Introduction
O e e e
Minicomputers-.

Generhl Soltware =
i
ul gl %
T A W

1st Printing. June 1976
2nd Printing (Rev), October 1977
3rd Printing. August 1979

Copyright © 1976, 1977. 1979 by Digital Equipment Corporation

The reproduction of this workbook, n part or
whole, is strictly prohibited. For copy infarmation
contact the Educational Services Department,
Digital Equipment Corporation. Bedford. Massa-
chusetts 01730,

Printed in U.S.A.

INTRODUCTION TO MINICOMPUTERS

General Software

Student Workbook

Audio-Visual Course by Digital Equipment Corporation

PROBLEM
SOLVING

COURSE MAP

DOPERATING
SYSTEMS

LA

PROGRAMMING
LANGUAGES

FO

FILE
ORGANIZATION

BU

BuUs
STRUCTURES

CENTRAL
PROCESSOR

PD

PERIPHERAL
DEVICES

INSTRUCTION
SETS

COMPUTER LOGIC &
ARITHMETIC HARDWARE
BASICS

NUMBER
SYSTEMS
TERMS AND
COMNVENTIONS
ov
SYSTEM
OVERVIEW
SG
STUDENT
GUIDE
SO iii

CONTENTS

L T T SR —— el
Assemblers and Assembly Language.......................ccccocoovvvvireiinn .3
Objectives and Sample Test Items..............ccoverevrinnn, AT, |
Definitions.... . SRR,
The Charamerlstms and Fc-rmat of Assemb#y Languages R,
The Advantages of Programming in Assembly Language Instaad
of Machine Code .. A N S SR A S s T
Exercises and Solutiuns.....,.......“......,.,.........,_., i1 Y
The Functions of an Assembler................... .
Exercises and Solutions.............cc.cue.u.. v}
High-Level Languages.... . .33
Objectives and Sample Tast Items B
A Definition of a High-Level Language - e
Further Contrasts Between High- and an Leve! Prngrammmg
Languages.... .36
Training F{eqmrements fnr Frogrammers - o i
Machine Independence EE
Ease of Documentationc...cocoeeviceciciie s seeeseeess s e 3 8
Length of Development........ 239
Execution Time... e R w R | .|
Computer Hes::urce Haqmremems for Translatnrs...............”.40
Exercises and Solutions... chis N

SO v

General Software

Introduction

Programs used by computers are called software, a term which pro-
vides a clear and useful distinction between computers themselves (the
hardware) and programs that regulate computer activities and capabili-
ties (the software).

As you know, computers are binary machines that can only execute
instructions composed of patterns of 1s and Os. Such instructions make
up what is called the machine code. Because programming in machine
code is both time consuming and error prone, nearly all computer soft-
ware is generated by people who write, or program, in various com-
puter languages.

A computer language is simply a set of special words and phrases
that enables people to tell computers what to do. Each language also
has special rules and punctuation symbols for combining these words
into instructions or statements.

There are many different computer languages designed to facilitate
the process of transforming an algorithm into a computer program.
However, the choice of the language in which programmers implement
an algorithm often determines the computer's efficiency in a given
application.

SO 1

The choice of the appropriate computer language is made easier by
a number of distinctions that divide the wide spectrum of languages
into several broad groups. This study unit focuses on the distinction
between low-level (assembly) languages and high-level languages such
as COBOL, FORTRAN, and BASIC.

This module is composed of two lessons. In Lesson 1, you will learn
about low-level, or assembly, languages and their relationship to the
binary machine code. You will also learn some of the functions of the
assembler. An assembler is the program which trans/ates assembly
language into machine code. Lesson 2 introduces high-level languages,
ilustrates their advantages and disadvantages relative to assembly lan-
guages, and demonstrates the relationship of high-level languages to
assembly languages.

SO 2

Assemblers and Assembly Language

OBJECTIVES

. Given five software concepts and five definitions. be able to

match each concept with its definition.

. Given seven descriptive statements, be able to select those

statements that describe the advantages of programming in
assembly language rather than machine code.

. Given a table of eight assembler actions and three assembler

passes, be able to match each action with the pass or passes
in which it is executed.

SAMPLE TEST ITEMS

. Match each of the following concepts with its definition by

writing the correct letter in the space provided.

Concept Definition

Source Program
Symbol Table

[] L)
Definitions

a. Form of a program as it is written by a programmer.

b. Establishes the relationships between labels and actual
addresses.

&
.

. Circle the letters of the statements that describe the advan-

tages of using assembly language rather than machine code.

a. Faster to write.
b. Manipulates a greater number of binary addresses.
c. Less costly to use.

SAMPLE TEST ITEMS

3. For each of the actions listed below, place an X in the column
corresponding to the assembler pass during which the action
occurs.

NOTE
Some actions may occur in more than one
pass. In such cases, indicate all passes in
which the action may occur.

Action Pass 1 Pass 2 Pass 3

Symbol Table

a. The symbol table is
constructed.

b. The symbol table is
printed.

Binary Machine Code

c. The binary machine
code is generated.

d. The binary code tape
is punched.

Assembly Listing

e. The assembly listing
is printed.

Error Checking

f. Duplicate labels are
detected.

g. Unresolved refer-
ences are detected.

h. Instruction syntax
errors are detected.

SO 4

Before proceeding, you may wish to review the mate-
rial covered in the study unit “Instruction Sets.” pay-
ing particular attention to the format of machine-
coded instructions. When you are ready, mark your
place in this workbook and view Lesson | in the A/V
program, “General Software.”

Definitions

The following are definitions of the concepts covered in the audio-

visual program.

Assembler

Assembly

Assembly
Language

Assembly
Language Program

Assembly
Listing

Binary Machine
Code Program

A program (usually supplied by the
computer manufacturer) that trans-
lates the source program (in assembly
language) into binary machine code.

The process of translation from sym-
bolic language (the source program) to
binary machine code.

The set of rules, symbols, and punc-
tuation for the programmer to obey in
writing symbolic language programs.

A source program written according to
the rules of an assembly language.

The side-by-side output of both the
source program and the corresponding
machine code generated by the
assembler.

A sequence of machine instructions
with binary op (operation) codes and
binary addresses. Sometimes the bit
patterns are represented by octal
notation.

SO 5

Source Program The form of the program as written by

the programmer. The source program
must be translated into machine code
because the symbolic addresses and
op codes used are not directly execu-
table by a computer.

Symbol Table An alphabetical ordering of symbols

(labels) used in a source program.
Each entry in the symbol table also
contains the actual address associated
with each individual label.

The Characteristics and Format of Assembly Languages

There are four important characteristics to remember about assembly
languages:

1.

The binary op codes of machine code are replaced by mnemonic
op codes in assembly language. This eliminates having to
remember bit patterns or octal numbers for operations and sub-
stitutes easy-to-remember words or abbreviations such as ADD
for addition or STR for store.

. The binary addresses of machine code are replaced by symbolic

addresses in assembly language. Thus, the programmer does not
have to calculate actual addresses but may label only those
addresses to which he/she specifically wishes to refer.

Because of the mnemonic op codes and symbolic addresses,
assembly language programs must be transfated (or assembled)
into machine code before they can be executed.

Each assembly language instruction corresponds to a single
machine code instruction. Thus, the process of assembly is
always a conversion to a single machine code instruction from
each assembly language instruction.

SO 6

A typical assembly language instruction contains up to four fields:
label, operation, operand, and comment fields. |n any instruction, all of
these fields need not be used. The following is a sample assembly
language instruction with four fields.

Label Operation Operand Comment
START ADD NUMBER /GET 1ST VALUE

The /abel field allows the labeled statement to be referenced sym-
bolically to another place in the program. Any reference to START as an
operand will refer to the location containing the ADD instruction. For
example, suppose we wish to jump unconditionally to the ADD instruc-
tion. The following instruction accomplishes this:

JMP START /GO TO ADD INSTRUCTION

Each occurrence of a label field causes a new entry to be inserted
into the symbol table. This entry contains the new label and its associ-
ated addresses. If an identical label has already been assigned, then a
conflict exists and an error message will be printed. Remember - a
label must always be unique within a program. Good programmers also
do not use more labels than necessary in order to minimize symbol
table size and increase the efficiency of the assembler. Hence, only
instructions that are referenced elsewhere should generally have label
fields.

The operation field contains a mnemonic name of a computer oper-
ation contained in the binary machine code instruction set. Using the
instruction set introduced in the study unit, “Instruction Sets,” the
mnemonic ADD is translated by the assembler into the binary op code
of 00 1 (or octal code of 1). Thus, each op code in the binary machine
code instruction set is represented by a mnemonic for the operation in
the assembly language. In some assembly languages, the occurrence of
a number (instead of a mnemonic) in the operation field indicates that
the numeric value rather than an instruction is to be stored there. Thus,

NUMBER, 25 /DATA

instructs the assembler to place the numeric value 25 in the location
labeled NUMBER.

SO 7

The operand field, when present, contains the address of a memory
location to be used with the instruction. Such an address is either the
source or the destination of the action specified by the operation field.
The name operand, therefore, denotes that the address is being acted
upon by the operation. Therefore, our sample instruction

START ADD NUMBER /GET 1ST VALUE

means ADD the value, contained at the memory location labeled NUM-
BER, to the value in the accumulator. In this case, NUMBER is the
source address of the value to be added. During the assembly of a
program, the assembler inserts the actual address of the operand
labeled NUMBER into the binary code produced.

The fourth field. the comment field, contains explanatory information
concerning the instruction. Although the comment field is always
optional, it should nearly always be used to help clarify the logic of the
program. The contents of the comment field are totally ignored by the
assembler and are used by programmers to document their program
logic. The comment field in many assembly languages is frequently
preceded by a special character such as / or ; To be useful, the com-
ment should not merely repeat the mnemonic operation but explain
why or how the operation is being done.

The Advantages of Programming in Assembly Language Instead of
Machine Code

The advantages of assembly language programming over binary
machine code programming are considerable and all result from mne-
monic and symbolic qualities of the assembly language.

e Assembly language is easier to learn. The operation mnemonics
are designed to require little or no memorization with regard to
their meanings. and most of the memorization required involves
remembering what operations are part of the instruction set.
Certainly ADD as a mnemonic is easier 10 remember than O O 1
as an op code, although it will produce an addition operation in
the computer.

* Assembly language is faster to write. The memory recall effi-

ciency of the operation mnemonics is a factor here as well. In
addition, the assembly language programmer is freed from the
laborious process of calculating operand addresses by deferring
address calculation to the assembler itself. As a result, a pro-
grammer can generate a program much quicker using assembly
language.

* Assembly language is less error prone. Even an experienced pro-

grammer is likely to produce errors when programming in
machine code for two reasons. First, the specification of the op
codes and addresses must be precise, and there are many
sources of confusion. Secondly, checking and editing machine
code may be ineffective due to similarities between instructions.
In assembly language, the differences are magnified. For
example, STR A might be 011 010 000 111 in machine code
and ADD A might be 001 010 000 111. While STR and ADD
are quite different in assembly language, in the binary machine
code there is only a difference in one bit between the instruc-
tions in the previous sentence.

An assembly language program is more easily documented.
Assembly language provides two important documentation aids
which are not available in binary machine code. The use of
labeled addresses allows data, as well as program steps, to have
meaningful symbolic names. This feature combined with the
valuable comment field allows an assembly language program to
be nearly self-documenting. A binary machine code program
must be documented externally and is nearly undecipherable
without documentation.

These advantages are so significant that very few programs are even
initially written in machine code. Also, the small cost of assembling the
program into binary machine code is far overshadowed by the savings
in programmer training, efficiency, and quality and by the usefulness of

retaining programs for possible reuse by someone else at a later date.

EXERCISES

1. List three advantages of using symbolic language (assembly lan-
guage) rather than machine code.

2. List the four fields possible in a typical assembly language
instruction.

3. Differentiate between “source program” and “machine code.”

SO 11

SOLUTIONS

1. List three advantages of using symbolic language (assembly lan-
guage) rather that machine code.

Easier to learn

Faster to write

Less error prone

More self-documenting

oo oo

2. List the four fields possible in a typical assembly language
instruction.

a. Label field

b. Operation field
¢. Operand field
d. Comment field

3. Differentiate between “source program” and “machine code."

Source program: The form of the program as it is written by the
programmer.

Machine code: A sequence of binary instructions that is executable
by a computer.

SO 12

EXERCISES
4. Define:

a. Assembler

b. Assembly

c. Assembly language

d. Assembly language program

SO 13

SOLUTIONS

4. Define:

Assembler: A program that converts a source program in
assembly language into binary machine code.

Assembly: The process of translating from a symbolic language
to machine code.

Assembly language: The set of rules for the programmer to
obey in writing symbolic language programs.

Assembly language program: A source program written
according to the rules of an assembly language.

If you had trouble completing these exercises, view
the A/V program again and/or reread the text. If cer-
tain points are still not clear, consult with your course
manager.

SO 14

The Functions of an Assembler

The assembler is a program usually supplied by the computer manu-
facturer. The assembler trans/ates the source program of assembly lan-
guage instructions into binary machine code capable of being executed
by the computer.

The translation process is accomplished by multiple passes or scans
through the source program. There are normally at least two passes
required, and occasionally three or more passes are used. On small
computers, each pass requires the operator to read in the source pro-
gram and/or intermediate results. On larger machines, where there is
sufficient memory for both the source program and the assembler to
exist in memory simulftaneously, the individual passes are invisible to
the user. These multiple passes are required because not all the infor-
mation necessary to produce a binary machine program can be gath-
ered in a single pass.

The first pass (Figure 1) defines the symbolic addresses and the
second pass uses them to generate code. The process of assembly is
described in more detail, pass by pass, on the following pages.

1 \|symbol| + error
/| table |checking

PASS 2 >

PASS 3 >
]

Figure 1 First Pass Operations

SO 15

PASS 1:

a. Symbol Table Creation

b. Instruction Format Checking

c. Duplicate Label Error Checking
d. Print Out Symbol Table

The first pass of an assembler is concerned with two primary tasks:

1. Setting up a table equating symbolic addresses with actual
addresses.

2. Checking that the instructions are properly constructed.

Each instruction is checked during the first pass to determine if it
obeys the rules, or syntax, of the assembly language. If the instruction
syntax is in error (caused by an improper or illegal operation mnemonic
or an incorrectly formed operand), assembly cannot proceed beyond
the first pass. All subsequent instructions will also be checked, but no
code will be generated until the language syntax is correct in each
instruction.

As the syntax of each instruction is being analyzed, the assembler
also checks if there is a label field in the instruction. If there is a label,
an attempt is made to insert a new entry for the label in the symbol
table. Because a location counter is updated each time an instruction is
processed, the assembler can also assign the associated actual address
to the symbol. If an entry already exists for the “new” label, then the
programmer has tried to define a symbol twice. This is an error which
prohibits any subsequent passes from executing, because references to
the symbol as an operand will be ambiguous - the assembler has no
way to decide which of the multiple occurences of the label is meant.
Each such error will cause an error message to be printed, and the first
pass will continue checking the remaining instructions before halting.
At the end of the first pass. the symbol table and any error messages
are printed out for the use of the programmer.

Thus, a successful first pass produces a complete symbol table with
the associated actual addresses. An unsuccessful first pass occurs
because one or more errors were detected, either in instruction syntax
or in the duplicate label assignment. An unsuccessful first pass prohi-
bits execution of subsequent passes.

SO 16

D PASS 11>Svmbﬂ'
table

rasolution of sddresses

code ganerainon

L)

Figure 2 Second Pass Operations

PASS 2:

a. Resolution of symbolic addresses

b. Error checking for unresolved references
c. Generation of the machine code

The second pass of an assembler (Figure 2) also has two primar,
tasks:

1. Resolution of symbolic addresses used in operands.
2. Generation of the machine code for the program.

SO 17

Each instruction is now examined a second time. The instructions
are processed individually and are encoded into the binary machine
code. The operation mnemonic is converted into the binary op code,
and the operand is converted into the binary operand (or address) code.
However, many instructions cannot be directly encoded as they contain
symbolic operands rather than actual addresses. Therefore, when an
operand is symbolic, the assembler looks up the symbol in the symbol
table, determines the associated actual address, and inserts the associ-
ated address as the binary operand address. This process is called the
resolution of an address. However, an error can be detected at this
stage that could not have been detected during the first pass — an
unresolved reference. This error occurs when a symbolic operand uses
a symbol that is never defined within the assembly language program,
and is detected when the assembler attempts to look up the operand in
the symbol table and cannot find an entry for it. An example should
clarify this problem:

Location Instruction
207 JMP NEXT
210
211
212 e
(NEXT?) 213 STRNUMBER

Let's assume that the programmer wished to jump from location
207 to 2I3 (the store instruction). but neglected to label the store
instruction with the symbol NEXT. No entry would have been created in
the first symbol table equating NEXT with location 213. When the sec-
ond pass attempts to encode JMP NEXT, it is unable to assign a desti-
nation address for the jump.

An unresolved reference prohibits the second pass from generating
correct machine code. Therefore, an error message is printed and code
generation stops, although the assembler may continue detecting for
further unresolved references. If no errors were detected during pass 2,
then the output of the pass (frequently paper tape) is the translated
program in machine code, ready for loading and execution.

SO 18

k

PASS 1 > symbol

table

Pass 2)

)

Figure 3 Third Pass Operations

< -

assembly
listing

PASS 3:

a. Output of symbol table again
b. Output of assembly listing

Many minicomputers have minimal input and output capabilities. 1/0
capabilities are frequently limited to a teleprinter. which can also
read/punch paper tape. If both paper tape output of the machine code
and a printed copy of the assembly listing are desired, then each must
be done on a separate pass. The teleprinter may be either a printer or a
punch at any moment, but it cannot print and punch simultaneously.
Accordingly, the paper tape of the binary machine code is punched on
the second pass, and all printing is deferred until the third (optional)
pass (Figure 3). The symbol table and assembly listings are recom-
mended under most circumstances to aid in debugging the program
during the development phase and to assist in documenting the pro-
gram when it is finished. This is why the third pass is nearly always
used with minicomputers.

On computer systems with a line printer or a separate paper tape
reader/punch, simuftaneous printing of the symbol table and assembly
listings and punching of the machine code paper tape is possible. There
is, then, no third pass required.

The symbol table listing is simply a printed copy of the table showing
the individual equivalencies of labels and addresses. This listing can be
very useful after a program has stopped because of an error. In this
case, the programmer can display on the console the contents of the
address shown in the appropriate symbol table entry. This will reveal
what the variable’'s value was at the time the program stopped.

SO 19

The assembly listing is a side-by-side printing of both the generated
machine code and the original assembly language source program.
Also included is the location corresponding to each instruction of the
program. The listing serves not only as a legible printed copy of both
source and machine code versions of the program but also as a
debugging tool during program development.

Most minicomputers provide the ability to step through a program
manually one instruction at a time. In this way, a program’s logic can be
confirmed or an error detected. The assembly listing (Figure 4) provides
a ready reference of the instructions and their locations, as well as a
quick means for retranslating from the machine code back to the
assembly language. Therefore, it is a useful tool for monitoring program
behavior and correcting logical errors,

177570 SWRwy773790 FTCONSOLE BWITCH REGISTEM
L LT IRELOCATABLE

ARPAR RA1PTASE START) MOV PC,AP

2eeR2 PAST4R TST ={5P) 18ET UP STACK POINTER

Pe0R4 Q1pSpR Moy SP,RO IGET ABSOLUTE ADDRESS

PRANE PE270n ADD WTTSERV=START,R2)0F TRACE TRAP SERVICE
pePRsd

ALRALZ 21rQy7 MOY Re,eN1 4 JLOAD INTO TRACE TRAP VECTORS
e2eni 4

POR1s PL2737 MOV H3dp,ewis IPRIORITY 7 INMIAITS INTERRUPYS
2epl4Q
ereR1s

POR24 PBRRRR HALT INAIT FOR oFERATOR

20R268 @B137pR MOV PH3WR, RO JGET 8WR CONTENTS
177576

PR32 péz27pp BIC 4182001 ,R0 FCONVERT TO REALISTIC ADDR
16mapy

@en3s pLR74as MoV #20,=(3P) T3ET T BIT FOR PROGRAM
gepp2a

P2P42 P1o048 MOV R, =(8P) FAND NEW PC FOR START ADDR

PARdd PlpREY MOV Re,FLAG F(FLAGe==START ADDR)wen|ST TINE
pepepz

ARASA pAPQRR2 RTI ITRANSFER TO PROGRAM

22n52 peplpr FLAGH «WORD B IFLAG WORD

Figure 4 Sample Assembly Listing

You have now learned about the format and characteristics of
assembly languages, the advantages of coding in assembly languages
rather than coding directly in binary machine code. and the major func-
tions and steps of an assembler, Do the following exercises before
continuing to Lesson 2.

SO 20

EXERCISES

1. List five functions of an assembler, giving two operations performed
in Pass 1, two operations performed in Pass 2, and at least one
operation performed in Pass 3.

Pass 1:

a.

Pass 2:

Pass 3:

SO 21

SOLUTIONS

1. List five functions of an assembler, giving two operations performed
in Pass 1, two operations performed in Pass 2, and at least one
operation performed in Pass 3.

Pass 1:

a. Symbol table generation

b. Syntax error checking

c. Duplicate label error checking

d. Output of symbol table

Pass 2:

a. Unresolved reference error checking
b. Output of the machine code

Pass 3:

a. Output of the symbol table

b. Qutput of the assembly listing

SO 22

EXERCISES

2. Examine the following sample program in assembly language:

CLA

START, ADD NUMBER
ADD NUMBER
ADD NUMBER
ADD NUMBER
STRSUM
HLT

NUMBER, 7

SUM 0

/CLEAR ACCUMULATOR
/GET FIRST VALUE
/CONTINUE WITH
/ADDITIONAL

/VALUES TO BE ADDED
/SAVE RESULT

Equivalencies

Mnemonic

CLA
ADD
STR
HLT
“Data”

where:
XXX

Assume that the starting location of the program will be at 200 and
that each instruction requires one memory location. Fill in the infor-
mation for one pass of the assembler at a time. Check your answers
before proceeding to the next pass. This will eliminate any possible

cumulative errors.

(Continue Exercise 2 on page SO 25.)

= the octal address of the operand
yyy = the octal data value

Machine Code

7200
1xxx
3xxx
7402

Oyyy

SO 23

EXERCISES

2a. Fill in all information which is known after the completion of the
FIRST PASS. Also write the word "OUTPUT" under any information
which is printed or punched during the pass.

Source Program Mnemonic Machine
Code
CLA
START, ADD NUMBER CLA 7200
ADD NUMBER ADD 1xxx
ADD NUMBER STR 3xxx
ADD NUMBER HLT 7402
STR SUM “Data” Oyyy
HLT
NUMBER, 7
SUM, 0
PASS 1:
Symbol Table Binary Machine

Code Tape
Symbol Address -

............

Assembly Listing

Machine
LOC Code Label Mnemonic Operand

200
201
202
203
204
205
206
207
210

SO 25

SOLUTIONS

2a. Fill in all information which is known after the completion of the
FIRST PASS. Also write the word “OUTPUT" under any information
which is printed or punched during the pass.

Source Program

200 CLA
201 START, ADD NUMBER
202 ADD NUMBER
203 ADD NUMBER
204 ADD NUMBER
205 STR SUM
206 HLT
207 NUMBER, 7
210 SUM, 0
Symbol Table Binary Machine
Code Tape
Symbol Address
e

NUMBER | 207 I

START 201

SUM 210

OUTPUT
Assembly Listing
Machine

LOC Code Label Mnemonic Operand
200
201
202
203
204
205
206
207
210

REMEMBER — The first pass orders the symbol table alphabetically.
The associated address is the location of the labeled instruction. The
symbol table is output at the end of pass 1.

SO 26

|

2b.

EXERCISES

Fill in all information which is known after the completion of the
SECOND PASS. Also write the word "OUTPUT" under any informa-
tion which is printed or punched during the pass.

Source Program Mnemonic Machine
Code
CLA
START, ADD NUMBER
ADD NUMBER CLA 7200
ADD NUMBER ADD 1xxx
ADD NUMBER STR 3xxx
STR SUM HLT 7402
HLT “Data” Oyyy
NUMBER, 7
SUM, 0
PASS 2:
Symbol Table Binary Machine
Code Tape
Symbol Address rﬂ,.
START 201
SUM 210
Assembly Listing
Machine
LoC Code Label Mnemonic Operand
200
201
202
203
204
205
206
207
210

sOo 27

P

SOLUTIONS

Source Program

CLA
START, ADD NUMBER
ADD NUMBER
ADD NUMBER
ADD NUMBER
STR SUM
HLT
NUMBER, 7
SUM, 0
PASS 2:
7200
Symbol Table Binary Machine 1207
Code Tape 1207
Symbol Address 1207
""""""' 1207
NUMBER | 207 \ 3210
START 201 | 7402
SUM 210 0007
0000
OUTPUT
Assembly Listing
Machine
LOC Code Label Mnemonic Operand
200
201
202
203
204 !
205
206
207
210 |

"

EXERCISES

2c. Fill in all information which is known after the completion of the
THIRD PASS. Also write the word “"OUTPUT" under any informa-
tion which is printed or punched during the pass.

Source Program Mnemonic Machine
Code
CLA
START, ADD NUMBER
ADD NUMBER CLA 7200
ADD NUMBER ADD 1xxx
ADD NUMBER STR 3xxx
STR SUM HLT 7402
HLT "Data” Oyyy
NUMBER, 7
SUM, 0
PASS 3:
Symbol Table Binary Machine 7200
Code Tape 1207
Symbol Address 1207
r’"' 1207
NUMBER 207 ""‘""--.L 1207
START 201 3210
SUM 210 7402
0007
0000

Assembly Listing

Machine
LOC Code Label Mnemonic Operand

200
201
202
203
204
205
206
207
210

SO 29

SOLUTIONS
2c. Fill in all information which is known after the completion of the
THIRD PASS. Also write the word “OUTPUT” under any informa-
tion which is printed or punched during the pass.

Source Program

CLA
START, ADD NUMBER
ADD NUMBER
ADD NUMBER
ADD NUMBER
STR SUM
HLT
NUMBER, 7
SUM, 0
PASS 3: 7200
Symbol Table Binary Machine Eg;
Code Tape 1207
Symbol Address 1207
e
NUMBER | 207 E g TS
START 201 0007
SUM 210
0000
OUTPUT OUTPUT
Assembly Listing
Machine
LOC Code Label Mnemonic Operand
| 200 7200 CLA
201 1207 START ADD NUMBER
202 1207 ADD NUMBER
203 1207 ADD NUMBER |
204 1207 ADD NUMBER
205 3210 | STR SUM
206 7402 HLT
207 0007 NUMBER, 7
210 0000 SUM, 0

OUTPUT

REMEMBER: During the optional third pass, both the symbol
table and the assembly listing may be printed.

SO 30

Ce—

If you had trouble completing these exercises, view
the A/V program again and/or reread the text. If cer-
tain points are still not clear, consult with your course

manager.

SO 31

High-Level Languages

OBJECTIVES

1. Given statements referring to high-level programming lan-
guages, be able to label those statements that refer to advan-
tages of using high-level rather than low-level programming
languages, those that refer to disadvantages of using high-
level programming languages, and those that refer to neither
advantages nor disadvantages.

2. Given a mathematical expression written in a high-level lan-
guage, a list of equivalent assembly instructions, and a list of
storage locations and contents, be able to write the steps of
the simple program necessary to convert the mathematical
expression into equivalent assembly language instructions.

SAMPLE TEST ITEMS

1. Indicate that each of these statements is an advantage (A) of
using high-level programming languages, a disadvantage (D),
or neither (N) an advantage nor disadvantage by writing the
correct letter in the space provided.

Statement A,D,orN

Uses a different amount of execu-
tion time and memory space than
, low-level languages.

Efficiency of a high-level language
translator differs from that of a low-
level language translator.

Similarity to natural language and
algebra.

SO 33

SAMPLE TEST ITEMS

2. Using the instruction set below, convert the statement:
RESULT=A4+B-C+D

into equivalent assembly instructions.

CLA
ADD
STR
CMA
IAC
“Data”

* As the statement would most likely be part of a larger
program, a halt statement would not be inserted after the
operation is coded.

* It is not necessary to convert the instructions into binary
machine code.

* RESULT, A, B, C, and D are stored at successive locations
beginning at location 205. Assume that the instructions
for the arithmetic are to begin at location 317.

RESULT=A+B-C+ D

Location Label Operand
205 RESULT, 0
206 A, 1
207 B, 7
210 & 5
211 D, 10

317

SO 34

Mark your place in this workbook and view Lesson 2
of the audio-visual program, “General Software.”

A Definition of a High-Level Language

All programming languages have certain common characteristics:

L]

They are designed for expressing procedures.

They have their own vocabularies, grammar, and punctuation
values as natural languages do.

They must be translated into machine code before a computer
can execute programs written in them.

The previous lesson discussed assembly languages, which are exam-
ples of low-level languages for two reasons:

Assembly language instructions have a one-to-one correspond-
ence with elementary computer operations.

An individual instruction, despite the use of symbolic addresses
and operation mnemonics, bears a closer resemblance to the
machine code than it does to algebraic or natural language
expression.

High-level programming languages, of which there are many, are
distinctly different from low-level languages:

High-level language statements (or /ines) have a many-to-one
correspondence with both machine code and assembly language
instructions. Many of the elementary computer operations and
hardware considerations are removed from the programmer’s
concern and control.

High-level language statements generally correspond closely to

natural language or algebraic expressions encountered in every-
day life.

SO 35

Thus, for example,
LETX=A4+B-C

Is more understandable and more easily learned than

CLA /CLEAR ACCUMULATOR
ADDC /LOAD VALUEOFC INTO AC
CMA /AC = -C (one’s complement)
IAC /AC = —C (two's complement)
ADD B /AC=B-C

ADD A /AC=A+B-C

STRX /STORE RESULT

which accomplishes the same result.
Thus, high-level languages generally are tailored to favor the people

who must use them, rather than the computers on which the programs
will be run.

Further Contrasts Between High- and Low-Level Programming
Languages

Criterion High Level Low Level

1. Programmer training
required for:

a. Common algorithms Yes Yes
b. Language rules Less More
¢. Hardware functions No Yes
2. Machine independence Yes No
3. Ease of documentation Yes No
4. Development time Shorter Longer
5. Execution time Longer Shorter
6. Computer resources required

for translation (time
and memory size) More Less

SO 36

Training Requirements for Programmers

Computer programmers must have training in three areas:

1. Common algorithms
2. Rules for a language
3. Hardware functions

Regardless of the language to be used, programmers must possess
knowledge of certain common algorithms. (A good example is how to
sort items efficiently.) This body of common algorithms is independent
of the languages; thus, the requirements are the same for both high-
and low-level languages.

A programmer must also know the rules for a language in order to
use it correctly. When the language is a high-level one, the time
required for a programmer to learn it is much shorter than it would be
for a low-level language. This situation is caused by the fact that the
high-level language statements compare closely with the natural lan-
guage and algebraic backgrounds of the programmer. Low-level lan-
guages cannot benefit to any large degree from programmer
experience in everyday life. For this reason, training time is increased.

The third major area of necessary expertise is concerned with hard-
ware functions. When programmers write source programs in a high-
level language, they are freed from most hardware considerations — the
translator does this part of a programmer’s job. A low-level language,
however, does not provide this assistance: a seemingly simple process
such as printing a number can be a reasonably complex process. There-
fore, training programmers in hardware functions is necessary for the
use of low-level languages, but the use of high-level languages min-
imizes this training.

SO 37

Machine Independence

Low-level languages possess a one-to-one correspondence to ele-
mentary machine operations. They must, therefore, be intimately
dependent on a specific instruction set. Because instruction sets tend
to be unique for each family of computers, low-level language pro-
grams are seldom shared among users with different computers.

High-level languages do possess some measure of machine inde-
pendence. The most popular high-level languages are standardized
either by long-standing use and support or by actual imposition of
standards by an official agency. Thus, a program written in a popular
high-level language may be shared among installations with widely
varying computers. Although each installation may need to make minor
changes to suit a specific computer, the bulk of the program can be left
untouched. High-level languages are preferable if programs are to be
distributed to other installations or computers.

Ease of Documentation

Natural language and algebraic-looking statements do much to
make high-level languages self-documenting. When the programmer
also uses mnemonic variable names and makes judicious use of com-
ments, a program can become truly self-documenting.

Low-level languages absolutely require comments if there is to be
any hope of adequate documentation. Frequently, however, the number
of instructions required to perform a single task may become large
enough that the important logical step may be obscured by all the
minor detailed instruction logic. Even the authors of an assembly lan-
guage program may take quite a while to understand their own pro-
gram if they have not seen it in six months or a year.

Consequently, high-level language programs are more likely to be
understood by others than low-level language programs.

SO 38

Length of Development

Two features cause the program development time to be shorter for
high-level languages than for low-level languages. First, the similarity
of high-level languages 10 the programmer’'s everyday experience
enables them to express their ideas more freely when writing the
source program. The programmer has to perform less translation of
terms and logic when working in a high-level language.

Secondly, surveys indicate that programmers tend to average
approximately 20 lines of debugged, documented code each day -
regardless of the language used. While 20 lines of low-level language
translates into 20 instructions of machine code, 20 lines of high-level
language programming may yield several hundred machine code
instructions.

Thus. on a daily basis and using the resultant machine code instruc-
tion counts as the measure, a programmer may easily be ten to twenty
times more productive when using high-level languages. In light of
recent trends of rapidly increasing software cost and decreasing hard-
ware costs, the dramatically reduced costs of development present an
important argument for the use of high-level languages.

Execution Time

Low-level languages enable a good programmer 10 squeeze the
utmost efficiency from a program, because the programmer can control
every operation at its most basic level. Such techniques as overlapping
competing input/output operations and minimizing memory references
can sometimes significantly increase execution speed.

The high-level language programmer, however, has sacrificed much
of the ability to control such basic operations in return for being freed
from most hardware considerations. Most high-level language trans-
lators, therefore, make an effort to optimize the translated code they
produce.

In general, however, better-than-average, low-level programmers
will produce more efficient machine code (through an assembler) than
will high-level language programmers (through the language trans-
lator). Hence, in applications where execution speed is critical, low-
level languages have an advantage.

sO 39

Computer Resource Requirements for Translators

Low-level languages are more efficient in the use of both time and
storage during the translation of source programs. Because the process
of translation is much simpler and on a one-to-one basis, assemblers
occupy much less memory than do high-level language translators.
Secondly, the simpler translation process enables low-level languages
to be translated much faster than high-level languages.

As we shall see in the next study unit, “Programming Languages,”
many high-level language translators first translate from high-level lan-
guage to low-level language, and then retranslate the program into
machine code. The translation process is then obviously more expen-
sive in terms of time and memory for a high-level language.

You have learned several distinctions between high- and low-level
languages as well as some advantages and disadvantages of each. You
should also be able to convert a simple statement such as

X=A+B-C
into equivalent assembly language such as

CLA
ADD C
CMP
IAC
ADD B
ADD A
STR X

Starting on the next page are exercises that should re-emphasize
what you have learned in this lesson. When you feel you understand
both Lesson 1 and Lesson 2, take the module test.

SO 40

EXERCISES

1. Using the instruction set given below, convert X = A + B into
equivalent assembly language instructions.

Available instruction set:

ADD M Means add value at location M to value in accumulator.
STR Z Means store value of accumulator (AC) into location Z.
CLA Means clear accumulator.

CMA Means take complement of AC.

IAC Means increment the AC by 1.

2. Using the instruction set given in Exercise 1, convert:

X=A-8B

SOLUTIONS

1. Using the instruction set given below, convert X = A + B into
equivalent assembly language instructions.

Available instruction set:

ADD M Means add value at location M to value in accumulator.

STR Z Means store value of accumulator (AC) into location Z.
CLA Means clear accumulator.
CMA Means take complement of AC.
IAC Means increment the AC by 1.
CLA /CLEAR AC
ADD B /GET FIRST VALUE
ADD A /ADD 2ND VALUE
STRX IX=A+B
2. Using the instruction set given in Exercise 1, convert:
X=A-B
CLA /CLEAR AC
ADD B /GET FIRST VALUE = B
CMA /COMPLEMENT = -B (one’s complement)
IAC /INCREMENT AC = -B (two's complement)
ADD A /ADD SECOND VALUE=A-B
STR X /X=A-B

SO 42

EXERCISES
3. Using the instruction set given below, convert
X=A-B+C-D-E
into the equivalent assembly language instructions.
Available instruction set:
ADD M Means add value at location M to value in accumulator
STRZ Means store value of accumulator into location Z
CLA Means clear accumulator

CMA Means take complement of AC (that is, change the sign of
the number in the AC).

|IAC Means increment the AC by 1

Hint: X = A-B + C - D - E is equivalent to

X=A+C-(B+D+E)

SO 43

SOLUTIONS

3. Using the instruction set given below, convert

X =

A-B+C-D-E

into the equivalent assembly language instructions.

Available instruction set:

ADD M
STR Z
CLA

CMA

IAC

Hint: X
X

CLA
ADD E
ADD D
ADD B
CMA

IAC

ADD C
ADD A
STR X

Means add value at location M to value in accumulator
Means store value of accumulator into location Z
Means clear accumulator

Means take complement of AC (that is, change the sign of
the number in the AC).
Means increment the AC by 1

= A-B+ C-D - E is equivalent to
=A+C-(B+ D+ E)

/CLEAR AC FOR ARITHMETIC

/LOAD 1ST VALUE E

/ADD NEXT VALUE D+ E

/SUBTRACTION TERMSNOW COMBINED B+ D
/TAKE COMPLEMENT FOR SUBTRACTION — {
+E)

/INCREMENT AC TO TWO’'S COMPLEMENT

/ADD NEXT VALUE C-(B + D + E)
/EXPRESSSION COMPLETE A+ C-(B+ D + E)
/STORE RESULT X=A+C-(B+ D + E)

+E
+ D

This represents an optimal solution. There are many other possible
solutions - all of which require more memory references and
instructions. These other solutions may not necessarily be wrong.
However, they are less efficient.

SO 44

EXERCISES

4. Fill in the following chart listing the contrasts between high- and
low-level languages. Use word pairs such as

yes — no

less — more
larger — smaller
faster — slower
longer — shorter

to describe the contrasts.

Criterion High-Level Low-Level
Programmer training required

Machine independence

Ease of documentation

Development time

Execution time

Required computer
resources for translation

SO 45

SOLUTIONS

low-level languages. Use word pairs such as

yes — no
less — more
larger — smaller
faster — slower
longer — shorter

to describe the contrasts.

Criterion

Programmer training required
.. Machine independence

Ease of documentation
Development time

Execution time

Required computer
resources for translation

High-Level
Less

More or yes
More or yes
Shorter
Longer

More
or larger

4. Fill in the following chart listing the contrasts between high- and

Low-Level
More

Less or no
Less or no
Longer
Shorter

Less
or smaller

manager.

If you had trouble completing these exercises, view
the A/V program again and/or reread the text. If cer-
tain points are still not clear, consult with your course

SO 46

Take the test for this module and evaluate your
answers before studying another module.

SO 47

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038
	Scan0039
	Scan0040
	Scan0041
	Scan0042
	Scan0043
	Scan0044
	Scan0045
	Scan0046
	Scan0047
	Scan0048
	Scan0049

