIGLEN =2; { max bytes = BBITLEN/ BITSDIG, less 1 ]

D.1



MAXB = 255; § byte ranges from 0to 255
TYPE

*

*¢ [f space 1s an issue, these may be redefined as ‘packed’ records.
¢

‘UnpDec = | unpacked decimal format |

record
sgn : 0..1;
exp : ~DEXPMAX. .DEXPMAX;
dig : array [0..DDIGLEN] of 0..9
end;

UnpBin = { unpacked binary format |

record

sgn:0..1;

exp : —BEXPMAX..BEXPMAX;

dig : array [0..BDIGLEN] of 0..MAXB
end;

RDir = (RNEAR, RUP, RDOWN, RZERQ); { rounding directions }

[

¢+ Jf style is FloatStyle, pre is the number of significant digits
** output, if style is FizedStyle pre is the number, possibly negative,
** of fraction digits output. Because il is presumed that decimal
** {o binary conversion will only be used to convert to machine types,
** type FloatStyle is presumed in the D2BEnv. In both environment
** records, the error flags inezact, uflow, oflow are NOT sticky;
** they are setl according to the result of the latest conversion.
L4
B2DEnv =
record
pre :integer;
style : (FixedStyle, FloatStyle);
rnd : RDir;
MinExp : integer;
MaxExp : integer;
inexact: boolean,;
uflow : boolean;
oflow : boolean

end;

D2BEnv =

record
pre :integer;
rnd : RDir;
MinExp : integer;
MaxExp : integer;
inexact: boolean;
uflow : boolean;
oflow : boolean

end,;

f
** Conversions belween UnpDec and UnpBin records. For convenience in

** packing the results of DecZBin, if e.pre is not @ multiple of
*¢ BITSDIG then the e.pre outputl bits are right—aligned in the leading
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** ((e.pre div BITSDIG) + 1) bytes of b.dig[]. Of course the implicit
** binary point is still to the right of the first bit of b.d4g[0].
*

procedure Dec2Bin(var e : D2BEnv; d : UnpDec; var b : UnpBin); Dec2Bin
procedure Bin2Dec(var e : B2DEnv; b : UnpBin; var d : UnpDec); Bin2Dec
IMPLEMENTATION

!o

** Constants determining the buffer widths are based on the
**interface values. Each buffer must accommodate exactly
** any value representable in the respective UnpXXX Jormat,
** with several extra digits for rounding.

*

CONST
DBUFLEN = 60; | DMAXEXP + DDIGLEN + several |
BBUFLEN = 30; |{ (BMAXEXP/ BITSBYT)+ BBYTLEN + several {
MAXB2 =128, § MAXBdiv2)

{*
** Dinary and decimal values are manipulated in wide byte and

** digit buffers. For efficiency, the values head and tail

**refer to the most and least significant ends of the ‘relevant’

** part of the string. An ezponent is maintained separately.

** Depending on time and space constraints, a DBuf dig may either

** be a packed hex nibble (0..4) or a full byte. Though consuming

** twice as much space, and unable to take advantage of a computer’s
** BCD operations in assembly—language support routines, the latter
** are much more easily indezed.

Y

TYPE
DBuf =
packed record
head : integer;
tail : integer;
dig : packed array [0..DBUFLEN] of 0..255 { or 0.. 15 |
end;

BBuf =
packed record
head : integer;
tail : integer;
dig : packed array [0..BBUFLEN] of 0..MAXB

end,

** BinlDec and Dec2Bin employ ezactly the same conversion strategies,
** so together they are serviced by corresponding sets of utilities for
** handling DBufs and BBufs. Here is a list of the utilities:

[

¢* BDZero - clear two Bufs to zero.
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** BRight, DRight —— shift a Buj’ right n digs.
*¢* BTimes2, DIimes2 —— Buf*

** Binc ——add 0—-9in th,e last dig of a BBuf.
** BTimes 10 —— BBuf * 10.
** B Width - find width of a BBuf in bits.

** BUflow, DUflow —— denormalize a Buf, if necessary, before rounding.
** BRound, DRound —-—round a Buf.

** BOflow, DQflow —— check and handle Buf overflow, after rounding.

*¥

*% Both BinZDec and Dec2B5in require two BBufs and DBufs, a working Buf
** and a temporary for intermediate calculations. For efficiency, a
** temporary is passed as a var parameter to any utility itself
** requiring a termnporary Buf.
L]
!

€

** Called by Dec2Pin and BinZDec to initialize.
L4

procedure BDZero(var bx : BBuf; var dx : DBuf); BDZero
var
i:integer;
begin
for i := 0 to BBUFLEN do
bx.dig[i] := G; § set all digs to 0}
bx. head := BBUFLEN; { set head and tail to last dig |

bx.tail := BBUFLEN;

fori:= 0 to DBUFLEN do
dx.digl[i] := 0;
dx.head := DBUFLEN;
dx.tail := DBUFLEN
end,

L 4

*¢ Called by BRound to remove Guard and Sticky bit positions, by BUflow
** to denormalize, and by DecZBin to remove excess integer digits.

** bx head is not updated rightward if all bits are shifted from the

*¢ leading word. Since bit shifts are only done for the last

*¢ (n mod BITSDIG) bits, this is not a particularly time—consuming

** rouline.
*

procedure BRight(var bx : BBuf; n: integer); BR’Lght
var

i, j, k : integer;

S : boolean;
begin

S := false;

k :=n div BITSDIG; { number of full bytes to be shifted |
for i := (BBUFLEN — k + 1) to BBUFLEN do

S := S or {bx.dig[i] <> 0); | OF doomed bitsto S}
for i := (BBUFLEN ~ k) downteo bx.head do




end;

‘o

bx.dig[i + k] := bx.dig[i}; | shift right k bytes |
fori:=bx.head to{bx.head + k — 1) do

bx.dig[i]

=0 § clear lead k bytes |

fori:=1 to (n mod BITSDIG) do

begin

S := S or odd(bx.dig[bx.tail]); { record lowest bit |

for j := BBUFLEN downte (bx.head + k) do

end;

{ force sticky bit |

if odd(bx.dig[j — 1]) then { bz head > I here |
bx.dig[j] := MAXBZ + (bx.dig[j] div 2)
else
bx.diglj] := bx.dig[j] div 2

if S and (not odd(bx.dig[ BBUFLEN])) then
bx.dig[ BBUFLEN] := bx.dig[BBUFLEN] + 1

** Called by Bin2Dec to convert integer, Dec2Hin to convert fraction.
** Replace by ezternal assembly—language routine for high speed.
*

procedure BTimes2(var bx : BBuf); { ezternal; | BTimesZ2
var

i, sum, iC : integer;
begin

end,

iC = 0; {integer Carry flag }
fori:= bx.tail downto bx.head do

sum = bx.dig[i] + bx.dig[i] + iC;

MAXB then

iC:=1;
bx.dig[i] := sum ~ (MAXB + 1)

iC:=Q;
bx.dig[i] := sum

if iC <> 0 then { check for carry out of bz.dig[bz. head] |

;= bx.head — 1;

bx.dig[bx. head] := 1

begin
if sum >
begin
end
else
begin
end
end,
begin
bx.head
end

D.5
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*

** Called by BRound to add 1 ulp, and by Dec2Bin to add a digit.
** Add 0 <= m <= 9into BBuf bz by adding m into low byte and
*¢ propagating carry. Return true if and only if there is a

** carry out of the bz.dig[bz head)].

*

function BInc(m : integer; var bx : BBuf) : boolean; Binc
var

i, sum : integer;

C : boolean;

begin ‘
Blnc := false; { assume no carry out |
sum := bx.dig] BBUFLEN] + m;
if sum <= MAXB then
bx.dig| BBUFLEN] := sum { easy case, no carry out |
else
begin
bx.dig] BBUFLEN] := sum — (MAXB + 1);
C = true;
i := BBUFLEN;
while C do
begin
i=i—1;
sum := bx.dig[i] + 1;
C := sum > MAXB;
if C then
bx.digli] ;=0
bx.digli] := sum
end;
if i < bx.head then
begin
Blnc := true;
bx.head :=1i }{ in this case i = bx.head—1 |
end
end
end,

&
** Called by BinZlec to convert fraction digits and by Dec2Bin
** to convert integer digits. Replace by ezternal assembly—

** language routine for high speed.

procedure BTimes10(var bx : BBuf); {ezternal; | BTimes10
var
i, sum, iC : integer;
begin
iC:=0;
for i := bx tail downto bx.head do
begin
sum := (10 * bx.dig[i]) + iC;
bx.dig[i] := sum med (MAXB + 1);
iC := sum div (MAXB + 1)
end;

if iC <> 0 then
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bx.head := bx.head - 1;
bx.dig{bx.head] := iC
end

’O
*¢ Called by Dec2Bin to determine how many fraction bits to find.
*¢ Lead dig <> 0, since BRight{) has not been called yet.

*

function BWidth(var bx : BBuf) : integer; BWidth
wvar

i, j: integer;

begin
{ overshoot, as though lead bit of lead dig is 1}
i:= (BBUFLEN — bx.head + 1) * BITSDIG;

{ correct by decrementing i for leading Os of leading dig |
j := bx.dig[bx.head];
while j < MAXB2 do
begin
i=i—1;
=i+
end;

BWidth:=1i
end, .

(c

¢* Called by Dec2Bin.
*

procedure BUflow(var bx : BBuf; var b : UnpBin; var e : D2BEnv); BUflow
var

i:integer;
begin

i:=b.exp — e.MinExp;

if i < 0 then

begin

BRight(bx, —i); { denormalize |
e.uflow := true; [ mark tiny, BRound determines true Uflow }
b.exp :=e MinExp

end

e.uflow := false
end,

it
** Called by DecZBin.
*
procedure BRound(var bx : BBuf; war b : UnpBin; var e : D2BEnv); BFound
var
1, LowDig : integer;



begin

end,

i‘r

L, G, S, A : boolean;

{ bx has Zezxtra trailing bits, Guard and Sticky |
LowDig := bx.dig[ BBUFLEN];
S := odd(LowDig);
if S then
LowDig := LowDig — 1;

- G := odd(LowDig div 2);

if G then
LowDig := LowDig — 2;

L := odd(LowDig div 4); | least significant bit |
bx.dig[BBUFLEN] := LowDig; | replace stripped low byte }
BRight(bx, 2), { right—align significand |

{ set inezact flag, and suppress wflow if ezact |
e.inexact := G or §;
e.uflow :=e.uflow and e.inexact;

| A ;= whether to add 1 in L’s bit position |
case e.rnd of

RZERO: A := false;

RUP: A := (b.sgn = 0) and (G or S);
RDOWN: A := (b.sgn = 1) and (G or S);
RNEAR: A:= Gand (Sorl)

end,

if A then | add an ULP and check for carry—out |
if Binc(1, bx) then
begin
BRight(bx, 1);
b.exp:=b.exp + 1
end

*+ Called by Dec2Bin.

** Set to HUGE or INFINITY according to P754' P854 criteria.

** HUGE has maximum exponent and all 1 bits;, INFINITY has just
*¢ larger exponent and bits 1000...00

¢

procedure BOflow({var bx : BBuf, var b : UnpBin; var e : D2BEnv);

var

bepgin

i, fix : integer;

e.oflow := b.exp > e.MaxExp;
if e.oflow then

begin

e.inexact := true; { force inezxact on any overflow |

{ decide between HUGE and INFINITY |

if (e.rnd = RNEAR) or ({(e.rnd = RUP) and (b.sgn = 0))
or ({e.rnd = RDOWN) and (b.sgn = 1)) then

fix =1
else
fix :=0;

D.8
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b.exp := e MaxExp + fix; | force ezcessive exponent |
BRight(bx, (e.pre — 1)); | clear all but leading 1 |
fori:=1to{epre—1)do [ renormalize |

BTimes2(bx);
bx.dig[ BBUFLEN] := bx.dig[ BBUFLEN] + (1 — fix)
end ’
end
end;

*

** Called by DUflow to denormalize, by DRound to remove Guard and Sticky
** digit positions, and by Bin2Dlec to remove excess integer digits.

** dx head is not incremented.
*

procedure DRight(var dx : DBuf; n : integer); DR’Lght
var

i:integer;

S : boolean;
begin

S := false;

for i := (DBUFLEN — n + 1) to DBUFLEN do

S := S or (dx.dig[i] <> 0); | OK doomed digits to S}
for i := (DBUFLEN — n) downto dx.head do

dx.dig[i + n} := dx.dig{i]; | move right n digits |
fori:=dxhead to{dx.head + n — 1) do

dx.dig[i] := 0; { clear lead n digits |

if S then
dx.dig[DBUFLEN] := dx.dig[DBUFLEN] + 1 { OKif > 9]
end,;

fe
¢¢ Called by BinZlec to convert integer, by Dec2Bin to convert fraction.
** Replace by external assembly—language routine for high speed.

Y

procedure DTimes2(var dx : DBuf); { external; | DTimes2
var

begin

i, sum, iC : integer;

iC = 0; §integer Carry flag |

fori := dx.tail downto dx.head do

begin
sum := dx.dig[i] + dx.dig[i] + iC;
if sum > 9 then

begin
iC:=1;
dx.dig[i] := sum — 10
end
else
begin
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dx.digfi] := sum
end
end;

if iC <> 0 then § check for carry out of dz.dig[dz.head] |

dx.head := dx.head ~ 1;
dx.dig{dx.head] := 1
end

end,;

L4

** Called by BinZDec.
*

procedure DUflow(var dx : DBuf; var 4 : UnpDec; var e : B2DEnv), DUﬂow
var

i:integer;
begin

i:=d.exp — e.MinExp;

ifi <0 then

begin

DRight(dx, —i); { denormalize |
e.uflow := true; { mark tiny, DRound determines true Uflow |
d.exp := e MinExp

else
e.uflow := false
end,

L4
*¢ Called by BinZDec.
*
procedure DRound(var dx : DBuf; var d : UnpDec; var e : B2DEnv); DRound
var
i, iG, sum : integer;
L, S, A :boolean;
begin
{ dz has 2 extra trailing digits, Guard and Sticky, to be ignored |
S := dx.dig[DBUFLEN] <> 0;
iG := dx.dig[DBUFLEN - 1];
L := odd({dx.dig[DBUFLEN — 2]); {low bit of LSD|

{ set inezxact flag, and suppress uflow if ezact |
e.inexact := (iG <> 0) or 5;
e.uflow :=e.uflow and e.inexact;

{ 4 ;= whether to add 1 in L’s bit position |
case e.rnd of

RZERO: A := false;

RUP: A:=(d.sgn=0) and ((iG <> 0) or 5);
RDOWN: A := (d.sgn = 1) and ((iG <> 0) or 5);
RNEAR: A := (iG > 8) or ((iG = 5) and (L or 5))
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end,;

if Athen | add an ULP and check for carry—out |

begin
S = true; { use to propagate carry |
i := DBUFLEN ~ 1i; { will discard low 2 digits |
while S do
begin
i=i-1;
sum := dx.digli] + 1;
S:=sum>9;
if Sthen
dx.digli] ;=0
dx.digl[i] := sum
end,
if (i < dx.head) then
if (e.style = FloatStyle) then
dx.dig{dx.head] := 1; f carryout at left |
d.exp :=d.exp + 1
end
else
dx.head :=1i
end

L]

** Called by BinZDec.
** Set to HUGE or INFINITY according to P754/P854 criteria.
** HUGE has mazimum exponent and all nines; INFINITY has just
** larger exponent and decimal digits 1000...00.
*
procedure DOflow(var dx : DBuf; var d : UnpDec; var e : B2DEnv); DOf[O’U)
var

i, fix : integer;
begin

e.oflow := d.exp > e.MaxExp;

if e.oflow then

begin

e.inexact := true; { force inezxact on any overflow }

{ decide between HUGE and INFINITY

if (e.rnd = RNEAR) or ((e.rnd = RUP) and (d.sgn = 0))
or ((e.rnd = RDOWN) and (d.sgn = 1)) then
fix :=0

else

fix := 1;

d.exp = e MaxExp + 1 — fix; { Jorce big exponent |
dx.dig[dx.head] := (8 * fix) + 1; { either Gor 1|
fori:= (dx.head + 1) to (DBUFLEN - 2) do
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dx.dig[i] := 9 * fix | either 9or 0}

L]

** Both conversions BinZDec and Dec2Bin follow the same strategy:

LA

*¢ (0) If input has all zero digits, then the resulut is 0; else. ..
L 2

** (1) Align input in Buf as 0. XXXXXXX * RADIX~ezp, with dig[0] = 0
** and the significand shifted far enough right that exp >= 0.

e

** (2) Convert integer part, that is until exp = 0.
*¢

** (3) If no nonzero output digit has been found, then convert

*¢  the fraction up to the first nonzero digit.

*e

** (4) The object is to have exactly p+2 significant digitsbits,

**  the last one sticky in the sense of P754 rounding. If there
**  are too many already, then right shift and gather lost digits
**  in sticky; otherwise, convert unti there are just p+2.

**  Gather unconveried digits/dits into sticky.

¥

** (5) If result is tiny in the sense of P754, then right shift

**  (denormalize) it until the exponent is the minimum allowed.

** (6) Kound the result to p digits/bits.
e

** (7) Deal with overflow according to P754, that is, replacing an
**  overflowed result with either INFINITY or HUGE.

*e

** Both conversions align their input to the left of a Buf, up to

** dig[ 0], and form their output aligned to the right in its Buf.

L L

*¢ The conversions set flags inezact, oflow, and uflow in the

** environment record according to P754, except that the flags are
** NOT STICKY. A full P754 system wowld “logically OR’ these flags
** into the system’s true ezxception flags after each conversion.

L2

** A P754 trapping mechanism is not supported here.
i _

procedure Bin2Dec { (vare : B2DEnv; b : UnpBin; var d : UnpDec)}: BinZDec
var

i, j, BExp : integer;
S : boolean;

bx : BBuf;

dx : DBuf;

begin
d.sgn:= b.sgn; { copy sign |

fori:=0 to DDIGLEN do { place all zero digits |
d.digli] = 0;
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{ Step O0: check for all zeros. |

S :=true;

{ assume the significand is zero |

fori:= 0 to BDIGLEN do

if S then

else
begin

S := 5 and (b.dig[i] = 0);

f process zero |
d.exp := e.MinExp

BExp :=b.exp +1; { align binary point left of lead bit |
i BExp >= 0 then | significand in dig[ (0+7)...]}
j:==1
else
j =2 ~ (BExp div BITSDIG);

{ Step 1: set bz to input b, aligned. |
BDZero(bx, dx);
bx.head := 1;
bx.tail := BDIGLEN + j;
fori:= 0 to BDIGLEN do
bx.dig[i+j] := b.dig[i];

{ Adjust BEzp < 0, since bz shifted right o the nearest byte. |
BExp := (BITSDIG * (j — 1)) + BExp; {j=1 when BEzp >= 0}

d.exp := e.pre + 1; { dec point after lead dig, then Gand S |

{ Step 2: convert integer part of bz. |
while BExp > 0 do

begin
DTimes2(dx); § make way for the next bit ]
BTimes2(bx), { get next bitin bz.dig|{J] |
BExp := BExp - 1;
if bx.dig[0] <> C then
dx.dig[ DBUFLEN] := dx.dig[ DBUFLEN] + 1;
bx.dig{0] :=0
end
end;

| Step 3: guarantee some nonzero digit in dz. |
while dx.dig[dx.head] = O do

begin
BTimes10(bx);
dx.dig{ DBUFLEN] := bx.dig[C];
d.exp:=d.exp —1

end;

bx.dig[0] ;= G;

{ Step 4: check for too many or too few digits. |
if e.style = FloatStyle then
j := (DBUFLEN — dx.head + 1) — (e.pre + 2)

j= —e.pre; | number of fraction’ digits |
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if j<Othen {jtoo few digits|
begin

fori:= dx.head to DBUFLEN do

begin | make room for —j more digits |
dx.digli + j] := dx.dig[i];
dx.dig[i] =0

end;

dx.head := dx.head + j;

for i := (DBUFLEN + 1 + j) to DBUFLEN do
begin § get —j fraction digits }

BTimes10(bx);
dx.dig[i] := bx.dig[0];
bx.dig[0] :=0

end
end

else |{jioo many digits already |

DRight(dx, j);
dx.head := dx.head + j
end;

§{ Fiz exp for j—char shift. |
d.exp :=d.exp+j;

S ;= false;
fori := bx.head to bx.tail do

S := S or (bx.dig[i] <> 0); {unconverted bits ——> sticky }
if S then

dx.dig[ DBUFLEN] := dx.dig[DBUFLEN] + 1;

DUflow(dx, 4, e);
DRound({dx, 4, e);
DOflow(dx, 4, e);

for i := dx.head to (DBUFLEN - 2) do
d.digli — dx.head] := dx.dig[i]
end

end,

procedure Dec2Bin | (var e : D2BEnv; d : UnpDec; var b : UnpBin) | ; Dec2Bin
var

i, j, k, DExp : integer;

S : boolean;

bx : BBuf;

dx : DBuf;

b.sgn :=d.sgn; | copy sign |
fori:= 0 to BDIGLEN do | place all zero bits |
b.dig[i] := 0;
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{ Step O: check for all zeros. |

S:=true;

| assume the significand is zero |

fori:= 0 to DDIGLEN do

if S then

else
begin

S := S and (d.dig[i] = 0);

{ process zero |
b.exp := e. MinExp

{ Steps I and 2: convert integer part and align fraction in dz. |
BDZero(bx, dx); { initialize bz and dz |

b.exp := epre +1; | dec point afier lead dig, then Gand S }
DExp:=d.exp+1; | align binary point before dig| 0] |

if DExp >= 0 then

begin
fori:=0 to (DExp — 1) do | compute integer part }
begin
BTimes10(bx);
if i <= DDIGLEN then
S := Blne(d.dig[i], bx)
{ but ignore carry—out S}
end,
j:=DExp | indez of first fraction digit |
end
else

j:=0, { indez of first fraction digit |

fori:=jtoDDIGLEN do { align fraction digits |
dx.dig[i + 1 — DExp] := d.dig[i];

dx head := 1;

dx.tail := DDIGLEN + 1 — DExp;

if dx.tail < dx.head then
dx.tail := dx.head;

{ Step 3: guarantee some nonzero digit in bzx. |
while bx.dig{bx.head] = 0 do

begin
DTimes2(dx);
bx.dig[bx head] := dx.dig[0];
b.exp := b.exp ~ 1

end;

dx.dig[0] := 0;

{ Step 4: check for too rnany or teo few bits. |
j := BWidth(bx) ~ (e.pre + 2);

if j <O then |{ —j too few bits )
begin
fori:= 1 to —j do
begin
BTimes2(bx); | make room for fraction bit )



end;

end
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DTimes2(dx); § next fraction bit in dig[ 0} |
bx.dig[ BBUFLEN] := bx.dig| BBUFLEN] + dx.dig{0];
dx.dig{0]:=0
end
end

else {jtoo many bits already |
BRight(bx, j);

{ Final adjustments according to shift above. |
b.exp :=b.exp +j;

S := false;
for i := dx.head to dx.tail do
S := S or (dx.digl[i] <> 0);
{ unconverted digits ——> sticky |
if S and (not odd(bx.dig[ BBUFLEN])) then
bx.dig[ BBUFLEN] := bx.dig] BBUFLEN] + 1;

BUflow(bx, b, e);
BRound(bx, b, e);
BOflow(bx, b, €);

{ Finally, store trailing e.pre bits, right adjusted. |
{ Fiz exponent for possible leading Os in first byte. |
j := e.pre mod BITSDIG;
if j <> 0 then

b.exp := b.exp + (BITSDIG — j);
j := bx.tail — ((e.pre ~ 1) div BITSDIG);
fori:=jtobx taildo

b.dig[i — j] := bx.dig[i]

END. { of unit CorrBD |
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** Convert between CorrBD Bin and P754 types S, D, E assuming a byte
*¢ ordering in which less significant bytes are at lower addresses.

¢
UNIT FermBD;
INTERFACE

uses FPSoft, CorrBD;

procedure S2Bin(s : Single; war b : UnpBin); S2Bin
procedure D2Bin(d : Double; war b : UnpBin); | D2Bin
procedure E2Bin(e : Extended; var b : UnpBin); E2Bin
procedure Bin25(b : UnpBin; var s : Single ); Bin2sS
procedure Bin2D(b : UnpBin; var d : Double ); Bin2D
procedure Bin2E(b : UnpBin; var e : Extended); Bin2FE
IMPLEMENTATION
type

SByte =

record

case char of
’s” : (s : Single);
‘b” : (b : packed array [0..3] of 0..255)

end;
DByte =
record
case char of
‘d” - (d : Double);
‘b’ : (b : packed array [0..7] of 0..255)
end;
EByte =
record
case char of
‘e’ : (e : Extended);
‘b’ : (b : packed array [0..9] of 0..255)
end,

{*
** Unit CorrBD leaves the bits in UnpBin right aligned so that no shifting
** is required when they are moved to the P754 packed types. However,
*¢ the ezponent field must be modified to account for any leading zeros.
*
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procedure D2Bin § (d : Double; var b : UnpBin) §; D2Bin
var

t : DByte;

i:integer;
begin

td:=d;

b.sgn := t.b[7] div 128; | sign |
b.exp := ((t.b[7] mod 128) * 16) + (t.b[6] div 16) — 1023;

fori:= 0 to BDIGLEN do
b.digl[i] := 0;
b.dig[0] := t.b[6] mod 16;
fori:=1to6do
b.dig[i] := t.b[6-i];

if b.exp = —-1023 then
b.exp := b.exp + 1 | correct bias of minimum exp |

else
b.dig[0] := b.dig[0] + 16 {force explicit leading 1 |
end,
procedure Bin2E { (b : UnpBin; var e : Extended) |; Bin2E
var
t : EByte;
i, k : integer;
begin
k := b.exp + 16383; . | biased exponent |
t.b[9] := (128 * b.sgn) + (k div 258);
t.b[8] := k mod 256;
fori:=7 downto 0 do
t.b[i] := b.dig[7~i};
e:=t.e
end;
procedure E2Bin { (e : Extended,; var b : UnpBin) |; E2Bin
war
t : EByte;
i:integer;
begin
te:=g;
b.sgn := t.b[9] div 128;
b.exp = {(t.b[9] mod 128) * 256) + t.b[8] — 16383:
fori:= 0 te BDIGLEN do
b.dig[i] := ©;
fori:=Cto7 do
b.dig[i] := t.b[7—i]
end,;

END. { of unit FormBD |






