Introductlon
to: — =

s i o

Miméotnputam k>

Lognc.’md Hardware Basics 2

Wil

. "1 L_ L 1‘.,_ —
.l| -;-':_-‘r 8 f | =
{ = ¥ .
' it | P T ki-a | %
|p omgt v J A P .
o I T LN kT B

_‘I. A r."
| T i N PR
N | L e jort? Gy i A M e

1st Printing, June 1976
2nd Printing (Rev). October 1977
3rd Printing, August 1973

Copyright ® 1976, 1977. 1979 by Digital Equipment Corporation

The reproduction of this workbook. in part or
whole, is strictly prohibited. For copy information
contact the Educational Services Department,
Digital Equipment Corporation, Bedford. Massa-
chusetts 01730

Printed in U.S.A,

INTRODUCTION TO MINICOMPUTERS

Logic and Hardware Basics

Student Workbook

Audio-Visual Course by Digital Equipment Corporation

COURSE MAP

OFERATING
SYSTEMS

o
TECHNIOQUES

LA

PROGRAMMING
LANGUAGES

FO

FILE
DORGANIZATION

GENERAL
SOFTWARE

BUS
STRUCTURES

CENTRAL
PROCESSOR

FD

PERIPHERAL
DEVICES

INSTRUCTION
SETS

COMPUTER
ARITHMETIC

PROBLEM
SOLVING

NUMBER
SYSTEMS

TERMS AND
CONVENTIONS

SYSTEM
OVERVIEW

LO i

CONTENTS

INEPOAUCHON: i i

Logic Gates... S
Objectives and Sampte Test itemsm.
AND Gate...

Inclusive DH Gata

Exclusive OR Gate..............oev....

NOT Gate (Inverter).............cccoveecineeresessaions G
Exercises and Solutions..........cocccveveevverenvinns

NAND Gate........ccooveurrennn.
NOR Gate...

Summary....

Exercises and Sa!ut:ons

Basic Circuits... e
Objectives and Bample Test Itarns P
Flip-Flops

Set- Flaset {HS) Fllp Flops

Clock-Data (D-Type) Flip- Flnps)

Exercises and Solutions.........cc.ccoovvinn..
Registers ...

Buffer Ftaglsters I R

Shift Registers...
Counters... G
Exercises and Sulutlnns

Appendix A More Complex Circuits................oooocovveroiveio]

LO v

Logic and Hardware Basics

Introduction

Many people are awed by the apparent complexities of digital com-
puter electronic circuits or “hardware.” However, no matter how com-
plex computer hardware may seem to be, it can be reduced to a small
number of elemental components called “logic gates.” These logic
gates are the basic building blocks of any digital computer system —
from the simplest to the most sophisticated computer in existence.

These basic logic gates, in themselves, perform extremely simple
functions. However, by wiring them together in various combinations,
they can be used to form more complex components such as adders
and counters. These latter circuits can then be further combined to
form extremely sophisticated logic elements.

It must be stressed that no matter how complex computer logic may
appear at first glance, it can always be reduced to a combination of the
basic logic gates that will be covered in this lesson. Therefore, it is quite
important to obtain a thorough understanding of these basic gates.

This module contains two lessons. The first lesson describes the six
basic /ogic gates used by computers. The second lesson describes how
certain basic gates are used together to form such components as f/ip-
flops, registers, and counters.

It should be noted that there are two basic approaches to describing
logic gates. One is the conventional, theoretical approach — using 1 and
O (true and false) to represent the two digital voltage levels in the
hardware. The other approach, called Functional Boolean, does not
uniquely assign true and false to digital voltage levels. Consequently,
the Functional Boolean approach has many variations.

This module covers the conventional, theoretical approach. This
approach provides the foundation for more advanced study:.

LO 1

Logic Gates

OBJECTIVES

1. Given six logic symbols and six functions, be able to match
each symbol with its function.

2. Given six truth tables and six logic functions, be able to match
each truth table with its corresponding logic function.

3. Given a table of six logic gates and their inputs and outputs
and a list of six mathematical expressions, be able to match
each logic function with its mathematical expression.

LO 3

SAMPLE TEST ITEMS

1. Match each of these logic symbols with the function it repre-
sents by writing the correct letter in the space provided.

Logic Symbol Function

y

;

y

;

Functions

d. OR
e. NAND
f. NOT

oo

PZX
=00
O3>

LO 4

SAMPLE TEST ITEMS

2. Six truth tables and six logic functions are given below. Match
each truth table with the logic function it represents.

a. Inputs Output b. | Inputs Output
A | B C A| B C
0|0 0 0| o0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

c. | Inputs Output d. | Inputs Output
A | B C A| B Cc
0|0 0 0|0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 0

e. | Inputs Output f. Input | Output

A | B C
0 1

010 0 1 0
0 1 0
1 0 0
1 1 1
Logic Function Truth Table

AND

OR

NOR

NOT

NAND

XOR

LO 5

SAMPLE TEST ITEMS

3. Determine the mathematical expression that illustrates the
logical relationships between the inputs and output of the six
logic gates listed below. Write the number of the correct
mathematical expression in the space provided.

Mathematical
Gate Inputs Output Expression
AND AB c T
OR A.B c ey
NOR A.B c am———
NOT A c [
NAND A.B c i
XOR AB c P—

Mathematical Expressions
1.C=A*B 4 C=A[®SB
2.C=A"B 5,C=C
3.C=A+B 6.C=A+8B

LO 6

Mark your place in this workbook and view Lesson 1
in the A/V program, “Logic Gates.”

Logic gates are simple electronic circuits that implement elementary
logical functions. Logic gates serve as the basic building blocks for all
digital computers. Computer operations, no matter how complex, are
performed by using various combinations of these basic logic gates.
The six most common types of logic gates are covered in this lesson.
Each gate is named after the logical function that it performs. These
gates are:

AND

OR

XOR (exclusive OR)
NOT (inverter)
NAND (not and)
NOR (not or)

DO AW

Each of these gates, except the NOT gate (inverter), has two or more
input lines but only one output line. The NOT gate has one input line
and one output line.

When discussing logic gates, it is quite common to use the terms
“true” and "“false” when referring to the input and output states of the
gate. In this workbook “true” is the equivalent of binary 1 and ““false” is
the equivalent of binary 0.

AND Gate

The AND gate provides a true output only when a// of the inputs are
true. In other words, the gate generates a binary 1 output when certain
logic conditions are satisfied as indicated by a binary 1 on every input
line. Thus, if the AND has two input lines, it can be stated that: 1 AND
1=1.

As an example, the output of an AND gate might be used to trigger
some other logic element. The element is to be triggered only if certain
conditions exist. If these conditions are set up as inputs to the AND
gate, the element will be triggered only when the pre-defined condi-
tions exist.

LO 7

The standard logic symbol for an AND gate is shown in Figure 1.
Notice that only two inputs are shown; however, an AND gate can
have more than two inputs but never more than one output. The two
input lines are labeled “A" and “B" while the output line is labeled 'C."”

.
c
B

Figure 1 The AND Gate

A chart can be constructed to describe the operation of any logic
circuit. This chart lists every possible combination of input values (bina-
ry 1s and Os) and the output resulting from each combination of inputs.
Some people substitute the words “true” and “"false” for the values **1"
and “0" when using a chart of this type. That's why this chart, or table,
is commonly referred to as a “truth table” even though 1s and Os are
used.

Table 1 is a truth table for a 2-input AND gate. It lists every possible
combination of input values and shows the appropriate output for each
combination of inputs. Notice that there is an output only when both
inputs are true (or 7s). Thus, we can say that “C” (the output) is true
when inputs “A” AND “B" are true.

Table 1 2-Input AND Gate - Truth Table

Inputs Output
A B C
0 0 0
0 1 0
1 (0] 0
1 1 1

When constructing truth tables for logic gates that have many
inputs, it is useful to know how many input combinations are possible.
This can be calculated by 2" where “n” equals the number of input
lines. For example, you have just seen a table for a 2-input AND gate.
Using the formula 2", we substitute the number of inputs (2) for the “n"
and come up with 22, We know that 2? = 4. Therefore, there are four
possible input combinations in the truth table.

LO 8

Table 2 below is a truth table for a 3-input AND gate. By using the
formula 2", we know that the input combinations will be 23 (or 8). If
you look at the table, you will see that there are 8 input combinations.
Notice also that the output is true only when all three inputs are true . . .
or 1s. We can say that “D" (the output) is true only when inputs “A"
AND "B" AND "C" are true.

Table 2 3-Input AND Gate - Truth Table

Inputs Output
A B C D
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Another method of describing the AND function is to use a mathe-
matical formula. Using a formula provides a precise shorthand notation
for easy representation of digital logic. Let's go back to the 2-input
AND gate. We know that the output (“C”) is true only when both inputs
(“A" and “B") are true. Therefore, we can express this relationship by
using the formula:

C=AANDB

However, the relationship is normally expressed by using special
logic notation. The AND function, for example, uses a large dot as the
standard symbol. Thus, the AND function is normally expressed as:

C=A-B

As another example, a 3-input AND gate is expressed by the
formula:

D=A+B-C

where "D” represents the output of the gate, and “A,” “B,” and "C”
represent the three inputs.

LO 9

Inclusive OR Gate

The inclusive OR gate provides a true output if either one input or
the other input or both inputs are true. This gate produces a true output
(binary 1) when at least one input logic condition is satisfied as
indicated by a binary 1 on one of the input lines. Thus, we can say that:
10R1 =1.

As an example, assume that a certain logic element is to be turned
on when any one of a number of conditions exist. These conditions can
be set up as OR gate inputs. The output of the gate is connected to the
logic element. Therefore, whenever one or more of the conditions exist,
the OR gate will provide an output that will turn on the desired logic
element.

The standard logic symbol for an inclusive OR gate is shown in Fig-
ure 2. Notice that only two inputs are shown: however, an inclusive OR
gate can have more than two inputs but never more than one output.
The two input lines are labeled “A” and “B" while the output line is

labeled “C.”
%
c
B

Figure 2 The Inclusive OR Gate

This gate is called an inclusive OR because any one or more true
inputs will provide a true output. In other words, if there were four input
lines, a true input on lines 1 through 4, inclusive, would provide a true
output. Whenever the term “OR” gate is used by itself, it refers to the
“inclusive OR"” gate.

Table 3 is a truth table for a 2-input inclusive OR gate. It lists alf
possible combinations of input values and shows the output for each
combination of inputs.

Table 3 2-Input OR Gate - Truth Table

Inputs Output
A B Cc
0 0 0
0 1 1
1 0 1
1 1 1

LO 10

Notice in Table 3 that the output of an inclusive OR gate is zero only
when all inputs are zero. On the other hand, the output is one if either
or both inputs are one.

Table 4 is a truth table for a 3-input inclusive OR gate. Again, notice
that the output is zero only when a// inputs are zero.

Table 4 3-Input OR Gate - Truth Table

Inputs Output
A B Cc D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

A mathematical formula can also be used to represent the inclusive
OR function. For example, operation of a 2-input inclusive OR gate can
be expressed by the formula:

C=AO0ORB

However, the inclusive OR function is usually represented by a spe-
cial symbol (+). The inclusive OR function is normally expressed as:

C=A+8B

In the case of a 3-input OR gate, the mathematical formula would
be:

D=A+B+C

The formula could be stated: “"D" is true if “"A” OR “"B"” OR “C" is
true.

Exclusive OR Gate

The purpose of the exclusive OR gate is to provide a true output if
either one input or the other input, but not both, is true. In other words,
the gate generates a true output (binary 1) when any one, but not more
than one, logic condition is satisfied.

As an example, assume that a certain logic element is to be turned
on only if one of a number of conditions exist. The element is to remain
off if none of the conditions exist, or if more than one condition exists.
This problem could be satisfied by using an exclusive OR gate output as
the input to the logic element.

The standard logic symbol for an exclusive OR gate is shown in
Figure 3. Note that the exclusive OR gate is usually referred to as an
XOR gate to differentiate it from an inclusive OR gate. Notice that only
two inputs are shown in the figure; however, an exclusive OR gate can
have more than two inputs but never more than one output. The input
lines are labeled “A” and “B” while the output line is labeled “C.”

3

Figure 3 The Exclusive OR (XOR) Gate

This gate is called an exclusive OR because any one true input,
exclusively, will provide a true output. In other words, if there is more
than one true input, the output will be false.

Truth tables for the exclusive OR (XOR) and inclusive OR functions
are compared in Table 5.

Table5 XOR Versus Inclusive OR - Truth Tables

XOR Inclusive OR
Inputs | Output Inputs Output
A B C A B C
0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0] 1
1 1 0 1 1 1

LO 12

As you can see in Table 5, the XOR and inclusive OR gates are
identical except for the /ast condition. With inclusive OR, the output is

! when both inputs are 1s. However, with XOR. the output is O when
both inputs are 1s.

In summary, the output of an XOR gate is 1 if either input, but not
both, is 1. If both inputs are 0, or if both inputs are 1, the output is 0.

The XOR rules are true even when dealing with gates having more

than two inputs as shown in Table 6. Notice that the output is 1 only
when a single input is 1.

Table 6 3-Input XOR Gate

Inputs Output

A B C

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

A mathematical formula can also be used to represent the XOR
function. For example, operation of a 2-input exclusive OR (X0 R) gate
can be expressed by the formula:

C=AXORB

However, the XOR function is usually represented by a special sym-

bol which is a plus sign with a circle ()). Thus, the XOR function
is normally expressed as:

C=A@B
In the case of a 3-input XOR gate, the formula would be:

D=A@B®@C

LO 13

NOT Gate (Inverter)

The purpose of the NOT gate is to convert an input signal to its
opposite (complementary) state. The NOT gate is often called an
inverter because it inverts the input signal. For example, if the input
signal is high, the NOT gate inverts it to a low signal.

The standard symbol for a NOT gate is shown in Figure 4. There are
three important items to notice in the figure:

1. The NOT gate is the only gate with a single input and a single
output line.

2. A bar drawn over the input or the output indicates the false state.
If the input is “A,” the output is “NOT A.”

3. A small circle drawn on either the input or output line indicates
the false or “not” state.

[>0 _GD__

Figure 4 The NOT Gate

Table 7 is a truth table for the NOT gate. Notice that there are only
two possible inputs to the gate.

Table 7 NOT Gate - Truth Table

Input Output
0 1
1 0

We can also use a mathematical formula to represent the NOT func-
tion. We express the NOT function as:

A = NOTA
or

NOT A = A

LO 14

The NOT function is usually represented by a standard symbol - a
‘bar drawn over the false state. Thus, the NOT function is normally
“expressed as:

A=A

LO 15

EXERCISES

1. The following formula is used to indicate how many input com-
binations are possible for a given logic gate:

Possible Inputs = 2"

If the logic gate has five input lines, how many input combinations
are possible? (Circle the correct answer.)

a. 16
b. 8

c. 32
d 12

2. Using binary 1s and Os, complete the truth table for each of the
following logic gates:

AND OR
Inputs Output Inputs Output
A B c A B c
XOR NOT
Inputs Output Input Output
A B Cc

Lo 17

SOLUTIONS

1. The following formula is used to indicate how many input com-
binations are possible for a given logic gate:

Possible Inputs = 2"

If the logic gate has five input lines, how many input combinations
are possible? (Circle the correct answer.)

a. 16
b. 8

© 32
d. 12

ra

. Using binary 1s and Os, complete the truth table for each of the
following logic gates:

AND OR
Inputs Output Inputs Output
A B c A B c
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
XOR NOT
Inputs Qutput Input Qutput
A B C 0 1
0 0 0 1 0
0 1 1
1 0 1
1 1 0

LO 18

EXERCISES

3. Draw the gate that outputs a 1 only when both inputs are a 1.

4. Draw the gate that outputs the complement of the input.

5. Draw the gate that outputs a 1 when only one of its inputsisa 1.

6. Draw the gate that outputs a 1 when at least one of its inputsis a 1.

SOLUTIONS

. Draw the gate that outputs a 1 only when both inputs are a 1.

:) R AND gate
B —

. Draw the gate that outputs the complement of the input.

__Do_ NOT gate

. Draw the gate that outputs a one when any one of the inputs is a

one.
A :):D_c XOR gate
B

. Draw the gate that outputs a one when at least one of its inputs is a

one.
A
5 & OR gate

LO 20

There are two additional gates to be covered in this module: the
NAND gate and the NOR gate.

NAND Gate

The word “"NAND" is a contraction for the words “not and.” In order
to understand the function of a NAND gate, it is necessary to review
the AND and the NOT gates.

Figure 5 illustrates a standard AND gate. When both inputs are true
(binary 1s), the output is also true (binary 1).

| —
1
17—

Figure 5 A Standard AND Gate

Figure 6 illustrates a standard NOT gate. Notice here that a true
input (binary 1) results in a false output (binary 0).

,>o_ﬁ

Figure 6 A Standard NOT Gate

Figure 7 illustrates what happens if the output of the AND gate is
connected to the input of the NOT gate. Notice that the input to this
circuit consists of true inputs (binary 1s) but the output is false {binary
0). This is the basic function that is performed by a NAND gate.

ol >

Figure 7 Connecting an AND and NOT Gate

The function of a NAND gate, therefore, is to provide a false output
when all of the inputs are true. In other words, the gate generates a
binary O-output when all inputs are binary 1s. The NAND gate will
produce a binary 1 output if any input line contains a binary 0.

As an example of NAND gate use, assume that some logic circuit is
to be turned off whenever certain conditions exist simultaneously. Each
of these conditions can be represented by one input line to the NAND
gate. The output of the gate is then connected to the logic circuit. Thus,
when all conditions are true (a 1 on each NAND gate input line), the
NAND gate will produce a false (or binary 0) output which will turn off
the logic circuit.

The standard logic symbol for a NAND gate is shown in Figure 8.
Notice that only two inputs are shown. However, a NAND gate can

have more than two inputs but never more than one output. The two
input lines are labeled “A” and “’B" while the output line is labeled “C."”

D

Figure 8 The NAND Gate

Truth tables for the NAND and AND functions are compared in Table
8. As shown in the table, the outputs of the NAND gate and AND gate
are exactly opposite. With a NAND gate, the output is a 1 whenever
there is a O on either or both input lines. The output is 0 only when
there are 1s present on all input lines.

Table 8 NAND Versus AND - Truth Tables

NAND AND
Inputs Output - Inputs Output
A B c A B Cc
0 0 1 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1| 1 0 1 1 1

Opposite Outputs

LO 22

NOTE

When logic circuits are designed, AND and
NAND gates are used to identify a specific set
of input conditions. These gates output a
unique value only when the specific inputs
occur. In this respect, the AND gate and the
NAND gate are alike - they both respond to
the input condition of all 1s with a unique out-
put. The difference is that the AND gate out-
puts the unique output value of one, and the
NAND outputs the unique value of zero. The
selection of a NAND gate or an AND gate
depends on the circuit or device that is to
receive its output.

A mathematical formula can be used to represent the NAND func-
tion. Although NAND is a contraction for NOT AND, it is interesting to
note that the formula can be expressed in terms of inclusive OR. A 2-
input NAND gate, for instance, is expressed by the formula:

C = A + B (C equals Not A or Not B)
Thus, when both inputs are binary 0 (A and B), the output is binary
| 1. If either input is a binary O (A or B), the output is binary 1. However,
when both inputs are binary 1 (A and B), the output (C) is binary 0.
Therefore, if either one or both inputs are false, the output is true.
Notice the similarities between the two formulas:
OR C = A + B (C equals A or B)
NAND C=A+BI(C equals Not A or Not B)

The NAND gate can also be expressed in terms of the AND function
by using the formula:

C=A-*B

This formula states that C is false when A and B are true.

LO 23

NOR gate

The word “NOR"” is a contraction for the words “not or.” In order to
understand the function of a NOR gate, it is necessary to review the
inclusive OR gate and the NOT gate.

Figure 9 illustrates the possible conditions of an inclusive OR gate.

Notice that when either or both inputs are true (binary 1), the output is
also true (binary 1).

1 4] 1 o
1 1 1 0
0 1 T 0
Figure 9 Inclusive OR gate — Possible Conditions

Figure 10 illustrates a standard NOT gate. Notice here that a true
input (binary 1) results in a false output (binary 0).

1——Do_a

Figure 10 A Standard NOT Gate

Figure 11 shows what happens if the output of the above OR gate is
connected to the input of the above NOT gate. Notice that whenever
either one or both inputs to the circuit are true (binary 1), the output of
the circuit will be false (binary 0). This is the same basic function that is
performed by the NOR gate.

Figure 11 Connecting an OR and NOT Gate

LO 24

The function of a NOR gate is to provide a false output when either
one or both inputs are true. The opposite is also true. If no input line is
true (both inputs fa/se). then the NOR gate will generate a true output.

A NOR gate might be used to turn on some logic circuit only if
certain conditions do not exist. If any one of these conditions do exist,
the NOR gate produces a false output, preventing the logic circuit from
being turned on.

The standard logic symbol for a NOR gate is shown in Figure 12.
Although only two inputs are shown, a NOR gate can have more than
two inputs but never more than one output. Notice also that the NOR
gate is an inclusive OR symbol with a small circle on the output line to
indicate that the output is false when the inputs are true (i.e., the circle
represents the NOT function).

A
c
B
Figure 12 The NOR Gate

NOTE

As with AND and NAND, OR and NOR are
also functionally the same - OR and NOR both
have their desired output when at least one
input is a one. The difference is that the
desired output of an OR gate is one, while the
desired output for a NOR gate is zero. The
selection of an OR gate or a NOR gate
depends on the circuit or device that is to
receive the output.

Truth tables for the NOR and OR functions are compared in Table 9.
As shown in the table, the NOR gate and OR gate outputs are exactly
the opposite. With a NOR gate, the output is O whenever thereisa 1 on
either or both input lines. The output is 1 only when there are Os pre-
sent on all input lines.

LO 25

Table9 NOR vs OR - Truth Tables

NOR OR
Inputs Output Inputs Output
A B C A B [+]
0 0 1 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 0 1 1 1

\ Opposite Outputs /'

A mathematical formula can be used to represent the NOR function.
Although NOR is a contraction for NOT OR, it is interesting to note that
the formula is expressed in terms of AND. A 2-input NOR gate, for
instance, can be expressed by the formula:

C=A+BI(C equals Not A and Not B)

Thus, the only time the NOR gate produces a true (binary 1) output
is when both inputs are binary 0 (A AND B).

The NOR gate can also be expressed in terms of the OR function by
using this formula:

C=A+8B

This formula states that C is true whenever the expression A or B is
false. In other words, when both A and B are false. then C is true.
However, if either A or B is true, then C will be false.

Summary

Table 10 is a composite truth table for five of the logic gates that
have been covered in this lesson. Only the inverter (NOT gate) has been
left out because it is a single input device. Notice that the table also

includes the standard logic symbol for each gate as well as the appro-
priate mathematical formula.

LO 26

Table 10 Basic Logic Gates - Truth Table

Inputs Output (C)
B AND OR XOR NAND
0 0 0 0 1 1
1 0 1 1 1 0
0 o 1 1 1 0
1 1 1 0 0 0]

sl 1 - >

Formula C=A*B |C=A+8B C=A®B8B

LO 27

EXERCISES

List the names of the six basic logic gates.

In the following formula, C is true only when A is true and B is

C=A:B

In the following formula, C is a binary O and A is a binary 1. There-
fore, B must be a binary :

c=A @ B

Using binary 1s and Os, complete the truth table for each of the
following logic gates:

NAND NOR

Inputs Output Inputs Qutput
A B C A B C

LO 29

1,

SOLUTIONS
List the names of the six basic logic gates.
a. AND

b. OR

c. XOR (exclusive OR)

d. NOT (inverter)

e. NAND

f. NOR

In the following formula, C is true only when A is true and B is not

true (false).

C=A+B

In the following formula, C is a binary O and A is a binary 1. There-
fore, B must be a binary 1

C=A P B

Using binary 1s and Os, complete the truth table for each of the
following logic gates:

NAND NOR
Inputs Output Inputs QOutput
A B G A B C
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0

LO 30

EXERCISES

5. Match each of the following logic functions with the correct
mathematical formula:

a. AND () C=A.B
b. OR () C=A@B
c. XOR () C=A+B
d. NOT () C=A.B
e. NAND () C=A+8B
f. NOR () c=TC

6. Write the name of each logic gate represented by the symbols
shown below:

LO 31

SOLUTIONS

5. Match each of the following logic functions with the correct
mathematical formula:

a. AND il C=A+B
b. OR) C=A@sB
c. XOR (&) C=A+B
d. NOT (a C=A.B

e. NAND b) C=A+B
f. NOR d C=TC

6. Write the name of each logic gate represented by the symbols
shown below:

NOT

LITJ'
z
o

u
=
>
o

LO 32

EXERCISES

7. Write the mathematical formula for each of the following logic
functions. Use “C" for the output and “A" and “B" for the inputs.

a. XOR

b. NAND

c. OR

d. AND

e. NOR

8. Six logic gates are shown below. In each case write in a binary 1 or
O for the missing input condition(s) that will produce the output
condition indicated.

E=1=1=]

Vb C

9. Draw the gate that outputs a O when at least one input is a 1.

LO 33

SOLUTIONS

7. Write the mathematical formula for each of the following logic
functions. Use “C" for the output and “A” and “B” for the inputs.

a. XOR C=A®B
b. NAND C=A+BorC=A.B
c. OR C=A+B8B
d. AND C=A+B
e. NOR C=A.BorC=AF8B

B. Six logic gates are shown below. In each case, write in a binary 1
or O for the missing input condition(s) that will produce the output

condition indicated.
Be

1
1
1
1

HJ
CR e 0

=

= 0O OE—*L‘:
] —

o= i i
O (=]

9. Draw the gate that outputs a O when at least one input is a 1.

NOR

v

LO 34

EXERCISES
10. Draw the gate that outputs a 1 only when both inputs are a 1.

11. Draw the gate that outputs a 1 when only one of its inputsisa 1.

12. Draw the gate that outputs a O only when both inputs are a 1.

13. Draw the gate that outputs a 1 when at least one of its inputs is a
1

14. Draw the gate that outputs the complement of the input.

LO 35

SOLUTIONS

10. Draw the gate that outputs a 1 only when both inputs are a 1.
[p—
D_c
B AND
11. Draw the gate that outputs a 1 when only one of its inputsisa 1.
A
C
& XOR
12. Draw the gate that outputs a O only when both inputs are a 1.
f p—
=
&= NAND
13. Draw the gate that outputs a 1 when at least one of its inputs is a
| &
A
C
. OR
14. Draw the gate that outputs the complement of the input.

DC NOT

LO 36

Basic Circuits

OBJECTIVES

. Given blank diagrams and truth tables for both set-reset and
D-type flip-flops, be able to: (1) label the input and output
lines on the diagram, and (2) indicate in writing the elements
of the truth table.

. Given the terms “buffer register,” ‘‘shift register,”” and
“counter,” and several functions for each, be able to select
the one proper function of each term.

. Given a logic circuit with four gates, one flip-flop, and a
specific set of inputs, be able to write the circuit outputs.

. Given six terms related to logic, logic circuits, and hardware
and a list of six definitions, be able to match each term with
its definition.

LO 37

SAMPLE TEST ITEMS

1. Blank diagrams and truth tables for both set-reset and D-type
flip-flops are given below. Label the input and output lines on
the diagrams, and then complete the truth tables. (Note: Be
sure to write in headings for the truth tables.)

SET-RESET TRUTH TABLE
FLIP-FLOP
DIAGRAM INPUT OUTPUT

TRUTH TABLE

D-TYPE FLIP-FLOP
DIAGRAM INPUT OUTPUT

LO 38

SAMPLE TEST ITEMS

2. The buffer register:

a. Permanently retains information for use in later program-
ming.

b. Momentarily slows down high-speed devices to allow
lower-speed devices to handle output.

c. Temporarily retains information until the selected unit is
ready for it.

d. Temporarily increases the speed of lower-speed devices to
handle the output of faster devices.

3. For the logic circuits below, indicate the outputs for both
Input A and Input B.

SAMPLE TEST ITEMS
4. Match each of the terms below with its definition.
Term Definition

Truth Table
Don't Care

L] L]
- -

L L]

Definitions

a. A particular output for a given set of inputs that is irrele-
vant.

b. A means of expressing the input and output relationships
of a logic circuit in tabular form.

LO 40

Mark your place in this workbook and view Lesson 2
in the A/V program.

Flip-Flops

A flip-flop is the basic electronic circuit used to store information in
digital computers. This component is found in every type of digital com-
puter. The flip-flop has two independent stable states and is capable of
storing one bit of information, such as a bit in a word.

The flip-flop is capable of storing and remembering information, Its
outputs are based on past input data as well as current input data. The
flip-flop differs from the other logic gates we have examined: it can
store data and utilize the stored data as well as current input data to
specify the output generated. For this reason, the flip-flop is widely
used in digital computers. The output of a logic gate depends on/y on
present input; the output of a flip-flop depends on past, as well as
present inputs.

When a flip-flop is set to one of its two stable states by an input
pulse, it remains in that state when the input pulse is removed. Once a
flip-flop is set to a specific state, it can only be changed to the opposite
state by another different input pulse. This principle allows a flip-flop to
store a bit value until the bit value is modified by a different input pulse.

The flip-flop operates like a toggle light switch that has an on and off
state. Like the light switch, it must settle into one of these two states. It
can never assume both states simultaneously. After you set the light
switch with your finger, it remains in that state until you change it again
with your finger.

There are a number of different types of flip-flops. The set-reset (RS)
flip-flop and the clock-data or D-type flip-flop are two commonly used
types. Both of these will be discussed in this lesson. Other types of flip-
flop devices include the JK and the RST. All of these flip-flop devices
operate in much the same manner, differing basically in the number
and type of input lines.

Set-Reset (RS) Flip-Flops

As illustrated in Figure 13, an RS flip-flop has two input lines, the set
line and the reset line, and two output lines, a ONE and a ZERO line.
The labels “one” and “zero” for the output lines of a flip-flop tend to be
confusing because these lines can carry either a binary 1 or O value.
However, this line labeling convention is commonly used. To minimize
confusion, output values will always be written as 1 or 0, while the
output lines themselves will be labeled with names (ONE, ZERO).

—_— SET ONE }|—

—— RESET ZERO }—0

Figure 13 Set-Reset Flip-Flop

When a binary 1 is applied to the reset line, a binary O is produced
on the ONE line. The ZERO line always outputs the opposite value of
the ONE line. That is, if there is a binary 1 on the ONE line, a binary O
will appear on the ZERO line and vice versa. Since the output of a flip-
flop remains stable until a different input pulse is applied, repeating the
same binary pulse on an input line will have no effect. The flip-flop will
remain unchanged until a different value on the input line causes a
change in state.

Table 11 gives the truth table for a set-reset flip-flop. As you can
see, the output on the ONE line and the output on the ZERO line are
always opposite. The RS flip-flop should never receive a 1 input on
both the set and reset lines simultaneously as the resulting output
would be uncertain.

LO 42

Table 11 Truth Table for an RS Flip-Flop

INPUT OUTPUT
SET RESET ONE ZERO
0 0 No change
(Same as previous output)
0 1 0 1
1 0 1 0
1 1 Uncertain
NOTE

Unlike the truth tables for logic gates, the truth
tables for flip-flops contain a new entry: “no
change."”

Clock-Data (D-type) Flip-Flops

D-type flip-flops save the binary value of a data line at some specific
point in time. In order to accomplish this, the D-type flip-flop utilizes a
control signal, called a clock signal, to specify when the binary data is
to be stored. At that specified time, the data on the input line to the flip-
flop is saved, regardless of the value already in the flip-flop.

The D-type flip-flop resembles the set-reset flip-flop, but as
indicated in Figure 14, the two input lines to this type of flip-flop are
the DATA line and the CLOCK line.

—] DATA DNE =

— SLOCKE ZERD —

Figure 14 D-type Flip-Flop

When the CLOCK input goes from O to 1 (%), the value on the
DATA input line becomes the output of the flip-flop on the ONE line. If
there is a 1 on the DATA line at the time of the clock pulse, then the
ONE line output of the flip-flop is a 1. If there is a 0 on the DATA line at
the time of the clock pulse, the ONE line output is a 0. The flip-flop
ignores any change in data between input pulses. Table 12 is the truth
table for a D-type flip-flop.

LO 43

Table 12 Truth Table for a D-type Flip-Flop

INPUT I[OUTPUT
CLOCK DATA I ONE ZERO
0 0 No change
(Same as previous output)
B2
0 1 No change
_" (Same as previous output)
1 0 H— 0 1
_i 1 1 0

As with the RS fli

of the ONE line output.

LO 44

p-flop, the ZERO line output is always the opposite

EXERCISES

1. How does a flip-flop differ from a logic gate?

2. List at least two types of flip-flops.

3. In the space below, draw a simple diagram (logic symbol) of an RS
flip-flop. Label all input and output lines.

4. For an RS flip-flop, given the input and output line values in the
table below, fill in the output line values for the next output:

INPUT ll OUTPUT
SET RESET ONE ZERO

0 0

0 1

SOLUTIONS

1. How does a flip-flop differ from a logic gate?

A flip-flop can store and remember information. A logic gate

depends only on current input information.

2. List at least two types of flip-flops.

a. Set-reset (RS)

b. D-type, clock-data

c. JK

d. RST

3. In the space below, draw a simple diagram (logic symbol) of an RS

flip-flop. Label all input and output lines.

4. For an RS flip-flop, given the input and output line values in the

— SET ONE o

——— RESET ZERO p—m—

table below, fill in the output line values for the next output:

INPUT OUTPUT
SET RESET ONE ZERO
0 0 No change
0 1 0 1
1 0 1 0
1 1 Uncertain

LO 46

EXERCISES

5. What is the difference between an RS flip-flop and a D-type flip-
flop?

6. Draw a simple diagram of a D-type flip-flop. Label all input and
output lines.

7. For a D-type flip-flop, given the input and output line values in the
table below, fill in the output line value for the next output.

INPUT OUTPUT
CLOCK DATA ONE ZERO
0 0 No change

0
4
2

SOLUTIONS

5. What is the difference between an RS flip-flop and a D-type flip-
flop?

The D-type flip-flop assumes the state of the DATA input when a
clock pulse appears at its CLOCK input. The RS flip-flop does not
have a CLOCK input. Instead, the RS flip-flop is set or reset by a
binary 1 /evel appearing at its SET input or RESET input. If the RS
flip-flop receives a 1 at both its SET and RESET inputs, its state is
uncertain.

6. Draw a simple diagram of a D-type flip-flop. Label all input and
output lines.

=1 DATA ONE [—

—] CLOCK ZERQ [——

7. For a D-type flip-flop. given the input and output line values in the
table below, fill in the output line value for the next output.

INPUT [OUTPUT
CLOCK DATA ONE ZERO
0 0 No change
0 1 No change
4 1 1 0
. 0 0 1

LO 48

Registers

Flip-flops can be interconnected to form more complex computer
circuits. Some of these circuits will be discussed in Appendix A.

As we discussed, each flip-flop can store only one bit of information.
However. more than one bit is required to make a computer word.
Consequently, a group of flip-flops must be joined together to form a
register.

A register is used to store the binary representation of a number,
control information, or some other pattern of bits that the computer
uses. Registers provide temporary. fast-access storage for data and
addresses. Computers generally use a number of different registers.
Each register performs a specific function in the data processing oper-
ation or in the control of the computer.

These registers can be made up of any type of flip-flop. Figure 15
illustrates a register using D-type flip-flops with an input and output
line for each bit.

When the CONTROL (CLOCK) line changes from O to 1 { _T). the
value of each data output line is set to the value of the corresponding
input line.

Buffer Registers

Some parts of the computer, such as the central processing unit,
process information at extremely high speeds, while other units operate
at lower speeds. In order to compensate for the lower speed and to
avoid keeping a high-speed device waiting. special registers, called buf-
fer registers, located in the individual units, temporarily retain informa-
tion until the selected unit is ready to utilize it. Maximum utilization of
the computer can be attained by using buffer registers.

Shift Registers

We have discussed registers that are used for storage and informa-
tion transfer only. Another type of register is the shift register. Shift
registers perform an important additional operation on stored informa-
tion. A shift register can shift its entire contents one or more bit posi-
tions to the right or left. As a result of the shift operation, data can be
fed into one end of the register, one bit at a time, and then shifted
through the register as needed.

LO 49

DATA
INPUT LINES

CONTROL
{CLOCK]

REGISTER

> DATA ONE
CLOCK ZERO
> D ONE
c ZERO

L)

L]

L)
> D ONE
c ZERD

DATA
OQUTPUT LINES

Figure 15 Register Using D-Type Flip-Flops

LO 50

By shifting the contents of the shift register one place to the /eft, this
register multiplies the contents of the register by 2. Conversely, shifting
the contents of the shift register one position to the right is equivalent
to dividing the entire contents by 2. Thus, the shift register performs
mathematical operations simply by shifting the contents of the register.
Positions at the right end of the register that are vacated as a result of
the shift (least significant bits) are usually filled with zeros. Positions on
the left are usually filled with the value that was in the leftmost (most
significant) bit before the shift. Figure 16 illustrates the use of the shift
register in multiplication and division. When used for division, the least
significant bits are lost as a result of the right shift operation.

Bia
e
4] o o 4] 0 1 1] 1
1) o o 1] 1 1) i o
LN)
il
10us

SHIFT LEFT - MULTIPLY BY 2

124
0 0 o 0 1 1 o Q
0 o 0 Q o 1 1 Q
PSR S SR
Ba

SHIFT RIGHT - DIVIDE BY 2

Figure 16 Shift Register Showing Multiply
and Divide Arithmetic Operations

Like other types of registers, shift registers are constructed of flip-
flops.

Counters

Counters are circuits that count the number of binary 1 inputs. They
consist of combinations of flip-flops.

There are two kinds of counters: up-counters and down-counters.
Up-counters start at zero and increment by one each time a binary 1 is
input in the counter. The counter continues to increase as long as the
binary 1s are received.

LO 51

- D L

Down-counters work in the opposite direction. Here, the first num-
ber in the counter is the highest number, and the counter decrements
until its contents read zero.

Counters are used to control various computer functions such as:
counting the number of binary 1s on an input line to determine if the
correct number has been received; controlling the number of shifts per-
formed by the shift register; and maintaining an up-to-date record of an
event, such as the number of words transferred from main memory to
auxiliary storage.

LO 52

EXERCISES

1. Match these terms with the appropriate definition by placing the
letter of the term in the parentheses next to the correct definition.

a. Counter () Moves stored bits to the right or left.
b. D-type flip-flop () Compensates for time differences during
data transfers within the computer.
c. Buffer register
() Binary 1 input increments or decrements
d. Shift register the contents by 1.

() Repeating the same binary value on the
DATA line will have no effect.

2. Which of the following are the basic storage elements of a register?
a. AND gates
b. OR gates

c. XOR gates

Q

Flip-flops

3. Which type of register is needed to store data, temporarily, from a
high-speed unit of a computer until a lower speed unit is ready for
it?

a. Shift register
b. Counter

c. Buffer register

d. Logic gate

SOLUTIONS

1. Match these terms with the appropriate definition by placing the
letter of the term in the parentheses next to the correct definition.

a. Counter (d) Moves stored bits to the right or left.
b. D-type flip-flop (c) Compensates for time differences during
data transfers within the computer.
c. Buffer register
(a) Binary 1 input increments or decrements
d. Shift register the contents by 1.

(b) Repeating the same binary value on the
DATA line will have no effect.

2. Which of the following are the basic storage elements of a register?

a. AND gates
b. OR gates
c. XOR gates

Flip-flops

3. Which type of register is needed to store data, temporarily, from a
high-speed unit of a computer until a lower speed unit is ready for
it?

a. Shift register
b. Counter

(c) Buffer register

d. Logic gate

LO 54

EXERCISES

4. Given an 8-bit shift register with the initial data as shown, insert the
data in the shift register as it would appear after the shifts indicated
are performed.

1 4] o 1 1 0 4] 0

Register

a. Shift right two bit places

b. Shift left one bit place

5. The binary equivalent of the number 28 is stored in a shift register. A
shift right two bit places is executed. The number in the shift register
IS NOW:

a. 28
b. 14

d. 56

LO 55

SOLUTIONS

4. Given an 8-bit shift register with the initial data as shown, insert the
data in the shift register as it would appear after the shifts indicated
are performed.

1 o] 1 1 o Q ¥

a. Shift right two bit places

o |l 1]o|/e]|-1]3]0

b. Shift left one bit place

0 0 1 1 0 o 0 0

5. The binary equivalent of the number 28 is stored in a shift register. A
shift right two bit places is executed. The number in the shift register
is now:

a. 28
b. 14
@ 7

d. 56

LO 56

EXERCISES
6. Select as many of the following as typify possible uses for a counter:
a. Shifting data right or left

b. Maintaining a record of the number of bits transferred within the
computer

c. Indicating the number of binary 1s on an input line

d. Keeping track of the number of times a shift is performed.

7. The current value in an up-counter is 6. Two more counts are made.
What value is now present in the counter?

a. 8

b. b

SOLUTIONS

6. Select as many of the following as typify possible uses for a counter:
a. Shifting data right or left

@ Maintaining a record of the number of bits transferred within the
computer

(c) Indicating the number of binary 1s on an input line
(d) Keeping track of the number of times a shift is performed

7. The current value in an up-counter is 6. Two more counts are made.
What value is now present in the counter?

@) 8
b. 6
B, 2
d 4

Take the test for this module and evaluate your
answers before studying another module.

LO 58

Appendix A
More Complex Circuits

Combining Logic Elements

Performing arithmetic and logic operations on data is one of the
basic functions of a computer. These operations are done by electronic
circuits using various combinations of logic gates, flip-flops, and regis-
ters. In this section, we will demonstrate the way in which the logic
elements discussed thus far can be combined into logic circuits that
can be used to perform some of these important logic and arithmetic
operations.

In our examples, only logic gates AND. OR, XOR and NOT and the
set-reset and D-type flip-flops will be used in the logic circuits. In prac-
tice, many different kinds of logic elements are used in logic circuits.

Adder Circuit

One of the principal operations in the digital computer is the addition
of two numbers. With the computer, numbers are represented in binary
form. To understand the method used by the computer to execute this
basic function, we will design a simple logic circuit that will take two
binary digits and perform an addition operation.

First. we will review binary arithmetic. The addition operation is
quite simple because there are only two digits in the binary system. As
shown in the following example, there are just four possible
combinations:

0 0 1 1
+0 +1 +0 + 1
0 1 1 10

Three of the four possible combinations yield simple, single-digit
sums. However, in the fourth case, a carry is generated to the next digit
position.

These arithmetic examples can be expressed in tabular form known

as a truth table. In the following truth table, A and B represent the two
inputs, and S and C represent the sum and carry digits, respectively.

LO 59

Table 13 Truth Table for Binary Arithmetic

Input Output Input Output
A B c A B s
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

Examining the carry digit first, it becomes apparent that we have a
carry only when both line A and line B have an input of 1. The logic

element that produces this result is the AND gate. The carry circuit
would be as shown in Figure 17.

a—|
Ly
B—_

- O =00
- O OO0

Figure 17 Carry Circuit

The sum circuit is more complex. The sum is 1 if either line A or line
B has an input of 1, but not if both have an input of 1. The logic circuit
to perform this function, therefore, must produce a 1 value when the A

input is 1 and the B input is O or when the A input is O and the B input
is 1.

Examining the truth table for the sum circuit, we can see that it is
identical to the XOR gate. This logic circuit is shown in Figure 18.

A B SUM
A 0 0 0
LM 0 1 1
8
1 0 1
1 1 0

Figure 18 Sum Circuit for Binary Addition

LO 60

The second circuit we designed, the sum circuit, reveals an inter-
esting phenomenon. As you can see, when the two inputs are identical,
the output is a/lways a 0, and when they are different. the output is
always a 1. This circuit is often called a binary comparator because it
actually compares two values.

A combination of the carry circuit and the sum circuit, which is illus-
trated in Figure 19, is called a half-adder circuit. Two of these half-
adder circuits are needed in order to perform binary addition with two
binary digits as input; hence, the name half-adder.

CARRY

D_
D—sum

Figure 19 Half-Adder Logic Circuit

Tracing a Logic Circuit

To test or repair computers, it is frequently necessary to determine
the output of a logic circuit for a given set of inputs. If the logic circuit is
complex, this can be a very tedious and time-consuming task. This
section discusses how to trace a logic circuit by showing simple exam-
ples of up to four logic gates and one flip-flop to demonstrate this
principle.

Two Logic Gate Circuit
To trace a logic circuit completely, the truth table for this circuit

should be constructed. Figure 20 illustrates the 3-input logic circuit
with a 2-input AND gate and a 2-input XOR gate connected.

Figure 20 3-Input Logic Circuit

To specify this circuit completely, we must first list all possible input
values. In this context, specify involves tabulating a/f the possible input
and output values. Since there are three inputs to this circuit, each of
which can be a 1 or 0, we have 23 (or 8) possible input values. Table 14
lists the number of possible input values for up to eight input lines.

Table 14 Input Values

Number of Number of Possible
Input Lines Input Values

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

As this table illustrates, the number of input values doubles every
time the number of input lines increases by one. There must be a row in
the truth table for each value of the input as the number of input lines
increases by one. This is another indication of how tedious it could be
to attempt to construct a truth table for a logic circuit of any size or
complexity.

In the example, eight rows are required for the truth table. There is a
special method of listing the input values in a truth table to avoid acci-
dentally omitting any input value. First, the row number is listed, begin-
ning with 0. Then the binary number value for that row is entered as
shown in Table 15. In this way, every possible input value is listed
consecutively.

Table 15
Input Value
Row Number A 8 C
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

LO 62

Next, we must apply the logic rules to the input for each gate until
the final output is reached. In this example, we have A AND B, so the
partial truth table after that gate is passed is:

Table 16 Partial Truth Table - A AND B

Inputs AND Gate Output 1
Row | A B C_ﬁ A ANDB

0 0 0 0

1 0 0 0

2 0 1 0

3 0 1 [0

4 1 0 0

5 1 0 0

6 1 1 1

7 1 1 1

(For the sake of clarity, the C inputs are omitted from the truth table.)

The output of the AND gate labeled (D is input to the XOR gate. The
partial truth table is now given in Table 17.

Table 17 Partial Truth Table - C XOR @

Input X% R Gate Output
Row|/A [B | C AANDB |[C XOR®
0 0 0 0
1 1 0 1
2 0 0 0
3 1 0 1
4 0 0 0
5 1 0 1
6 0 1 1
i 1 1 0

LO 63

The output labeled D is the final output and the complete truth table
is:

Table 18 Final Truth Table for Circuit Output

Input | Output
Row | A E el b
0 0 0 0 0
1 0 0 1 1
2 0 1 0 | 0
3 0 1 1 1
4 1 0 0 0
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Notice that each logic element requires an output column in the
partial truth tables. In general, the size and complexity of the truth table
for a logic circuit is determined by the number of inputs and the number

', of logic elements in the circuit.

| Three Logic Gate and One Flip-Flop Circuit

For the next example, a D-type flip-flop and an AND gate will be
| added to the circuit. Now the circuit is as depicted in Figure 21.

LO 64

: —D?ﬁ}}

—] DATA ONE

Figure 21 Three Logic Gate and One Flip-Flop Circuit

Since there are four inputs in this extended logic circuit (A, B, C, and
the value of the flip-flop), the truth table must contain 16 rows as
shown in Table 19.

Table 19 All Possible Input Values for a
4-Input Circuit

Row | A B C | ONE
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

LO 65

Again, applying the logic rules to the inputs entering the first AND
gate, the partial truth table would be as shown in Table 20.

Table 20 Partial Truth Table — A AND B

-
Row | A B C | ONE |[AANDB
0] o0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 1 0
510 1 0
6 0 1 0
7 0 1 0
8 1 0 0
9 1 0 0
10 1 0 0
11 1 0 0
12 1 1 1
13 1 1 1
14 1 1 1
15 1 1 1

Now, applying the XOR to the output of the first AND gate, labeled
@. the partial truth table is:

LO 66

Table 21 Partial Truth Table - C XOR @

| @ @
Row | A | B | c | ONE|| AANDB | C XOR®

0 0 0 0
1 0 I 0 0
2 1 0 1
3 1 0 |
4 0 0 0
b 0 0 0
6 1 0 1
7 1 0 1
8 0 0 0
9 0 0 0
10 1 0 1
11 1 0 1
12 9] 1 1
13 0 1 1
14 1 1 0
15 1 1 0

Finally, the output of XOR gate labeled (2 must be ANDed with the
ONE input of the flip-flop. The partial truth table for this logic operation
is shown in Table 22.

Table 22 Partial Truth Table - ONE AND(@2

@

Row | A | B c | ONE |[c XOR @D| ONE AND®@
0 0 0 0
1 1 /| O 0
2 0 1 0
3 1 1 1
4 o || o 0
5 1 0 0
6 0 1 0
7 1 1 1
8 0 0 0
9 1 0 0
10 0 1 0
11 1 1 1
12 0 1 0
13 1 1 1
14 0 0 0
15 1 0 0

LO 67

Since this AND is the last logical element, the final truth table (Table
23) can be written that specifies the circuit completely.

Table 23 Complete Truth Table for Extended Circuit

Row | A B C |ONE | X
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
1 1 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0

As the preceding demonstration proved, developing the complete
truth table by hand for even this relatively simple logic circuit (four
input lines, three logic gates, and a single flip-flop) was a time-con-
suming and error-prone task.

Four Logic Gate and a Flip-Flop Circuit

On many occasions the complete specification of a logic circuit is
unnecessary as all possible input values may not exist or may be irrele-
vant. When a particular output for a given set of inputs is irrelevant, it is
known as a don’t care output. In those cases, the number of rows in the
truth table for the logic circuit can be substantially reduced, or the

output value for a particular set of inputs is obvious without the truth
table.

LO 68

Figure 22 shows a simple logic circuit consisting of four AND gates,
labeled 1. 2. 3, and 4, and one D-type flip-flop. This circuit stores
(writes) one bit of data into the flip-flop, or reads a data bit from the
flip-flop.

% S
Y __‘_j 2 r DATA
READ — } ouT

DATA IN DATA ONE —J_
1 a cLOCK
WRITE

Figure 22 Four Logic Gate, One Flip-Flop Logic Circuit

To better comprehend the operation of this circuit, we will trace its
operation with two different sets of inputs. First, we will examine the
circuit with a 1 input to the X, Y, and WRITE lines and a O to the READ
line. When we review this possibility, we will examine the same circuit
with a 1 input to the X, Y, and READ lines, and a O to the WRITE line.
Because the inputs in both cases are limited, a truth table will not be
needed.

To initiate a write operation, the X and Y inputs must both be a 1,
and must change to a 1. This causes the output of AND gate 4 to
switch from a O to a 1. When this O to 1 transition (_1) appears at the
CLOCK input of the flip-flop, it sets the flip-flop (if DATA IN = 1), or
resets the flip-flop (if DATA IN = 0). In other words, the flip-flop as-
sumes the state of DATA IN when it is triggered by a 0 to 1 transition.
During this write operation, the READ input remains a O.

To initiate a read operation, the READ input must be switchedto a 1
(X and Y must still be 1s). This causes AND gate 2 to output a 1 which
enables gate 3. “Enable” means that data is allowed to pass through
AND gate 3. In other words, ifa 1 is stored in the flip-flop, a 1 will also
appear on the DATA OUT line. Conversely, if a O is stored in the flip-
flop, a O will appear on the DATA OUT line.

LO 69

Inputs X and Y are used to enable or disable this circuit. When either
or both inputs are 0, gate 1 outputs a 0. This 0, in turn, disables AND
gates 2 and 4 so that an input of READ = 1 or WRITE = 1 has no
effect on the circuit. Before a read or write operation can take place, X
and Y must be a 1.

Logical Equations for Circuits

An alternate method to the truth table for representing a logic circuit
is by means of a /ogical equation. The logical equation is a very com-
pact representation for the circuit, but is not always as clear or easy to
understand as a truth table. The logical equation for the circuit shown
in Figure 20 is:

D=((A.B)@C

This equation simply states that the input must first be ANDed with
the B input and the results XORed with the C input. The following
equations are the logical equations for the other circuits presented as
examples in this unit.

Circuit Figure Equation

Extended

Logic 21 X=((A+B)@C)-ONE

Four Gate,

Flip-Flop 22 DATA-QOUT = ((X+Y) « READ) « DATA

Logical Design in Practice

As we have seen, the design of logical circuits is a complex, time-
consuming task. Fortunately, technological advances have almost elim-
inated the hand method described here. Computer programs are now
used to design the complex circuits required by modern computers.

Although the computer has taken over the design work, the general
procedure used is similar to the hand method discussed in this lesson.
The computer must initially determine the truth tables for the specific
circuits. Then the logical equations must be developed and examined
by the computer program to determine the most efficient and econom-
ical circuit for the task. Ultimately, other computer programs draw the
actual circuit diagram.

LO 70

Manufacturing and Packaging of Logic Components

Today's computers are constructed of highly miniaturized com-
ponents called integrated circuits (IC). Modern computers owe their
tremendous speed and efficiency to these integrated circuits. An entire
circuit is placed on a tiny silicon wafer (Figure 23). These wafers, or
chips, can contain hundreds of logic gates and flip-flops that are inter-
connected internally. Each chip performs specific functions within the
computer. For example, a single chip can contain a number of registers
or a complex decoder circuit. Technological advances in chip manufac-
turing and miniaturization have already developed to a high level of
sophistication. This method of manufacturing is known as /arge-scale
integration or LS/,

Py LI
et gl e

b 1

Figure 23 Chip

This silicon chip is enclosed or packaged in a plastic case. This type
of packaging provides rugged protection and facilitates handling and
installation. The external connections for the integrated circuit chips are
called pins. Many of these integrated circuits can be mounted on a
single printed circuit board. Figure 24 depicts one of these circuit
boards with a number of integrated circuits.

T g . : 1 .- .r' g ¥ .. iy .
it IR R
Figure 24 Circuit Board

Integrated circuits provide many advantages over previously devel-
oped computer components. Among these advantages are:

* Small size

* Reasonable cost

* Low power requirement

* Extremely high-speed execution of logic operations

* Low heat dissipation

Continued advances are expected in large-scale integration tech-

niques, and logic for computers will become more compact, cheaper,
and more efficient.

LO 72

s module and evaluate your

Take the test for thi
module.

answers before studying another

Lo 73

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038
	Scan0039
	Scan0040
	Scan0041
	Scan0042
	Scan0043
	Scan0044
	Scan0045
	Scan0046
	Scan0047
	Scan0048
	Scan0049
	Scan0050
	Scan0051
	Scan0052
	Scan0053
	Scan0054
	Scan0055
	Scan0056
	Scan0057
	Scan0058
	Scan0059
	Scan0060
	Scan0061
	Scan0062
	Scan0063
	Scan0064
	Scan0065
	Scan0066
	Scan0067
	Scan0068
	Scan0069
	Scan0070
	Scan0071
	Scan0072
	Scan0073
	Scan0074
	Scan0075

