Introduction
Mimcompute ST

i

m‘lhchmqﬂes ' e | .

1st Printing, June 1976
2nd Printing (Rev). October 1977
3rd Printing, August 1979

Copyright © 1976, 1977, 1979 by Digital Equipment Corporation

The reproduction of this workbook, in part or
whole. is strictly prohibited. For copy information
contact the Educational Services Department

Digital Egquipment Corporation. Bedford, Massa-
chusetts 01730,

Printed in U.S.A.

INTRODUCTION TO MINICOMPUTERS

1/0 Techniques

Student Workbook

Audio-Visual Course by Digital Equipment Corporation

COURSE MAP

os
OPERATING
SYSTEMS
PROGRAMMING 0
LANGUAGES
FILE
ORGANIZATION
GENERAL

SOFTWARE

BU

BUS
STAUCTURES

CENTRAL
PROCESSOR

FD

PERIPHERAL
DEVICES

INSTRUCTION
SETS

COMPUTER
ARITHMETIC

PROBLEM
SOLVING

TERMS AND
CONVENTIONS

ov
SYSTEM
OVERVIEW
5G
STUDENT
GUIDE

CONTENTS
INBOdACHON ..o s

Programmed Data Transfers

Objectives and Sample Test Items.................. . —

Advantages and Disadvantages..............
Exercises and Solutions

Program Interrupt Data Transfers.................c......c..ocoooovvion)

Objectives and Sample Test Items ...
Advantages and Disadvantages....

Polling Tables and Multlple Interrupt Lauels

Exercises and Solutions...

DMA Data Transfers ...
Objectives and Sampla Test Items
The DMA Transfer Pmcess.................,

Advantages and Disadvantages..............ccc.cocoeu.... RTSELISE

Exercises and Solutions.............ccoevevvinn,

10 v

O~ wWw

W . |
L
w18

15

D

FIRELIL 45
e
il
29
3 1

/0 Techniques

Introduction

An essential feature of any computer is the ability to perform input
and output operations. Without this ability, the computer would require
data to be manually stored and retrieved from specific memory loca-
tions using the console switches and lights. This laborious, primitive,
and error-prone method can be eliminated by employing various
input/output (I/0) techniques or methods.

170 techniques provide the programmer with relatively easy ways of
transferring data between the CPU, main memory, and the computer's
peripheral devices. Communication among these various hardware
items is accomplished over one or more bus structures. A typical con-
figuration of busses and hardware items is shown in Figure 1. Notice
that there is always at least one pathway for data transfer between any
two computer components. Some devices (such as terminals and line
printers) require the intervention of the CPU in all data transfers
involving main memory, while other devices (such as disk and magnetic
tape units) may be able to access main memory directly without CPU
intervention.

MEMORY
BUS 170 BUS

cPu K 3

DmMmaA
BUS

MAIN DISK TERMINAL
MEMORY INTERFALCE INTERFACE

[1

DISK TERMINAL

Figure 1 A Typical Three-Bus Computer Configuration

10 1

This module discusses three major I/0 techniques. Each technique
involves at least the following operations:

* [nitiation of the process by either hardware or software
® Control of the process by either hardware or software
® Specification of the data including addresses, types, and counts

Each technique will be discussed in a separate lesson. Before pro-
ceeding to Lesson 1, you may wish to review information on the follow-
ing subjects:

Main Memory
Central Processor
Peripheral Devices
Bus Structures
General Software

Programmed Data Transfers

OBJECTIVES

1. Given a list of the five steps of a programmed data transfer
and five definitions, be able to: (1) match each step with its
definition, and (2) label the position of each step in chronolog-
ical order.

2. Given four criteria for a programmed data transfer and four
descriptions, be able to match each criterion with its descrip-
tion.

SAMPLE TEST ITEMS

1. The five steps of a programmed data transfer and five defini-
tions are given below. Match each step with its definition.
Then, in the column labeled Chronological Order, write a “1"
next to the first step to be completed, a “2” next to the
second step, etc., until the last step is reached.

Steps Definitions Chronological Order
Ready Test S e
Ready Flag Reset e i
Definitions

a. Set to O immediately after the INPUT instruction has been
exhausted.

b. Necessary because the CPU is much faster than peripheral
devices.

I0 3

Mark your place in this workbook and view Lesson 1
in the A/V program, “1/0 Techniques.”

Programmed data transfers are the simplest form of /0 technique
because the software both initiates and controls the process of transfer.
The hardware’s responsibilities are then confined to merely performing
the necessary operations. A sample programmed data transfer is
shown in Figure 2.

Test Flag TEST FLAG

SKIP IF 1
JUMP -2
YES
character
Resat Flag
to 0 CLEAR FLAG

Figure 2 Sample Programmed Data Transfer

A typical programmed data transfer consists of five steps:

1. Ready Test - A flip-flop, called the ready flag or ready bit, is
tested to determine if the appropriate device is ready. A value of
0 indicates that the device is not ready; a value of 1 indicates the
device is ready for the next operation. Device readiness must be
tested because the CPU is much faster than peripheral devices.
Hence the CPU must frequently check to see if the device has
“caught up.”

2. Conditional Loop - The test is followed by a conditional skip
instruction. If the ready flag is 1 (device ready), the skip is taken,
and the program proceeds to the next step. If the ready flag is O,
a branch causes the test instruction to be re-executed. The com-
puter, therefore, waits for a slow device by continually testing
the readiness of the device until it reports itself ready.

3. 1/0 Operation - When the 1/ device is ready, the actual oper-

ation can be performed. In the example of Figure 2, a single
character is being INPUT from the teleprinter.

I0 5

4. Ready Flag Reset — Immediately after the INPUT instruction
has been executed, the CPU resets the ready flag to zero (not
ready). Thus, the CPU resets a device flag to not ready, and the
device interface sets it to one (ready) after the device has com-
pleted its 1/0 operation.

5. Process Recycle - Finally, if the |/0 operation is to be immedi-
ately repeated. the program loops back to the test instruction to
wait until the device is again ready.

TEST
READY
FLAG

MO

YES

TRAMSFER
DATA

RESET
READY
FLAG TO D

Figure 3 Sequence of a Programmed Data Transfer Technique

The steps listed above and illustrated in Figure 3 must be executed
each time the operation is to be performed. In the example in Figure 2,

each character typed on the teleprinter will require one execution of the
steps.

When a sequence of steps, such as in Figure 2, is repeated at differ-
ent points in a program, the sequence is frequently written as a sub-
routine in order to reduce programming time and memory usage. In

general, there will be one subroutine for each different 1/0 operation
required.

I0 6

Advantages and Disadvantages

Programmed data transfers have one primary advantage - they
allow simple hardware interfaces because most of the management of
the 1/0 operations is performed by the software. Under some circum-
stances, a subsidiary benefit may be the greatly enhanced ability of the
programmer to exercise precise control of the 1/0 operations. However,
this is seldom an important consideration.

There are two significant disadvantages to the programmed data
transfer technique. First, valuable CPU time is wasted while the CPU
waits for the device to become ready. Secondly, this technique is not
efficient because three memory cycles are required to move a word
between a peripheral device and main memory. Therefore, pro-
grammed data transfers are generally used only with slow devices
(such as teleprinters, paper tape equipment, and slow card readers),
which normally handle one character or byte at a time. Higher speed
devices (such as disks, magnetic tapes, and fast card readers), which
handle large amounts of data, transfer data using more efficient meth-
ods described in the following lessons.

10 7

EXERCISES

1. List one advantage and one disadvantage of the programmed data
transfer method.

2. Does the hardware or the software initiate a programmed data
transfer?

3. Does the hardware or the software contro/ a programmed data
transfer?

4. List the major steps in a programmed data transfer sequence.

I0 9

SOLUTIONS

1. List one advantage and one disadvantage of the programmed data
transfer method.

Advantage: Allows simpler hardware interfaces.
Disadvantages:
a. Wastes CPU time.

b. Inefficient for large data transfers between memory and high-
speed storage devices.

2. Does the hardware or the software initiate a programmed data
transfer?

Software

3. Does the hardware or the software contro/ a programmed data
transfer?

Software
4. List the major steps in a programmed data transfer sequence.
a. Test Ready Flag (1 = device ready; 0 = device not ready)
b. Conditional Loop (continue looping until device is ready)
c. 1/0 Operation (perform the actual data transfer)
d. Ready Flag Reset (CPU marks the device not ready)

e. Process Recycle (go back to test the ready flag if another trans-
fer is immediately required)

10 10

Program Interrupt Data Transfers

OBJECTIVES

1. Given a list of the five steps of a program interrupt data trans-
fer and five definitions, be able to: (1) match each step with
its definition, and (2) label the position of each step in chrono-
logical order.

2. Given seven statements referring to methods of establishing
device priorities, be able to label those that refer to the polling
method and those that refer to the multiple interrupt levels
method.

3. Given four criteria for a program interrupt data transfer and
four descriptions, be able to match each criterion with its
description.

0 11

SAMPLE TEST ITEMS

1. The five steps of a program interrupt data transfer and five
definitions are given below. Match each step with its defini-
tion. Then, in the column labeled Chronological Order, write a
“1” next to the first step to be completed, a ‘2" next to the
second, etc., until the last step is reached.

Step Definition Chronological Order
Register Restored TS it
Register Saved s e
Definitions

a. Current program data is put aside in memory so that the
CPU registers may be used during the data transfer.

b. CPU registers returned to their status at the time of the
program interrupt.

-
-

2. Indicate that each of these statements refers to the polling
method (P) or the multiple interrupt levels method (M) of
establishing device priorities by writing the correct letter in
the space provided.

Statement Method

Implemented by hardware via 1/0
bus. _—

Involves more costly hardware than
the other method. -

10 12

Mark your place in this workbook and view Lesson 2
in the A/V program, “1/0 Techniques.”

Program interrupts are a more efficient 1/0 technique than pro-
grammed data transfers because the CPU does not waste time waiting
for a device to become ready. Rather, the CPU executes the current
program until the device interface signals that the device is ready. Tele-
printer mechanisms process each character and signal that they are
ready for the next in approximately one tenth of a second. Computers,
on the other hand, move a character between memory and the tele-
printer interface in several microseconds. This means that when using
programmed data transfers, the processor may execute the wait loop
approximately 10,000 times between characters unless the program-
mer cleverly arranges other instructions for the processor to do. The
use of program interrupts makes it easy for the programmer to provide
useful instructions for the processor to execute while it is waiting.
Remember that program interrupt data transfers are initiated by the
hardware. Control of the transfer is maintained by a special program
called a device handler. Thus, a program interrupt data transfer is con-
trolled by software.

Stop executing main program

i
Save contents of registers

Execute device handler

Restore registers to original states

AResuma main program

Figure 4 Sample Program Interrupt Data Transfer

A typical program interrupt data transfer is shown in Figure 4, and
consists of five straightforward steps. which are listed below and illus-
trated in Figure 5.

1. Program Interrupted — The CPU detects an interrupt signal on
the 1/0 bus from some device interface. Following the com-
pletion of the current instruction, the CPU stops executing the
program.

I0 13

2. Register Saved - The current contents of the CPU's registers
are stored in memory so that the registers may be used during
the data transfer, without destroying data from the program.

Device Handler Executed —- The CPU goes to a fixed location in
memory to obtain the address of the starting location of the
device handler. This fixed location pointing to the device handler
is called an interrupt vector. The CPU then jumps to the indicated
address and begins executing the device handler instructions.

4. Register Restored - Upon completion of the device ha ndler, the
CPU’s registers are restored to their status at the time of the
interrupt.

. Normal Execution Resumed - Finally, execution is returned to
the point where is was interrupted. Thus, the program is exe-
cuted as if nothing had happened during the execution of the
data transfer.

INTERRUPT
MAIN
PROGRAM

SAVE
REGISTER
CONTENTS

EXECUTE
DEVICE
HANDLER

RESTORE
REGISTER
CONTENTS

A
RESUME
MAIN
PROGARAM

Figure 5 Sequence of an Interrupt Data Transfer Technique

I0 14

Advantages and Disadvantages

There are two disadvantages to the program interrupt data transfer
technique. First, this technique, as with the programmed data transfer
technique, is not efficient for large blocks of data because too much
time is spent controlling the transfer. Remember that although the
hardware initiates the interrupt, the software (and hence the CPU) still
controls the transfer operation. Secondly, the device interfaces are
more complex for this technique because additional logic must be built
to initiate the interrupt process. Hardware costs, therefore, tend to rise.

There are, however, two significant advantages to counterbalance
these drawbacks. Of primary importance is the fact that CPU time is
more efficiently used because no time is wasted waiting for a device to
become ready. A program is interrupted only when a device is ready. At
all other times, the CPU can be devoted to internal processing. A sec-
ond advantage is the ability to establish individual priorities for periph-
eral devices. This aspect of the program interrupt data transfer
technique is discussed next.

Polling Tables and Multiple Interrupt Levels

The ability to establish device priorities is an important one. High-
speed storage devices such as disk and magnetic tape units require
very quick response to their interrupt request or data may be lost. In
contrast, low-speed devices can usually wait without losing data.
Therefore, devices such as teleprinters and card readers are assigned
low priorities. Each device, regardless of type, is assigned a unique
interrupt priority in order to eliminate a conflict when simultaneous
interrupt requests occur. With unique priorities, the device with the
higher priority will always be serviced first.

One method of establishing priorities is through the use of a polling
table (Figure 6). This is simply a list of all the peripheral devices in
descending order by priority. When an interrupt request is detected, the
CPU polls or questions each device to find out which one needs serv-
icing. Because the table is ordered by priorities, those devices with the
highest priorities will always be polled first. Therefore. interrupt serv-
icing of them will be the most rapid. Devices (such as teleprinters) at
the low end of the polling table will be serviced only if no other device
(of higher priority and earlier in the list) requires service. When polling
tables are used, they identify the interrupting device and call the appro-
priate device handler. Therefore the priority structure is part of the soft-
ware and may be changed easily.

10 15

POLLING
TABLE
1. DISK
2. TAPE

3. CARD
4. TELEP

Figure 6 Polling Table

The second common method of establishing priorities is the use of
multiple interrupt levels (Figure 7). In this case, the I/0 bus has several
interrupt lines rather than one, and each interrupt line is associated
with a unique priority level. The priority of an individual peripheral
device is then determined by which interrupt line is connected to the
device's interface. The CPU also has an interrupt level, but unlike the
peripheral devices (which have fixed, hardware priority levels), the CPU
has a variable priority level which can be controlled by the software.
There is a simple reason for this. Once the CPU begins servicing an
interrupt request, it should not be interrupted unless a higher priority
device needs service. Therefore, when multiple interrupt levels are
used, the device handler assigns the CPU a priority level, enabling it to
ignore requests from devices of equal or lower priority than the one
currently being serviced. When the operation is complete, the CPU’s
priority level is restored to its previous level,

The choice between polling tables and multiple interrupt levels is
one of weighing the somewhat slower polling table procedure against
the more costly hardware required for multiple interrupt levels. Each
method is useful, and some machines even combine both methods to
establish a more complex system of assigning priority levels to periph-
eral devices.

10 16

1

disk
interface

<:I highest
priority

-y

i

magnetic tape
interface

LLTTETTTTTET

T

card reader
interface

I

teleprinter
interface

lowest
priority

Figure 7 Multiple Interrupt Levels

10

17

EXERCISES

1. List one advantage and one disadvantage of the program interrupt
data transfer method.

2. Does the hardware or the software initiate a program interrupt data
transfer?

3. Does the hardware or the software control a program interrupt data
transfer?

10 19

SOLUTIONS

1. List one advantage and one disadvantage of the program interrupt
data transfer method.

Advantages:

a. Is less wasteful of CPU time because the CPU does not have to
wait for a device to become ready.

b. Allows the establishment of priorities for the servicing of periph-
eral devices.

Disadvantages:

a. Uses more expensive hardware because the interfaces must
have more logic.

b. Not an efficient technique for transferring large blocks of data.

2. Does the hardware or the software initiate a program interrupt data
transfer?

Hardware (the device interface)
3. Does the hardware or the software contro/ a program interrupt data
transfer?

Software (the device handler)

10 20

EXERCISES

4. List the major steps in a program interrupt data transfer sequence.

5. Briefly describe the differences between polling and multiple inter-
rupt levels as methods of establishing priorities.

10 21

.#_—‘

SOLUTIONS
4. List the major steps in a program interrupt data transfer sequence.

a. Program Interrupted
(CPU detects interrupt request from a device interface and stops
executing the present program.)

b. Register Saved
(The present program’s register contents are stored in memory
for later use.)

c. Device Handler Executed
(The interrupting device is identified, and the appropriate device
handler services the request.)

d. Registers Restored
(The CPU's registers are restored to their status at the moment
of the interrupt.)

e. Normal Execution Resumed
(The original program begins executing at the point where it was
interrupted.)

5. Briefly describe the differences between polling and multiple inter-
rupt levels as methods of establishing priorities.

Polling is a method using a software table in which each device is
listed in descending order of priority. When an interrupt request is
detected, the CPU tests each device in order to see which one needs
service.

Multiple interrupt levels are accomplished by sharing several inter-
rupt lines on the |/0 bus. A device's priority is fixed by connecting a
specific interrupt line to the device's interface. The CPU has a vari-
able priority level to enable it to ignore low-priority interrupt
requests when servicing a higher priority one.

Both methods achieve the same results — providing the quickest
service to the devices that need it most.

EXERCISES

6. Define:

a. Interrupt vector

b. Device handler

SOLUTIONS
6. Define:

a. Interrupt vector - A fixed location in memory which contains
the starting address of a device handler.

b. Device handler - A special program that identifies which

peripheral device initiated the program interrupt and then ser-
vices that device.

10 24

DMA Data Transfers

OBJECTIVES

1. Given a list of the seven steps of a DMA data transfer and
seven definitions, be able to: (1) match each step with its
definition, and (2) label the position of each step in chronolog-
ical order.

2. Given four criteria for a DMA data transfer and four descrip-
tions, be able to match each criterion with its description.

SAMPLE TEST ITEMS

1. The seven steps of a DMA data transfer and seven definitions
are given below. Match each step with its definition by
writing the correct letter in the space provided. Then, in the
column labeled Chronological Order, write a 1" next to the
first step to be completed, a “2" next to the second step, etc.

Step Definition Chronological Order
Program Initiates
Transfer i e
Signal Completion e e
Test Device Readiness _______ S
Definitions

a. Interface informs the CPU that the transfer has been com-
pleted and the device is free.

b. Only step not performed by the interface.

c. Interface performs essentially the same check as de-
scribed for programmed data transfers.

Mark your place in this workbook and view Lesson 3
in the A/V Program, “1/0 Techniques.”

The 1/0 techniques discussed in the two previous lessons are
inefficient for transferring large blocks of data. A third technique, direct
memory access (DMA), does provide an efficient means of performing
such transfers. Figure 8 depicts the DMA data transfer process.

main
mamory

interface

Figure 8 DMA Data Transfers

DMA data transfers occur directly between main memory and high-
speed storage devices such as disk and magnetic tape units. Frequently
the transfer occurs on a separate DMA bus and does not involve the
CPU. A DMA transfer is initiated by a program, but the actual contro/ of
the transfer is exercised by the device's interface. The CPU is, thus, free
to perform independent processing operations while the transfer is tak-
ing place. Figure 9 shows a sample of the DMA data transfer.

0 27

Program initiates
transfer

-0 READY

YES

| Steal control of memoary I

INTERFACE J éwlmw:utwwg?

Iﬂnm‘dt interrupt pqml—l

o

Figure 9 Sample DMA Data Transfer

The DMA Transfer Process

A typical DMA data transfer requires the following steps, which are
illustrated in Figure 9:

1. Program Initiates Transfer — A DMA transfer is initiated by a
program when it specifies:

* The device to be used

® The operation (input or output)

* The word count

® The current address

The word count is the number of words to be transferred in this
operation, and the current address is the location of the first

word in memory to be affected by the transfer. All subsequent
steps are performed by the interface.

2. Test Device Readiness - The interface performs essentially the
same test as was described for programmed data transfers.
When the device is ready, the interface proceeds to the next
step.

I0 28

3. Steal Memory Control - The interface next temporarily takes
control of memory from the CPU. At this point, the CPU can-
not utilize memory.

4. Transfer One Word - One word is transferred between
memory and the device. The direction of the transfer is deter-
mined by which operation was specified by the program. The
memory location involved in the transfer is indicated by the
value of the current address. Memory control is immediately
returned to the CPU once the transfer is complete.

5. Update Control Parameters - The interface updates the
word count (WC) to reflect the transfer of a word. At the same
time, the current address (CA) is also updated to point at the
next word to be affected.

6. Test Completion - The word count is tested for zero, the
indication that the entire transfer has been completed. If there
are remaining words to be transferred, the interface goes back
to step 2 to wait for the device to become ready again.

7. Signal Completion - When the word count is zero, indicating
the transfer is complete. the interface transmits an interrupt
signal to the CPU via the I/0 bus to indicate that the transfer
has been completed and the device is free.

Advantages and Disadvantages

The primary advantage of the DMA data transfer technique is that it
provides the efficient transfer of data between storage devices and
memory without involving the CPU.

However, hardware costs are greater. The interface must be both
sophisticated and expensive to perform the several logical functions
required of it. On many machines, use of DMA techniques also requires
the addition of a DMA bus. Despite the hardware costs required by the
DMA technique, it is nearly always used for large transfers as it is the
most efficient alternative.

I0 29

l
|

EXERCISES

1. List one advantage and one disadvantage of the direct memory
access data transfer method.

2. Does the hardware or the software initiate a DMA transfer?

3. Does the hardware or the software contro/ a DMA transfer?

10 31

SOLUTIONS

1. List one advantage and one disadvantage of the direct memory
access data transfer method.

Advantage: Only efficient way to transfer large blocks of data from
high-speed storage devices to main memory.

Disadvantages:
a. Requires expensive interfaces because of complex logic.
b. Not efficient for transfers involving small amounts of data.
2. Does the hardware or the software initiate a DMA transfer?
Software
3. Does the hardware or the software control a DMA transfer?

Hardware

I0 32

EXERCISES

4. List the major steps in a DMA data transfer sequence.

SOLUTIONS
4. List the major steps in a DMA data transfer sequence.
a. Program Initiates Transfer
Specifies
* Which device
* Which operation
* Word count (how much data)
® Current address (what memory location to use)
b. Test Device Readiness
Continues testing until device is ready.
c. Steal Memory Control
CPU temporarily relinquishes memory control to the interface.

d. Data Transfer

The operation specified by the program is performed on a
single word.

e. Update Control Parameters

The word count and current address are updated to reflect the
transfer of one word.

f. Test Completion

If the word count is zero, the transfer is done. If not, go back
to step b.

g. Signal Completion
When the word count is zero, the interface transmits an inter-

rupt signal to the CPU over the |/0 bus to inform the CPU that
the transfer has been completed.

10 34

EXERCISES

5. Define:

a. Word Count

b. Current address (in the context of DMA transfers)

10 35

SOLUTIONS

5. Define:

a. Word Count - A parameter initialized by the software when the
DMA transfer is initiated. It indicates the number of words
remaining to be transferred. The word count is updated each
time a word is transferred.

b. Current Address - Another parameter initialized by the soft-
ware, the current address is the memory location to be used
during the transfer. Like the word count, the current address is
updated after each word is transferred.

10 36

Final Review

Table 1 compares the three 1/0 techniques discussed in this module.

Table 1 Comparison of I/0 Techniques
Programmed Program
Criterion Data Transfers Interrupts DMA
Advantages Allows simple CPU does not wait Only efficient way
hardware for device to transfer large
data blocks
Allows priorities to
be established
Disadvantages Wastes CPU time Hardware is more Hardware is wvery
expensive expensive
Inefficient for large
data blocks Still not efficient
for large data Inefficient for small
blocks amounts of data
Initiated by Software Hardware Software
Controlled by Software Software Hardware
CPU
Utilization High Moderate Minimal
CPU
Efficiency Low Good Excellent

10

37

Take the test for this module and evaluate your
answers before studying another module.

10 39

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038

