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This practical guide to designing electronic
cireuits using small computers and pro-
grammable calculators makes it easy to
implement both classical and sophisticated
design techniques. It uses the interaction
between circuit designer and computer to
clarify both design techniques and funda-
mental concepts. It also shows how to
produce useful answers quickly, while
developing a feel for the procedure and
obtaining insight into fundamental proc-
esses—such as the errors between exact
derivatives and their finite-difference
estimates.

Circuit Design Using Personal Com-
puters is intended for practicing electrical
engineers and for university students with
at least senior-class standing. Its topics will
also interest electronics engineers, who
design circuits derived in terms of com-
plex variables and functions, to provide
impedance matching, filtering, and linear
amplification. Circuits operating from very
low frequencies all the way through milki-
meter waves can be designed by these
techniques. The necessary numerical
methods will also be of interest to readers
whao do not have specific applications.

The numerical methods presented include
solution of complex linear equations, inte-
gration, curve fitting by rational functions,
nenlinear optimization, and operations on
complex polynomials. These programmed
tools are applied to examples of filter syn-
thesis, to illustrate the subject as well as
the numerical methods. Several powerful
direct-design methods for filters are
described, and both single-frequency and
broadband impedance-matching tech-
niques and limitations are explained. An
efficient ladder network analysis method,
suitable for hand-held or larger computers
is treated and programmed for confirming
network design and evaluating various
effects, including component sensitivities.

The methods presented in the book are
supported by seventeen programs in
reverse Polish notation (RPN) for
Hewlett-Packard HP-67 and HP-97 hand-
held programmable caleulators and, with
minor modifications, for models HP-41C
and HP-9815, and are also furnished in
twenty-eight programs in microsoft
BASIC language for PETand similar
desktop computers.
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Preface

Circuit design, an essential part of electrical engineering, has become an
exciting field because of the availability of responsive personal computers.
Productive interaction with the designer’s own computer has been possible for
several years, but only recently has il become completely respectable through
the introduction of a highly touted personal computer by the largest manufac-
turer of big computers. Modern circuit design usually involves extensive
mathematical calculations based on increasingly theoretical concepts to satisfy
escalating performance requirements. 1 wrote this book to show how effective
personal computers can be in circuit design,

The first goal is to describe practical radio frequency circuit design tech-
niques that are especially appropriate for personal computers and have one or
more fundamental concepts or applications. For example, the polynomial
root-finder algorithm can solve as many as 20 complex roots and is based on
the important Cauchy—Riemann conditions. It works well, and the underlying
principles are worth studying. The second geoal is to exploit the interaction
between circuit designer and computer to clarify both design techniques and
fundamental concepts. It is possible to produce valuable answers rapidly while
developing a feel for the procedure and obtaining insight into fundamental
processes, such as errors between exact derivatives and their finite-difference
estimates,

The most frequently encountered design procedures are appropriate for
personal computers, even though there are a few heavily used procedures that
must be performed on large computers. This book is based on the premise that
most designers are better served by computer programs that they can call their
own. Only a few must master large-computer operating procedures and
program manuals several inches thick; these procedures are beyond the scope
of this book. Rather, 1 have selected some of the most productive and
interesting circuit design techniques, some very old and others quite recent.
Many students have recently developed an appreciation and interest in these
topics precisely because the techniques have become visible on the personal
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viil Preface

computer. Excessive theoretical analysis has been avoided by providing refer-
ences to more detailed explanations; these also provide the interested student
with efficient avenues for further investigation.

This book is intended for practicing electrical engineers and for university
students with at least senior-class standing. The topics should also interest
electronics engineers who design circuits derived in terms of complex variables
and functions to provide impedance maiching, filtering, and linear amplifica-
tion. Circuits operating from very low frequency through millimeter waves can
be designed by these techniques. The necessary numerical methods should
also interest those who do not have specific applications.

The numerical methods include solution of complex linear equations,
integration, curve fitting by rational functions, nonlinear optimization, and
operations on complex polynomials, These programmed tools are applied to
examples of filter synthesis to illustrate the subject as well as the numerical
methods. Several powerful direct-design methods for filters are described, and
both single-frequency and broadband impedance-matching techniques and
limitations are explained. An efficient ladder network analysis method, suit-
able for hand-held or larger computers, ts described and programmed for
confirming network design and evaluating various effects, including compo-
nent sensitivities. Linear-amplifier design theory is based on the concept of
bilinear transformations and the popular impedance-mapping technique. This
also enables a description of load effects on passive networks and is the design
basis of filters that absorb rather than reflect energy.

The methods are supported by seventeen programs in reverse Polish nota-
tion {RPN) for Hewlett—Packard HP-67 and HP-97 hand-held programmable
calculators and, with minor modifications, for models HP-41C and HP-9815.
There are also 28 programs in Microsoft BASIC language for PET and similar
desktop computers. PET is a registered trademark of Commodore Business
Machines, a division of Commodore International. Microsoft Consumer Prod-
ucts has furnished a consistent and widely accepted BASIC programming
language to many prominent personal-computer manufacturers. Some of the
BASIC programs are short enough for hand-held computers, but most require
a desktop computer having several thousand bytes of random-access memory
and appropriate speed. Each chapter, except for the introduction, contains a
set of problems, most of which reguire 2 hand-held caleulator for solution.

The material in this book was and is being used in a two-semester
graduate-level course at Southern Methodist University. The first semester
covered numerical methods—including optimization, examples of filter syn-
thesis, and ladder network analysis—contained in Chapters Two through Five.
The more specialized, second-semester content included impedance matching,
linear amplifier design, direct-coupled filters, and the other direct filter design
methods in Chapters Six through Nine. The course was taught with several
students in the classroom and the majority on a closed-circuit television
network that included video output from a desktop, BASIC language personal
computer on the instructor’s desk. The ability to edit and rerun the programs
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in this book was a most valuable teaching aid. All students were encouraged
to acquire at least a hand-held computer; university desktop personal comput-
ers were available, but many industrial students had their own.

This material was taught three times as a 48-hour industrial seminar for
practicing engineers who desired a cognitive overview of the field with
emphasis on personal computing. Approximately 6 hours of study per chapter
should be spent for all but Chapter One, and goaod visual aids and computer
TV monitors are required in the classroom. More limited seminars may also
be taught as follows: numerical methods in Chapters Two and Five; numeri-
cal methods, filter synthesis, and elliptic filters in Chapters Two, Three, and
Sections 9.2-9.4; ladder network analysis and sensitivities in Chapter Four;
impedance matching and direct-coupled and stub filters in Sections 6.1-6.5,
Chapter Eight, and Section 9.1; and linear amplifiers, impedance mapping,
and filter-load effects in Chapter Seven and Sections 9.5 and 9.6. Individual
engineers with some familiarity with the subject will find this book a good
basis for review and discovery of new design methods and programs. Access
to or ownership of a desktop computer is a necessity; the minimum require-
ment is ownership of a programmable hand-held calculator and access to a
desktop computer or a readily accessible, responsive computer terminal to run
BASIC language programs.

I wish to express my deep appreciation to colleagues at Collins Radio
Company, Texas Instruments, and Rockwell International for their sugges-
tions, constructive criticism, and other contributions to understanding. Special
recognition is due to Dr. Kenneth W. Heizer, Southern Methodist University,
who endured years of my questions concerning technical relevance and
origins. His knowledge and patience satisfied my aspiration for both generality
and applicability.

TaoMas R. CUTHBERT, JR.
Plano, Texas
December 1982
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Chapter 1

Introduction

This book describes design and analysis techniques for radio frequency
circuits that are particularly well suited to small computers. This chapter
presents the rationale and an overview of the book’s organization.

Both entering and experienced engineers are addressed for entirely different
reasons. Many new electrical engineering graduates have reccived heavy
exposure to digital circuits and systems during recent training. Apparently, the
curriculum time limitations have resulted in less thorough treatment of analog
topics, especially filter, impedance matching, and similar circuit design tech-
niques. The industrial need has not diminished. Experienced engineers are
probably far less aware of the new opportunities available through small-
computer design methods. These computing aids are becoming a necessity in
this field, if only o meetl the competition from those already exploiting the
opportunities. This book establishes a level of capability of hand-held and
desktop computers for those who have not been following recent applications.

Engineers can now own the computers and programs as well as their
technical expertise. It is interesting to estimate the current (1982) costs for the
equipment an engineer may consider buying for professional use. The fol-
lowing figures do not account for potential tax advantages. Typical program-
mable-calculator and peripheral equipment costs range from $150 to $800.
Typical desktop personal computers and peripheral equipment costs range
from $500 to $5000, and professional-grade equipment (e.g., Hewlett-
Packard, Wang, and Digital Equipment) costs about twice these amounts, The
most expensive desktop computing systems cost as much as $30,000. It is
estimated that within five years the same performance may be obtained at half
these costs; conversely, twice the performance may be available at the same
cost.

Hamming (1973, p. 3) has remarked that computing should be intimaiely

‘bound with both the source of the problem and the use that is going to be

made of the answers; it is not a step to be taken in isolation from reality.
Therefore, the art of connecting the specific problem with the computing is
important, but it is best taught within a field of application. That is the
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2 Introduction

viewpoint taken in this book. It is now desirable for an engineer with average
job assignments to make effective use of small computers. Tasks that were not
feasible just 10 years ago can now be performed routinely. Hamming also
noted that computing is for insight; modern technology certainly demands a
high level of understanding. Design difficulties often can be detected early by
computer analysis,

Running the programs in this book will provide many engineers with a
convincing display of principles and results that are often elusive as abstrac-
tions. For example, calculus literally works before your eyes on the computer
screen when an optimizer is reporting its strategy and progress! Program
modifications are suggested throughout the text to demonstrate computational
behavior for degenerate cases. Most readers will find that using the programs
while studying this material will improve comprehension immensely. Many of
the suggested extensions have been developed and programmed by the author,
and are known to be both feasible and worthwhile.

The computer programs furnished in this text are deliberately unsophisti-
cated. The best program is one written, or at least adapted, by the end user.
This avoids a significant amount of computer programming, namely the effort
any programmer expends to anticipate all possibie reactions of the unknown
user. Also, a prudent engineer will be skeptical unless programs written by
others are exceptionally well documented, tested, and constructed to deal with
degenerate cases and to provide user prompting. Often there is little profes-
sional satisfaction in simply running programs others have developed; after
all, a clerk could do that job at lower cost.

A valuable feature on many desktop computers is a TRACE program that
allows the user to either step through the program execution one line at a time
or to execute slowly with current line numbers displayed for correlation with
code listings and/or flowcharts. Another recommended computer feature is
an EDITOR program that enables a search for the names of variables. Most
BASIC languages allow only “global” variable names, which are not private
within subroutines. A good EDITOR facilitates the expansion and combina-
tion of programs in this book without the risk of conflicting variable names.

Most of the short programs are furnished in Hewlett—Packard’s reverse
Polish notation (RPN). For Texas Instruments hand-held calculators, such as
the T1-59 and others using an algebraic operating system (AOS) language,
coding can originate with the equations provided and in the format of the
given programs. Differences between RPN and AOS have been discussed by
Murdock (1979). Hand-held computers have not been made obsolete by
desktop computers; there are many occasions when a completely portable
computer is much more effective when used at the place of immediate need.

Numerous geometric illustrations have been employed in place of more
abstract explanations. A number of graphs depicting design parameter trends
are also presented; use of computers does not diminish the value of graphic
displays, sensitivity and similar computations not withstanding.

It is assumed that the reader will pursue interesting topics at his or her own
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level of sophistication once the possibilities are clear. To that end, extensive
references are provided for further inquiry. Many references are quite recent,
which is not to overlook some of the older classics—for example, an early
direct-coupled-filter article by Dishal (1949). There are some derivations that
are crucial to important issues; these have been included in an appendix or
outlined in the problem set.

There are several indispensable numerical analysis tools that will be re-
quired throughout this book and that are applicable in almost all phases of
electrical engineering. Chapter Two begins with the most elemental of these
{(especially in steady-state sinusoidal network analysis): the complex addition,
subtraction, multiplication, and division functions. A hand-held computer
program is given for convenient usage, and the reader will need to have ready
access to this capability on many occasions. The Gauss-Jordan method for
solving real equations in real unknowns is discussed in connection with a
BASIC language program; this is used later in Chapter Two for fitting rational
polynomials to discrete complex data sets and in Chapter Three in the
Gewertz synthesis method. A very convenient extension of this method to
solve systems of complex equations is also described; this technique is conve-
nient for solving nodal analysis equations and similar systems.

Chapter Two also describes the trapezoidal rule and its application in the
Romberg method of numerical integration; this is used in the broadband
impedance-matching methods in Chapter Six. Also, Simpson’s rule is derived
for later use in time-domain analysis in Chapter Four. Chapter Two concludes
with methods for fitting polynomials to data. First, real polynomials are
generated to provide a minimax fit to piecewise linear functions using Che-
byshev polynomials. Second, complex data are fit by a rational function of a
complex variable, especially the frequency-axis variable in the Laplace s
plane. This will be applied to broadband matching, and is useful in other
ways, such as representing measured antenna impedance data.

Many of the computer aids developed in this book are not only efficient
tools, but are based on important principles worth the attention of any
network designer. Moore’s root finder in chapter three is a good example,
because it depends on the Cauchy-Riemann conditions and a powerful but
little-known method for evaluating a complex-variable polynomial and its
derivatives.

Engineers interested in network synthesis, automatic control, and sampled
data systems need many other mathematical aids. Polynomial addition and
subtraction of parts, multiplication, long division, and partial and continued
fraction expansions of rational polynomials are described in Chapter Three.
Their application to network synthesis is used to develop the characteristic
and transducer functions in terms of the ABCD (chain) matrix of rational
polynomials. These are then realized as doubly terminated ladder networks.
Gewertz's singly terminated network synthesis method concludes Chapter
Three; this method accomplishes input impedance synthesis, given the net-
work function’s real part.
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Chapters Four and Five need not be considered together, but the efficient
ladder network analysis method in Chapter Four is constructed so as to
become a part of the powerful gradient optimizer in Chapter Five. The
recarsive ladder network analysis method is based on assumed load power
and impedance (therefore current) and accommodates flexible interconnection
of two-terminal branches. The topological description is very compact, so that
the technique can be employed in hand-held as well as in larger computers.
Node voltages and branch currents are available for many purposes, including
the powerful Tellegen method for sensitivity calculations. Two-port chain
maltrix parameters are described for use in cases where transmission line,
bridged-T, and arbitrary two-port network sections appear in cascade. A
node-bridging analysis technique is discussed to avoid the need for nodal or
other matrix methods for only slightly more complicated ladder network
problems. The input and transfer quantities obtained are related to the
terminal voltages and currents. This is developed by introducing the first of
several scattering parameter explanations in order to simplify the calculations.
Almaost all other topics in this book depend on the enginéer’s ability to check
his Or her design by means of a ladder network simulation. Simpson’s
numerical integration is used to evaluate Fourier and convolution integrals so
that the frequency samples of network response previously generated can
provide time response to an impulse or any arbitrary excitation. Chapter Four
concludes with a compact explanation of sensitivities computed by approxi-
mate finite differences and by the exact Tellegen method. Applications dis-
cussed include establishing tolerances and automatic adjustment of network
elements to approach some arbitrary frequency or time response—in other
words, optimization. :

Chapter Five is a practical application of nonlinear programming (optimi-
zation) for adjustment of design variables. It begins with a brief review of
essential matrix algebra in terms of geometric concepts. Then the significant
properties of conjugate gradient search methods are illustrated by computer
demonstration, and the role of linear searches in useful algorithms is illus-
trated. A Fletcher—Reeves optimizer is furnished in the BASIC language with
several practical examples. The creation of sampled objective functions, their
component response functions, and gradients are described as related to
network optimization. Methods for enforcing simple bounds and for satisfying
more complicated constraints conclude Chapter Five. Numerous opportunities
are used to point out in passing some mathematical concepts of general
interest: for example, the relationship of eigenvalues and eigenvectors to
ellipsoidal quadratic forms. Only gradient methods are discussed; the reason-
ing behind this choice and a few remarks concerning the alternative direct
search class of optimizers are provided.

Design methods and computer programs for impedance matching at a
frequency and over lowpass and bandpass intervals are contained in Chapter
Six. At single frequencies, resistance and phase transformations are obtained
by L, T, and pi networks. Complex source and load specifications are




Introduction 5

accommodated by explanation of programs for the 1+Q? method and
paralleled-reactances technique. Transmission-line matching applications for
complex source and load are described by less well-known methods. Levy's
broadband-matching adaptation of Fano’s original theory is reviewed, and
programs are provided, Standard lowpass prototype filter notation, lowpass-
to-bandpass transformation, and Norton transformers are used in practical
examples. The last two topics in Chapter Six are new methods of broadband
matching. Carlin’s method for matching measured impedances is developed
on the basis of several computing aids that include a Hilbert transform
application with quite general significance. Cottee’s pseudobandpass (lowpass
transformer) matching method employs numerical integration of the
Chebyshev squared-frequency function. This is accomplished with the Rom-
berg integration program from Chapter Two.

Chapter Seven contributes uniquely to reader background. Amplifier de-
signers experienced in scattering parameters, the equipment for their measure-
ment, and the body of technique for their use are probably aware of the large
and growing number of computer programs available for the methods in-
volved. The better-known programs exist on timeshare computing services and
provide stability, gain, impedance, selectivity, optimization, and device data
base information for amplifiers and their matching networks. There are also
numerous smaller programs of reduced scope available for desktop and
hand-held computers. Furthermore, the trade journals and institutional litera-
ture are full of design articles about scattering parameter applications. Chap-
ter Seven provides the perspective and computing tools that are not readily
available and yet are the basis for the popular methods. Generalized reflection
coefficients for power waves are defined and related to scattering parameters
for two- and three-port linear networks. A convenient means for ladder
network analysis with embedded circulators is noted. The bilinear function of
complex variable theory is introduced and arranged to represent a Smith chart
of all possible branch impedance values on a linear network response plane.
Convenient methods and computer programs are given for determining the
coefficients, the relationship of the Smith chart to two-port power, and
geometric models of important network behavior. Concise unification is
provided for earlier Linvill models, gain analysis, and impedance-mapping
methods for linear networks, This insight also applies to oscillator, filter, and
impedance-matching design. A new gain design method based on the older
Linvill model is described. o

Chapter Eight introduces a new method for direct-coupled filter design
based on a loaded-Q parameter that is well known to early radio-man-
ufacturing engineers. The great strength of the method is the wide range of
element values that can be selected by the designer with guidance by its clear
principles. Direct-coupled-filter principles are widely utilized in design of
microwave filters based on the inverter principle. They have important appli-
cations at all frequencies down to vif. This topic is developed by a practical
relationship of resonators (ianks), inverters, and end-coupling methods, and
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the selectivity effects that result. Also, the resonator slope-equivalence tech-
nique is described to extend the method to adapted elements other than the
ideal lumped elements usually considered. The full range of response shapes—
from overcoupled (equal ripple), through maximum flatness, to undercoupled
—is described; the important minimum-loss case is covered too. Tuning
methods and sensitivity relationships are explained in terms of laboratory
methods and the loaded-Q parameter.

The last chapter deals with other direct filter design methods, especially
those that depend on recursive formulas for element values or means other
than synthesis. This potpourri was chosen because the methods are useful,
frequently applicable, and demonstrate worthwhile principles. Chapter Nine
begins with Taub’s equal-stub microwave filter design method. Then, a new
elliptic filter design method is introduced by a general discussion of filter types
and performance parameters. The entire family of related selectivity functions
is reviewed, and a standard nomograph and program provide performance
estimates. Next, the basis of two new and powerful programs for doubly
terminated filter design by Amstutz is explained, and program operation is
illustrated. Useful tables of lumped-element equivalence transformations are
included.

Chapter Nine also contains theory and design tools to estimate load effects
on passive networks, and maximum possible efficiency is shown to be the
controlling parameter. This topic is important because filters designed to
operate properly between carefully defined load resistances are likely to be
operated between quite different terminations. The last topic in Chapter Nine
extends the load effects concept to invulnerable (intrinsic) filters that absorb
rather than reflect energy. These may be regarded as selective attenuators;
they are quite valuable in mixer and low-frequency applications where cir-
culators are not feasible. Equations and a design chart.for a lowpass, invulner-
able network are derived.

Another way to view the contents of this book is according 10 the mathe-
matical subjects treated, even though the material was organized according to
design applications. Matrix algebra topics include multiplication, exponentia-
tion, inner products and norms, quadratic forms and conics, and partitioning,.
Polynomial algebra of real and complex variables touches on power series and
product forms, as well as rational-polynomial continued fractions, partial
fractions, and Chebyshev expansions. Calculus tools include multivariate
Taylor series, partial derivatives and gradient vectors, the Cauchy—Riemann
principle, numerical differentiation and integration, and infinite summations
and products. Complex variables appear throughout, and special attention is
given to bilinear transformations and the generalized Smith chart. Hilbert,
Fourier, and Laplace transforms and the convolution integral are employed.

The material that follows has been tested in industry and can become an
important part of your set of engineering tools.




Chapter 2

Some Fundamental
Numerical Methods

It is necessary to create several computing aids before addressing specific
design tasks, Certainly the most elementary of these is a hand-held computer
program to calculate the complex four functions. Also, the solution of linear
systems of equations, both in real and complex variables, and numerical
integration are useful in many electrical engineering applications. The former
is required in the last part of this chapter to fit discrete, complex data by
a rational polynomial in the frequency variable to the least-squared-error
criterion. Before that, a piecewise linear function will be approximated in the
minimum-of-maximum-errors (minimax) sense by a polynomial in a real
variable. This is a useful tool that allows the introduction of the versatile
Chebyshev polynomials, which will make several later appearances.

2.1. Complex Four Functions

The convenience of addition, subtraction, multiplication, and division of
complex numbers on a hand-held calcuiator, both manually and within
programs, cannot be overrated. Program A2-1 in Appendix A provides these
subroutines on function keys B, C, and D for manual keying or for GSB (Go
Subroutine) commands within programs. As explained in the program descrip-
tion, the more frequently required polar complex number format has been
assumed.

Hopefully, the reverse Polish (RPN) stack concept is somewhat familiar to
the reader, since it has been used by many calculator manufacturers in several
countries. Owners of calculators with the algebraic operating system (AOS)
are at no great disadvantage, because RPN programs are easily converted (see
Murdock, 1979). In Program A2-1 and in similar programs to follow, the polar
complex number(s) are entered into the calculator’s XYZT “stack™ as angle in

1
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degrees, then magnitude. For the operation Z,+ Z,, it is necessary to enter
degZ,. magZ,, degZ,, magZ, and press key B to see mag(Z,+Z,) in the X
register {(and the angle in the Y rtegister by pressing key A to swap X and Y
registers). Complex subtraction depends on a feature of the HP calculator in
which a negative-magnitude number adds 180 degrees to the angle during the
next operation. Thus a separate key for complex subtraction is not required;
just key in the sequence for Z,+Z,, but press the CHS (change sign) key
before pressing B (+) key. The answer is Z,~Z,. A complex-division key 1s
made unnecessary by providing the complex inverse function 1/Z on key C.
Thus to compute Z,/Z,, the siack entries (in order) are: degZ,, magZ,,
degZ,, magZ,. Then press key C to obtain 1/Z, (the answer is placed
properly in stack registers X and Y without disturbing registers Z and T),
followed by pressing key D for the complex multiplication. Again, the answer
appears in stack positions X and Y. Example 2.1 shows that mannal or
programmed steps with complex numbers are as easy as with real numbers.

Example 2.1. Consider the bilinear function from Chapter Seven:
' _aZ+a,
=zl 2D

All variables may be complex; suppose that a, =0.6 /75°, a,=0.18 /—23°,
and a,=1.4 /130°. Given Z=0.5 /60°, what is w? The manual or pro-
grammed steps are the same: enter Z in the stack and also store its angle and
magnitude in two spare registers. Then enter a, and multiply, enter O degrees
and unity magnitude and add, saving the two parts of the denominator value
in two more spare registers. The numerator is computed in the same way, the
denominator value is recalled into the stack and inverted, and the two
complex numbers in the stack are multiplied. The correct answer is w=
0.4473 /129.5°. Normally, a given sei of coefficients (a,, a,, and a,) are fixed,
and a sequence of Z values are input into the program. A helpful hint for
evaluating bilinear functions is to rewrite them by doing long division on
2.1
a;  d4,—a /a,

w-—;l—3—+———aaz_H . (2.2)
Then store a,/a,, a,, and a;. Now the operations for evaluating (2.2) do not
require storing Z, although a zero denominator value should be anticipated by
always adding 1.E -9 (0.000000001) to its magnitude before inverting. If there
is a fourth complex coefficient in place of unity in the denominator of (2.1),
the standard ferm of (2.1) should be obtained by first dividing the other
coefficients by the fourth coefficient.

2.2, Li.near Systems of Equations

Every engineering discipline requires the solution of sets of linear equations
with real coefficients; this will alse be required in Section 2.5 of this chapter,
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Although the Gauss—-Jordan method considered here is well known, it is less
well known that the real-coefficient case can easily be extended to solve
systems having both complex coefficients and variables. BASIC language
Program B2-1 for the Gauss—Jordan method is contained in Appendix B, and
its preamble for coping with the complex system case is Program B2-2,

2.2.1. The Gauss—Jordan Elimination Method. The Gauss—Jordan elimina-
tion method is but one of several acceptable means to solve systems of real
linear equations (see Hamming, 1973, for a commentary). The problem to be
solved is to find x when

Ax=a, 2.3
in matrix notation, or, written out,
ayxXptapXtaX;=ay,
ayX) tapX;tanx;=ay,, (2:4)
ay, %y tapX;ta;x;=a,.
The order N =13 case will be discussed without loss of generality. Readers not
familiar with the matrix notation in (2.3) are urged to refer to an introductory
book on linear algebra, such as that of Noble (1969). There will be frequent
need for this shorthand notation, although the subject will not be much more
rigorous than understanding the equivalence of (2.3) and (2.4). It is also
helpful to sketch the N=2 case of two lines in the x, —x, plane and to recall
that the solution is merely the intersection of these two lines. The concept

extends to hyperplanes in N-dimensional space.
The Gauss—Jordan algorithm evolves (2.4) into the solution form

x;+04+0=b,,,
0+ X2+0=b24 » (2-5)
0+0+X3=b34,

by scaling adjacent rows so that subtractions between rows produce the zeros
in the columns in (2.5), working from left to right. Recall that scaling a given
equation or adding one to another does not change a system of linear
equations.

A specific example (Ley, 1970) begins with the “augmented™ matrix formed

from (2.4):

a;; ap Az Al .

Ay Ay 8y 8y |. (2.6)
dy] d3p d33 Ay

Consider the array

-2 -1 1 -1
[ T T 6}- (2.7
3




10 Some Fundamental Numerical Methods

First normalize the first row with respect to “pivot coefficient” a:

1 05 —-05 05
11 1 6
3 -1 2

This is done to avoid potential numerical overflow or underflow in the next
multiplication. In order to make the a,, coefficient zero, form a new row 2 by
multiplying row 1 by a,, and subtracting this from row'2. Also, form a new
row 3 by multiplying row | by a;, and subtracting this from row 3. The result

18

1 05 —05 05

0 05 15 551 (2.9)
0 -05 05 05

The next cycle is to normalize the coefficients of row 2 with respect to the
new pivol coefficient a,,:

(2.8)

i 0.5 —-05 05
0 1 3 11 (2.10)
0 -05 05 05
Note that after normalization the new coefficient is always
A~ ik dxy (2.1

where K is the pivot row, I is the new row being formed, and J is the
coefficient (column) being formed. Continue by forming new rows | and 3 in
(2.10%:

o1 3 N
00 2 6

In the final cycle, normalize the coefficients of row 3 with respect to
coefficient a4, :

(1 0 -2 -5
]. (2.12)

(10 -2 -5
0 1 3 11 (2.13)
10 0 1 3
Finally, form new rows 1 and 2 using (2.11):
1 0 0 1
01 0 2, {2.14)
0 01 3

Because (2.14) now represents the system in (2.5), the solution is in column 4:
x;=1,x,=2, and x,=3.

The BASIC language Program B2-1 in Appendix B implements this algo-
rithm. Note that new coefficients are generated according to (2.11) in program
line number 9330, Lines $140-9240 implement a feature not yet mentioned. If
any pivot coefficient is too small (taken to be less than or equal to 1E—6 in
line 9020), then the rows are interchanged. The reader is encouraged to first
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work this procedure on paper and then run Program B2-1 with the same data;
it is easy to appreciate the advantages of readily available computers! Pro-
gram B2-1 documentation also contains some preamble code to change the
input from the user prompting mode to input by READ commands related to
DATA statements. Statement numbers lower than 9110 in the original code
may be replaced by the alternate code, so that extensive input data need not
be flawlessly entered in real time,

Example 2.2. The DATA statements in Program B2-1 contain the element
values of the matrix in Figure 2.1. This system of 10 Kirchhoff current and
voltage equations is solved in 42 seconds on a Commodore PET computer.
The currents thus calculated should sum to zero at each node.

[ 1010 10 00 00 00 00 00 00 00 10
00 00 00 00 00 00 00 10 10 10 20
~10 00 00 10 00 ~10 00 00 00 00 00
00 00 ~10 00 10 00 00 00 —10 00 00
00 60 00 00 00 10 10 06 00 -10 00
00 00 00 00 00 00 —70 80 00 —100 00
00 00 00 00 -50 00 00 80 -90 00 00
00 20 ~30 00 -50 0O 00 00 00 0O 00
10 20 00 —40 00 00 00 06 00 00 00
00 00 00 -40 00 —60 70 00 00 00 00 |

S e’
Coefficient Column
matrix matnx
e J—

Augmented matrix
Figure 2.1. A six-node, 10-branch resistive network. [From Ley, 1970.]

2.2.2. Linear Equations With Complex Coefficients. There is a simple way to
apply any real-coefficient method, such as the preceding Gauss—-Jordan
method, to solve systems of linear equations with both complex coefficients
and variables. Without loss of generality, consider the following two equa-
tions:

aj3t+ibs

ay+jby ap+iby,
ay +jby  ayp+jby,

X +iy
%2+ ]y,

: (2.15)

ay;+]by;
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Write (2.15) as two equations in two unknowns in the same way that (2.3) and
(2.4) were related; then perform the algebraic multiplication of the complex
products and collect real and imaginary parts on each side of the equality
signs, Recall that in complex equations the real parts on the left of the equality
sign must equal the real parts on the right side, and the same holds true for
imaginary parts, Four equations result from these operations; in matrix
notation, they are represented as follows:

a;; —by oa; —by || x a3
by a;; by A2 |1 Y12 b3 _ ("2.16)
a; —by ap —by X% axn
by, ay by 4 1LY b

There is a general pattern in (2.15) and (2.16) for transforming a complex
augmented matrix, All odd-row coefficients in the new matrix {2.16) alternate
in sign, beginning with a positive sign and ending with a negative sign. All
imaginary coefficients (b;) in the even rows of (2.16) are the same as the
coefficients diagonally above, except for the sign. The solution of NC complex
equations requires a 2ZNC by ZNC+ 1 real, augmented matrix in the preceding
Gauss—Jordan algorithm.

BASIC language Program B2-2 in Appendix B requests the complex
coefficients in rectangular form, as in (2.15). The program then forms (2.16)
and outputs the solution in the sequence X,, y,, X;, ¥, etc. For example,
evaluate each equation in the system given in problem 2.10 by using hand-
held computer Program A2-1. Then enter the matrix and right-hand-side
coefficients into Program B2-2 to find the solution elements 1+33 and
-3 +j5.

As in the real-coefficient program, a READ and DATA modification
preamble has been added to Program B2-2 documentation to replace all
statements numbered less than 100.

Example 2.3. The DATA statements in Program B2-2 relate to the six
complex equations described in Figure 2.2. These are the mesh equations for
the sinusoidal steady-state condition of the network, and they are equivalent
10 12 real equations. The solution is obtained in 70 seconds on a Commeodore
PET computer. The six complex mesh eguations can be checked by using the
solved mesh currents and hand-held computer Program A2-1.

2.2.3. Linear Equations Summary. The Gauss-Jordan algorithm is reason-
ably fast, accurate, brief, and solves real and complex equations. Systems of
NC complex equations can be solved easily by a simple, programmable
transformation to an equivalent system of 2NC real equations. Programs are
commercially available to solve real systems of equations. However, adapting
these for the user’s purposes, especially incorporating them into other pro-
grams, is often quite difficult. Programs B2-1 and B2-2 should be suitable for
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Mesh equations for the sinusoidal steady state:
(1.25+j1.0), +50.51, = 50 +86.6
051, + (254 j4.2)1,— (10+2.2)1,=0
—(10+2. 0L +(3.6+15.3)L - (1.2+j1.6},=0
—(124j 1601, + (L7 +j2.2D)1, +j0.8T, - (0.5+j1.47)], =0
JOBL+ (27415}, —j2.31,=0
—{05+ 1471 — j231,+(0.5+j1.27) ;=0

The corresponding augmented matrix is therefore given by:

(1.25+j1.0) 0.5 0 0 0 0 (50+86.6) ]
j0.5 (25+j42)  —~(1.0+j2.2) 0 0 0 0
0 —(10+j2.2)  (36+j53) —(L2+jl.6) 0 0 0
0 0 —(12+j1.6)  (1.7+j227) o8 —(0.5+1.47) 0
0 0 0 0.8 (27+j1.5) —j2.3 0
o 0 o ~(0.5+j147)  ~j2.3 (0.5+j127) 0

Figure 2.2, A six-mesh network; v=350+]86.6, | radian/second. [From Ley, [970.]

special user applications. Further application of Gauss—Jordan Program B2-1
will be made in Section 2.5,

2.3. Romberg Integration

Numerical integration, or quadrature, is usually accomplished by fitting the
integrand with an approximating polynomial and then integrating this exactly.
Many such algorithms exhibit numerical instability because increasing degrees
of approximation can be shown to converge to a limit that is not the correct
answer. However, the simple trapezoidal method assumes that the integrand is
linear between evenly spaced points on the curve, so that the area is the sum
of 2 small trapezoids for a large enough i (sec Figure 2.3). The trapezoidal
method is numerically stable. There are other numerically stable integration
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fla)
f{x)

f{a + h)
f(b)

Figure 2.3. The trapezoid rule for numerical integration.

methods, such as Gaussian quadrature, based on weighted-sample schemes,
but calculation of the weights consumes time and memory. The latter methods
pose difficulties in recursive calculation of estimates of increasing order, thus
limiting their use as computer aids.

The Romberg integration method first approximates the integral as the area
of just one trapezoid in the range of integration, then two, continuing for 2!
evenly spaced trapezoids until a larger i does not change the answer signifi-
cantly. The other main feature of the Romberg method is deciding how many
trapezoids are enough. The width of each trapezoidal area starts at h=>b—a,
then h/2. The areas found for these values are linearly extrapolated versus h?
to h=0; when the estimate using width h/4 is found, the extrapolation to
h=0 is quadratic, and this is tested against the linearly extrapolated answer
for convergence. There is a sequence of estimates for decreasing trapezoid
widths and increasing degrees of extrapolation until either convergence or a
state of numerical noise is obtained. The Romberg method is very efficient,
stable, and especially suitable for digital computing. However, the integrand
must be computed from an equation, as opposed to using measured data.

In the next four sections it will be shown how the formulas for trapezoidal
integration, repeated linear interpolation, and the Romberg recursion are
obtained. A BASIC language program will then be described, and an example
will be considered. Finally, a once-repeated trapezoid rule will be shown to
yield Simpson’s rule for integration; this will be used in Chapter Four.

2.3.1. Trapezoidal Integration. The integration problem is to find the value
of the integral T given the integrand f(x) and the limits of integration a and b:

T(a, b)=fbf(x) dx. 217

Summing the two trapezoidal areas in Figure 2.3 yields

fotfion | faentfy
7 T2 )

T=h( 2.18)
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and it is convenient o rearrange (2.18) as
T=h[(f,+f, n+ 1) —3(f,+f) ] (2.19)

Similar equations for four trapezoids can be written and then expanded to
obtain the general rule for 2' trapezoids:

To,iﬁhi{( s r) —%;[f(a)+f(b)]}, e
k=0

where the trapezoids have the width

(b-2)
-
The error in the trapezoid rule estimate is proportional to h?. The interested
reader is referred to McCalla (1967) for more details. The zero subscript on T

in (2.20) indicates that the estimate was obtained without the extrapolation
discussed next, i.e., a zero-order extrapolation.

h.

(2.21)

2.3.2. Repeated Linear Interpolation and the Limit. A linear interpolation
formula will be derived in terms of Figure 2.4. Equating the slopes between
the two line segments in Figure 2.4 gives

74 _ %4 (2.22)
X—X, Xy—X; |

which reduces to the standard interpolation (or extrapolation) formula;

_ D= x)—q{x,—X)
XX )

a(x) (223)

Now suppose that the q(x) function is the integral function T, and two
particular estimates, Tj; and T,;,,, have been obtained by (2.20). For the
function of h, T, ;(h), use (2.23) with the interpolation variable h%:

 Tou (202 = To (b, — b

1,1
hiz_hr‘zﬂ

: (2.24)

L}

1

i

I

|

]
- —
X

b - m - -

1

%
Figure 24. Interpolation of a real function of a real variable.
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where T, ; indicates a degree-1 (linear) extrapolation. To extrapolate trapezoid
widths to zero, set h equal to zero in (2.24) and simplify the result by using
(2.21):

- 3T0.i +1 + TU.i+ 1 TO.i

T,; 2.25
‘ 13 22__ 1 ( )
The linear extrapolation in (2.25) is rewritten in a form for later use:
T0.i+ 1~ Tos
T, =Tois+ —y (2.26)

This has an error from the true integral value proportional to h, and is thus a
more accurate estimate than the individual trapezoidal estimates.

Again note that the linear extrapolation is versus h? and not simply versus
h; the reasons for this choice and the following general formula are explained
by McCalla (1967) and, in more detail, by Bauer et al. (1963). Briefly, the
trapezoid rule estimate may be expanded as a finite Taylor series with a
remainder in the variable h, the true value being the constant term. Since the
error is of the order h% the remainder term is proportional to f”(§)h?, with &
somewhere on the interval h. McCalla (1967, p. 289) argues that f”(£) should
be about equal over h; and its subdivided intervals h, ,=h;/2. This leads
directly to (2.25), thus justifying the linear extrapolation to zero of successive
trapezoidal estimates.in the variable h2.

The scheme is simply this: one, two, and then four trapezoids in the range
of integration enable two linear extrapolations, as described. The two extrapo-
lated results can then be extrapolated again for a new estimate. McCalla
{1967y shows that repeating linear extrapolations once is equivalent to qua-
dratic (second-degree) extrapolation. The concept of estimating performance
at a limit, here at h=0, is known as Richardson extrapolation; it will appear
again in Chapter Five.

Using this rationale, a general expression for Romberg integration is
obtained from (2.26):

Tk‘j=Tk—1\j+1+

T, coi~T, . P
k—1j+17 1y LJ, (k+_] i, (227)

%] j=i—-1,i-2,...,1,0.

Index k is the order of extrapolation, and there are i bisections of the
integration interval (b—a). The compactness of (2.27) makes it ideal for
programming. The table in Figure 2.5 illustrates the Romberg extrapolation
process. The step length, or trapezoid width, is shown in the lefi-hand column.
The brackets indicate pairs of lower-order estimates that produce an estimate
of next higher order by linear extrapolation to step length h=0. Then the
better estimates are similarly paired for extrapolation. Accuracy is ultimately
limited, because the estimates are the result of the subtraction of two numbers.
Eventually, the significant digits will diminish on a finite word-length com-
puter, and the process should be terminated.
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Truncation Error O(h) O(h} ) Oth®) Othd)-+-
Step i 0 1 2 3
Length b; i
b-a=hy 9 T0.0—1 Tig Tz.0-| LT

";a =h, 1 Ty, T”—Jl Tz‘,_]

h=1 0.750000000 0.694444445 0.693174603 0.693147478 0.693147182

h=035 0.708333333  0.693253968 0.693147902 0.693147183
h=0325 069702381 0.693154531 0.693147194

h=0.125 069412185 0.693147653 f(x)=% a3 2‘

Figure 2.5, Table of T values in the Romberg integration algorithm.

2.3.3. Romberg Integration Program. BASIC language Program B2-3 in
Appendix B implements (2.27), as illustrated in Figure 2.5, The only storage
required is in vector (single-subscript array) AU(-). The integrand function
should be coded by the user beginning in line 10,000; the values returned by
the user’s subroutine are expected to be labeled by the variable name “FC.”
The table of values in the format of Figure 2.5 can be compared to the
program’s computing sequence by adding lines to Program B2-3, as shown in
Table 2.1.

Run the example in the subroutine programmed in line 10,000 and after.
The integrand is 1/x, so that the integral is known in closed form, namely ln x.
Input limits a=1 to b=2, so that the answer should be In2. The progress of
the Romberg algorithm for this example is shown in Figure 2.5, and the
answer at termination is underlined. Parameter ND=11 in Appendix-B Pro-
gram B2-3 limits the algorithm to a2 maximum of 1025 evaluations of the
integrand function. The accuracy parameter EP=1.E—5 usually produces at

Table 2.1. Statements to Output the
Romberg Table

9062 PRINT”II AU(IIY”
9064 PRINTH; AU(])
9282 PRINT

9284 PRINTH; AU(I)
9352 PRINTIIL; AU(ID)
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least six decimal places of true value. The value for In2 in Figure 2.5 is off in
the ninth place.

2.3.4. Simpson’s Integration Rule. The order of truncation errors for re-
peated linear interpolation is shown in the top row of Figure 2.5. The j=0
column is the trapezoid rule, and the j=1 column happens to be the well-
known Simpson rule. The other columns represent increasing orders of accu-
racy, but they do not coincide with other frequently used methods, such as
Weddle’s rule (see Ley, 1970, p. 246). Simpson’s rule is to be applied in
Section 4.6, where independently incremented function data will be integrated.
Therefore, it will be convenient to obtain a closed formula for Simpson’s rule,
comparable 1o (2.19) for the trapezoid rule. Recall that the area in Figure 2.3
is an estimate of an integral of f(x)} from a to b; call it Tj;. From Figures 2.3
and 2.5, Tyo=h{f, +f). So, with i=0 in (2.26), T, , becomes

Tl.0= %(fa+4fa+h+fb)» (223)

where

N

b-a, (2.29)

. h >

This is Simpson’s three-point rule.

The general formula for Simpson’s rule can be recognized by first finding
the five-point rule, namely, T,,, using h,=h/2. Extending the analysis
evident in Figure 2.3, the five-point trapezoid rule is

Top= h( Shtlnnthnthomt Zf ) (2.30)
Substituting (2.30) and (2.28) into (2.26), with i=1, yields
h/2
T, = / —(F o+ 2+ A o HE) (2.31)

Deducing Simpson’s rule from (2.29) and (2.31) and putting it into standard
form, using variable t, we obtain

tn
f (1) dtz%—t(fo+4f1+2f2+ oo df,_ HE), (2.32)
to

where n is even and

A=22 (2.33)

=

Recall that errors in the trapezoid rule were proporuonal to (AtY. Simpson’s
rule errors are proportional to (At)*.

2.3.5. Summary of Integration. Romberg integration is based on numeri-
cally stable trapezoidal integration. The number of trapezoid sections neces-
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sary to produce an accurate estimate of the integral value is obtained by
repeated linear extrapolations. The recursive algorithm is compact and re-
quires only one small vector in memory. The repeated extrapolation to zero of
the squared trapezoid width (h?) is the classical method of Richardson. The
first extrapolations of pairs of trapezoidal estimates produce Simpson’s rule
estimates. Subsequent higher-order estimates do not coincide with other
well-known integration rules, but they are well behaved and can be calculated
in an efficient manner,

24. Polynomial Minimax Approximation of Piecewise Linear Functions

There are many instances in engineering when a mathematical expression is
required to represent a given graphic function, This is often required to be a
real function of real variables. (Rational complex functions of a complex
variabie are the next topic). Many methods require the approximating func-
tion to pass through the given data points, perhaps matching slopes as well.
Others require the function values at selected, independent-variable values to
differ from given function values by a minimum aggregate error, e.g., least-
squared errors (LSE). The minimax criterion specifies that the approximating
polynomial minimize the maximum magnitude in the set of errors resulting
from not passing through the given data points. In ideal cases, the minimax
criterion results in “equal-ripple” behavior of a plotted error function (see
Ralston, 1965, for more details).

This section describes a minimax approximation to a function that is given
graphically by a series of connected line segments, i.e, a piecewise linear
function. This function description is often convenient because involved
integral relationships are simplified considerably. (This is also the case in
Section 6.7). However, the approximation technique to be described in this
section could easily be adapted to numerical integration of analytical func-
tions by using the Romberg integration just described. Either way, this
technique relates polynomials in x (power series) to weighted summations of
classical Chebyshev polynomials of the first kind. These truly remarkable
functions appear throughout mathematics, as well as in several places in this
text. The basis of this method will be described, and a BASIC language
program with two variations will be provided.

2.4.1. Chebyshev Functions of the First Kind. Chebyshev functions of the
first kind can be expressed in polynomial or trigonometric forms. The former
are given in Table 2.2, where T{x) are Chebyshev functions of the first kind.
Chebyshev functions of the first kind oscillate between amplitudes +1 and
—1 in the interval —1<x< +1, as shown in Figure 2.6. This equal ripple is
crucial, but it is only one of many interesting characteristics.

The polynomials in Table 2.2 can be calculated from a single recursive
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~ Table 2.2. Chebyshev ‘Polynomials
of the First Kind

Tix)=x

Tyx)=2x>~1
Ty(x)=4x"—3x
Taix)=8x"—8x+1

Ts(x) = 16x°—20x* + 5x
Te(x)=32x%—d8x*+ 18x*— 1

Figure 2.6. Low-order Chebyshev functions.

formula, and they are equivalent to the following trigonometric expressions:
T,(x)=cos(icos™ 'x), (2.34)
where —1<x< +1, or
T(x) = cosh(i cosh ™ 'x), (2.35)

where [x|> 1. The interested reader can consult Guillemin (1957) for more
details,

24.2. Chebyshev Expansions. Given some real function g(x) over a range of
real x values, it is desired to find some approximating polynomial in power
sertes form:

f(X)=hg+bx+bx>+ - +b,x". (2.36)

If g(x) is specified at a finite set of x, values, then the objective is to minimize
the error, ‘

E =max|g(x,) — f(x,)[, (2.37)

for r=1,2,...,M. The unknowns are the n+ 1 coefficients by, by,...,b,. For

reasons of scale and formulation, it is necessary to work on the range
—1<x< +1. Suppose that the given function g(x) is defined in the variable y
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over the range a <y < b. Then the linear translation

2y—(b+a)
= 23
* b—a (2.38)
relates g(y) values to the chosen x range. Once an approximating function,
k(x), is obtained, the inverse relation of (2.38) can be used to find f(y).

Example 24. Suppose that a given function, g(y), is defined by samples over
the range from a=5 to b=15. Then (2.38) reads x=(2y~-20)/10, so that
every value of g(y) can be considered as g(x). Once the approximating
function f(x) in (2.36) is determined, then every value of f(x) can be consid-
ered as f(y) by the inverse relation y=35x+10.

Usually, the problem of finding the unknown coefficients in (2.36) is badly
conditioned, i.e., the solution is difficult on a finite word-length computer.
Therefore, another remarkable property of Chebyshev polynomials will be
utilized by redefining the approximating function in terms of a weighted sum
of Chebyshev polynomials:

f(x)y=agTo+a, T (x)+a,T,(x)+ - +a,T (x). (2.39)

The concept of weighting is seen by referring to Table 2.2: there are some
scaling coefficients (a,) that multiply each Chebyshev polynomial, Ti(x), so
that their sum suitably approximates the given polynomial g(x) over the range
—1<x< +1. The set of unknowns that is chosen for solution contains all the
a;, i=0,1,...,n, and this problem is almost always well conditioned. Once
these are known, they can be used directly in the form (2.39), or the b,
coefficients in (2.36) can be found by collecting contributions to coefficients
of like powers of x (see (2.36) and Table 2.2). There is a simple recursion to
convert the a; set to the b, set (see Abramowitz and Stegun, 1972). The
algorithm requires little coding. Determination of the a, coefficients in (2.39) is
classical (see Vlach, 1969, p. 176):

f+ 1 g(x)T (x
e

where Ty=1 is defined for convenience. This integral can be evaluated
numerically for any analytic function g(x), since the integrand is thus known
(see Section 2.3). Even so, it may be suitable to approximate the given
function or a given discrete data point set by connected line segments of
arbitrary lengths. Then the integration in (2.40) is analytically simplified, as
shown in the next section.

x, i=0ton, (2.40)

2.4.3. Expansion Coefficients for Piecewise Linear Functions. Integration of
{2.40) can be avoided by assuming that the given function g(x) is composed of
linear segments:

g(x)=kx+gq, (241
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y‘
- Y2
I
K=
ks, qs
V1
X, %y Xg Xg Xg

X
Figure 2.7. Piccewise linear function to be approximated. [From Vlach, 1969 ]

where X, <X <X, as shown in Figore 2.7. Tt is also helpfal 1o introduce a
new variable, angle ¢, that is clearly related to(2.34):

X=Cosd. (2.42)
Then (2.41) and (2.40} yield

kx+q)Ty(x
=2 [ BT 0
7% 1 —x?
and (2.42) and (2.34) in (2.43) yield
a, = :—zjq"“(k cos ¢ cos i+ q cosig) dé. (2.44)
' T Jg

This integrates eazily for i=0 and i=1. For i=2,...,n it is

sinfi+ | sin(i— 1) 1% inig 1
o, = —k[ 20T DE  SMAZDR_2arsinie)’ ;) )
Toow i+1 i—1 o 7 1,
Each a;, is the contribution to the (2.40) integral by each trapezoid between x;

and x,,, in Figure 2.7. The final expression for the a; coefficients in (2.39)
applicable to piecewise linear g(x) is

M-1 :
a= 3 a, (2.46)

r=1

where M is the number of given g(y) data pairs.

244, A Minimax Approximation Program. Program B2-4 in Appendix B
performs the preceding calculations from given sets of data in the range
—1<x< + 1. The end points at x=—1 and x=+1 must be included. The
output first shows the a, weighting coefficients for the Chebyshev functions in
(2.39) and then the b, power series coefficients of x in (2.36) for various values
of degree u.
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Table 2.3.  The Data Pairs Defining a
Piecewise Linear Function

X -1 0 +1
y i) 0.6 0.6

Tabte 2.4. Chebyshev and Power Series
Coefficients for n=4

a,=0.409014 b= (.561803
ay= 030 b,= 030
ay=—0.127324 by = —0.458366
a;= 0. by= 0.

as= 0.0254648 by= 0203718

From Viach, 1967. ©€1967 1EEE.

fix)

[
-1 0 A
X

Figure 2.8. Degree-4 approximation 1o a three-point function. [From Vlach, 1967. © 1967 TEEE.)

Example 2.5, Consider the data given in Table 2.3. Input these into Program
B2-4 and ask for polynomial degrees 4 through 6. The program will display all
seven coefficients for the Chebyshev expansion first, then the degree-4 power
series coefficients. These are shown in Table 2.4, and the graph of either of
these representations is plotted in Figure 2.8, Note that the program also lists
the approximating function values and the errors at each sample point in x.

Program B2-4 documentation also indicates two variations on the coding,
also given by Vlach (1969). These make the data input and calculations more
efficient when strictly even or odd functions of x are approximated. The data
samples must be on the closed (end points included} interval 0<x < + 1. Run
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the modified programs with three data pairs (o approximate a constant and a
45-degree line for the even and odd cases, respectively.

2.4.5. Piecewise Linear Function Approximation Summary. Arbitrary real
functions of real variables can be expressed as a linear weighted sum of
Chebyshev polynomials of the first kind. The coefficients are determined by
an integral formula, but for piecewise linear functions the Chebyshev coeffi-
cients are found by an aigebraic formula. Chebyshev polynomials have many
amazing characteristics, one being the minimax error property (see Hamming,
1973, for a commentary).

A linear (weighted) summation of Chebyshev polynomials is easily restated
as a power series polynomial in real, independent variable x. Since these
approximations are found on the normalized interval — 1 <x< +1, a simple
linear mapping is required in the usual case where given functions are defined
otherwise. It is not commoniy observed, but the approximation described in
this section has close connections with Fourier series approximations, which
are more familiar to electrical engineers. Many other closed-form approxima-
tions are related to the method described (see Ralston, 1965, p. 286).

2.5. Rational Polynomial LSE Approximation of Complex Functions

There are many applicatiofs in electrical engineering for complex curve
fitting, i.e., finding a complex function of a complex variable soch as fre-
quency. Examples include modeling an antenna impedance versus frequency
for interpoiation or for synthesis of an equivalent network; the latter might be
used as a “dummy load” in place of the real antenna. Another example is
approximation of a higher-order-system transfer function by a lower-order one
over a limited frequency range.

A rational polynomial in complex {Laplace) frequency s has more approxi-
mating power than an ordinary polynomial in s and can be an intermediate
step to synthesizing an equivalent network. Such rational polynomials take the
form

3 agta;s+as’+ - +asf
l+b,s+bysi4 - +bs"’

Z(s) (247

where s =jw will be used interchangeably. The relationship between functions
of complex s and real w is rooted in the concept of analytic continuation,
which is described in most network synthesis textbooks (see Van Valkenburg,
1960), Although the method to be presented will generally assume that s=jw,
it also applies to the less general real-variable case s’= — w? for approximating
even functions.

The kind of problem to be solved is shown in Figure 2.9; it was given by
E. C. Levy (1959), who published the algorithm to be described in this section.
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o N A S R E R B R B R
10 — ,’\\ - 80
1o 1
Phase angie 40 2
o o
E 0 =
g §
-4 &
{
Magnitude T - ~o -80
ol L 1 1 ] L1 | 120
0.1 02 0.4 1 2 4 10 20 40 100
Frequency cw (in radians/second)
Frequency response characteristics of a dynamic system with
a transfer function given as
Fljw) = 1+jw '
1+2(0.5)(w/10) + (jw/ 10
Magni- Phase
k W) tude Angle R, 1
o 0.0 1.00 0 1.00 0.000
1 0.1 1.00 5 1.00 0.090
2 0.2 .02 16 1.00 0.177
3 Q.5 [.i2 24 1.02 0.450
4 0.7 .24 k]| 1.05 0.630
5 [.0 .44 39 1.10 0.900
6 20 227 51.5 141 1.78
7 4.0 4.44 50.5 2.82 342
8 70 8.17 28 7.23 382
9 (0.0 10.05 -6 10.00 - 1.00
0 20.0 3.56 —59 2.85 -4.77
I1 40.0 255 ~76 0.602 -2.51
12 70.0 1.45 —82 0.188 ~143
13 100.0 1.00 —84 0.091 - 101

R, =(Magnitude at w,} X cos(phase angle at w,)
I, =(Magniude at w,) X sin(phase angle at w,).

Figure 2.9. Frequency response and discrete data for a second-degree system. [From Levy, etc.,
IRE Trans. Auto. Control, Vol. AC-4, No. 1, p. 41, May 1959. © 1959 IRE (now IEEE))

The table of values is the given data. Although measured data are often
inaccurate (noisy), this particular data set was compuied from the F{w) values
shown in Figure 2.9 for purposes of illustration. The graph shows the magni-
tude and angle components of the function. The technique will be to approxi-
mate only the magnitude function by finding the unknown coefficients of
(247,
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The error criterion will be the weighted least-squared-error (LSE) function
over the frequency samples 0, 1,...,m:

E= 3 [Wial] (2:48)
k=0
where
&= F(w,) — Z(wy)- (2:49)

The complex numbers F(w,) are the given data to be fitted, i.e., the target
function. The complex approximating function Z{w,} is given in (2.47). The
W, values in (2.48) are the weighting values at each frequency e,. The
necessary condition for a minimum value of E (generally not zero) is that the
partial derivatives of E with respect to the coefficients ag,ay,...,a,, by,
b,....,b, in {2.47) be equal to zero. A set of simultaneous nonlinear equations
will result if the formulation in (2.48) and (2.49) is used with independent
weights W, . The equations are badly conditioned and extremely difficult to
solve. Gradient optimizers (Chapter Five) usually are not successful in finding
a solution (according to Jong and Shanmugam, 1977).

E. C. Levy’s method will be described. It employs a weighted LSE objective
function similar to {2.48), except that the weights are dependent functions.
This produces a system of simultanecus linear equations that are readily
solved by the Gauss-Jordan program described in Section 2.2. The derivation
will be outlined, the matrix of linear equation coefficients will be tabulated,
and a brief BASIC language program will be furnished to calculate the four
kinds of matrix coefficients. An example will be provided here, and others will
be given in Section 6.7.

2.5.1. The Basis of Levy’s Complex Curve-Fitting Method, The definition of
Z(s) in (2.47) is expanded, with s=jw, to produce a set of linear equations:

(Ro— 2,07 +aw’+ -+ ) +jufa, - agei+aget+ )

Z(s)= , 2.50
) (1=byw® +byw*+ - Y +jw(b, —byw’ + bew*+ -+ +) (229)
which is further defined by
A a+jop _ N{w)
)= a¥jor ~ D) (2.51)

The real terms in the numerator and denominator of (2.50) are even functions
of frequency, and the imaginary terms are odd. Quantities in parentheses are
equated by relative position with the variables appearing in (2.51), where the
numerator and denominator functions are also identified.
With these definitions, the unweighted error function in (2.49) becomes
N(w)
s(w) = F(w) - —.m . (252)
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When (2.52) is multiplied through by D{w), the squared magnitude is
ID(wje(w)|* = D(w)F(w)~N(w) (2.53)

It is important for the reader to understand the following point in order to
apply this scheme to practical situations. Compare {2.53} 10 (2.48) and (2.49);
(2.53) shows that the “weighting” at any frequency is the magnitude of the
approximating function’s denominator. Suppose that a rational approximating
function has been found; ordinarily its denominator is large when its value is
small. The large denominator means that the function was most heavily
weighted in the frequency “stopband.” This weighting can be offset by taking
more samples at “passband” frequencies than elsewhere, which is the price
paid for making the method tractable.

The equations to be solved are found by first extending the definition of the
target function Flw) appearing in (2.49) and (2.52):

F(w)=R(e)+]jI(w). (2.54)
Then (2.48), (2.51), and (2.54) yield

m
E = kE_:Q [(Rk"k - wkaIk - ak)2+ (‘*’kaRk + Oka e wk Bk)z]. (2.55)

So the necessary conditions for minimum E,

ggi —0= % for all j and j, (2.56)
can be written directly from (2.55) using the relations defined by (2.50) and
(2.51). A large amount of ordinary calculus and algebra is involved in
reducing the resulting' linear equations to the compact form given by Levy
(1959). The resulting matrix equations are given in Figure 2.10 in terms of the
coefficients defined by (2.57).

m m
A= E ‘*’lrcls Sy= 2 "’;':Rk:
k=0 k=0 (2-57)
m m
To= > I, Uy= > wp(RE+17).
k=0 k=0

2.5.2. Complex Curve-Fitting Procedure. The basis of the procedure appear-
ing in Figure 2.10 and (2.57) may seem complicated at first glance. This is
remedied by a brief explanation and an example for the problem shown in
Figure 2.9. The equations in (2.57) have been placed in BASIC language
Program B2-5 in Appendix B. The F(w) real and tmaginary components are
defined as R(w) and I{w) in (2.54); they are given versus frequency w in the
data shown in Figure 2.9 and are used in (2.57). Program B2-5 reduces this
calculation to entering the m+1 data triples w,, R,, and I,. The matrix
equations in Figure 2.10 have as unknowns the set of a and b coefficients that




A O
0 A
A0
0 A,
Ay O
0 A

T, - S‘.‘.
S, T,
T3 -5,
s, T,
T, -8
S Ty
T, -8
L

=X, 0 A, O
] Xy 0 A
—A4 0 x ©
0 A 0 A
—Ag 0 A 0
0 —Ag 0 Ay
-T, S Ts —35
-8 -Ts S T,
—Ts 5 T9 -5
-8 -T; 8 Ty
=T, S Ts —3p
-8 - Ta Sio Ty
-Ts

Tll __SIZ

T 8 -T, -8 Ts 5 -T, ! 5o
-5 T, $; -Ts -8 T, S; a; T,

T, 8¢ ~Ts —8 T, 8 -T, a, S,
-3, Ts 5 -T, -8 T, Sio a, T

Ts 8 -T: -5 Ty 8 Ty a4 54
-8 T 83 —Ty =5, Ty S as Ts
U, 0 -y, o U, 0 -, b, 0
0 u, 0 -Us; 0O Uy 0 b, U,
u, 0 -y 0 U 0 U by 0
¢ u, 0 -Ug 0 Upg © by U,
Ug 0 —Uy 0 Uy 0 -Up, bs 0
¢ U 0 -~Uy 0 U, 0 bs Us
Ug 0 -U, 0 b, 0

U, 0

Note: The upper-left and lower-right submatrices must be square.

Figure 2.10. Levy's matrix of linear equations.
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determine (2.47). How many of each are contemplated becomes the basis for
partitioning and selecting the equations in Figure 2.10. This is best shown by
an example.

Example 2.6. Suppose that the given sampled data are those in Figure 2.9
and the rational polynomial required to fit these data is

ag+a,s+a,s’

Z(s)= -
) 1+b;s+b,s?

(2.58)

There are five variables: ay, a,, a,, b;, and b,. The vector (column) of
variables in Figure 2.10 appears just to the left of the equality sign. The
horizontal dashed partition line should occur just below a,, and the bottom of
the matrix just below b,. The vertical dashed partition line is placed so that
the upper-left submatrix is square. The set of linear equations appropriate for
{2.58) is thus

FAO 0 A {l T, qu-ao-‘ |—Soﬂ
0 Ay 0 1-8 Tilla T,
Ay 0 A | Ty S, ||a|=]S, | (2.59)
T, -8, ~T,) U, 0 |[b | |0
R ~8,1 0 Usgfba]| |{Ua]

Now Program B2-5 is used with the 14 data triples from Figure 2.9; the h
subscript will vary from 0 to 4, the limit being obtained by inspection of
entries required in (2.5%). In this case, the program output is shown in Table
2.5. The system in (2.59) is then solved by Gauss—Jordan Program B2-1, and
the resulting a and b coefficients are also listed in Table 2.5 for use in (2.58).
Of course, these rational-polynomial coefficients agree fairly well with those in
Figure 2.9 because the problem was constructed for confirmation purposes.

Table 2,5. Example 2.6 Levy Coefficients

h A Sa T, U,

0 14, 31361 05470 241.1188

i 255.5 270.695 —361.3096 2703.4268

2 17670.79 5341.3495 — 22880.6508 57201.6953

3 1416416.48 229485.25 ~ 1698745.45 2540544.42

4 126742674 15729105 — 142523023 175956492
3,=0.9993 a,=1.0086 ay= — 1.59E—5

bo=1 b, =0.10097 b,=0.0100
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2.5.3. Summary of Complex Curve Fitting by Rational Polynomials. Levy’s
method for fitting complex data at sampled frequencies in the weighted
least-squared-error sense is straightforward. The weighting versus frequency is
inversely proportional to the value of the rational polynomial thus found.
Since the polynomial should roughly correspond to data values to be of any
use, nonuniform samples versus frequency should produce emphasis on the
frequencies where the magnitude of the complex data is least. For example, if
a lowpass function is to be fitted over several decades, then the fit to the
passband {(lower) frequency data may be poor unless samples are spaced more
closely in this frequency range. Proposed iterative schemes have been based
on a sequence of solutions similar to those presented here; they tend to
converge {0 a situation equivalent to uniform weighting (see Jong and
Shanmugam, 1977, and Sanathanan and Koerner, 1963). However, equal
weighting may still require some experimenting. Thus the built-in inverse
weighting does not seem too severe a limitation.

The method requires the user to input real and imaginary data parts, with
the associated frequency, into Program B2-4 to obtain coefficients for a
system of linear equations. The system’s matrix elements are partitioned from
a general matrix format (Figure 2.10) according to the approximating rational
polynomial’s numerator and denominator degrees. The system of linear equa-
tions is then solved by Gauss~Jordan Program B2-1 or by any other program
that solves linear systems of real equations. This method will play an impor-
tant role in Carlin’s broadband impedance-matching technique in Section 6.7.

[

Problems

2L If

Z~Z,
=zrzs

where Z,=2+33, find p when Z=3—j5. |
2.2, Given that V=V +jV; and I=1_+]I;, show that
' Re(VI*)=Re(V*])=V I +V][.
2.3. Show that |Z)*=2Z*.

2.4. Show that 2 Re(Z)=Z+Z*.
25 H

V+ZI V—2Z*1 .
a= , b= , and Z=R+j)X,
2yR 2R

show that |aj*—|b[*= Re(IV*).

F




2.6.

2.7.

2.8.

2.9.

2.10.

211

212

Prablems K}

I
_al+a,
T aZ+ 1’
find the derivative w' =dw/dZ.
If z=x+jy and 2P=X_+jY ,
(a) Calculate z2=(x+jy}x +jy).
(by Find X, Y, X;, and Y.
{c) Given
X, =2xX_  ~(X*+¥)X,_2.
Y, =2xY_ ~ (2 +¥)Y, ;.
find X, and Y.
(dy Do (a) for p=3 and (¢} for k=3.

—2 =1 11[1] |bua
1 1 11j2]=]bay
3 1 —-11[13 by,

find the values of b,,, b,s, and by,.

Given

Solve the following system for x, and x, by the Gauss—Jordan method,
showing the sequence of augmented matrices.

4x, +Tx, =40,
6x, + 3x,=30.
Given
23 —4+j7 1431 [a;+ibys
6451  8—i10 || —3+j5] |ay+iby |

find the values of a3, b3, a5, and by,
For the matrix equation
1+j2 243 33— 11 1-j3 z,
3+ =3-31 6+91ll6-j7|=|zy |
—2-j§3 =3+32 7+j512+;3 Z3
find z=(z,,7,,2,)" numerically.
Given
[0.5 /60 11 /250 H 2 /40 ] [m, &}

03 /0 09 /—60{02 /=10| |m, /8,

find the values of m), §,, m,, and 4,.
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2.13. Write the trapezoidal integration formulas for T, Ty, and Tg,. Then
use extrapolation formula (2.27) to find Simpson rules T, g and T, ,.

2.14. Calculate
f Sxe* dx
3
numerically, using:

|

|

|

|

| (a) Simpson’s rule with five samples.
| (b) The trapezoidal rule with three evenly spaced samples.
| {c) The trapezoidal rule with five evenly spaced samples.

|

(d) The Romberg extrapolation to the limit, using the preceding
results in (b) and (¢) above.

2.15.  Evaluate Chebyshev polynomials T (0.8} and T,(3.1) by:
(a) Horner’s nesting method

T(x)=ap+x{a, +x[a,+x(...)]}.

(b} Trigonometric or hyperbolic identities.
. {¢) Numerical recursion

Ti(x)=2xT, _,(x)— T;_(x}.

2.16. Chebyshev polynomials of the second kind are defined by
P(y)y=yP,_,—~P,_,.
where P, =1 and P,=y. Find P, P,, P., and P, numerically for y=1.5.
2.17. Find an expression for x at the n—1 extreme values of

T.(x)=cos(ncos™ 'x).

2,18, Write the power series equivalent to
P(x) =T (x)+4T,(x) + 2T3(x) — T4(x)
=ag+ax+ax +ax +axh;
in other words, find the a; coefficients. See Table 2.2 for T,.

\
2.19. Suppose that q(y) is defined on —7<y<25. ¥ (q)x is defined on i
—1=<x<1, find the value of y corresponding to x=0.5 using the linear

mapping in (2.38).

220, The three points

X -1 —0.5 +1
g(x) 0 ] 0

define a piecewise linear function that can be fitied in the minimax




221

2.22,

2.23.

Problems 33
sense by the sum of first-kind Chebyshev polynomials T(x):
f(x)y=a,Ty+a,T,;+a,T,+a,T,+a,T,.
Find the value of a,.
Given the function of two variables
F(X,,%;) =612 —60x, — 132x, + 13x] — 10x,x,+ 13x3,

find the values of x; and x, at the extreme value by equating the first
partial derivatives to zero.

Given the fitting-function form
ap+as+a,s’

Z(s)= N
) 1+b,;s+b,s2+b,s’

write the third equation from the appropriate set from Figure 2.10.

Discrete, complex numerical data can be fitted versus frequency by a
rational polynomial. For the polynomial

ap+a,s+a,s’ +a,s+ast
1+b;s+bys’+ by’ +b,s'+bes®

Z(s)=

write the first and last linear equations that result from Levy’s method
in terms of constants A, S;, T,, and U; fori=0,1,....




Chapter Three

Some Tools and Examples
of Filter Synthesis

This chapter provides the necessary computing aids for manipulating polyno-
mials in Laplace complex frequency s. These programs are explained and then
appliéd to a meaningful sequence of modern network synthesis steps by way
of example. The result is a sense of confidence, case, and insight that is
difficult to obtain by a purely academic approach to either computing
methods or synthesis.

A reliable root finder based on useful, important principles begins the -
chapter. The synthesis process involves assembly as well as disassembly
{factoring) of polynomials; so, programs that form polynomials from factors
and by the polynomial four functions (add, subtract, multiply, and divide) are

" considered next. Also, programs for continued and partial fraction expansion
are presented with some applications.

By the end of Chapter Three, those who have used the programs, tried the
examples, and followed the fairly routine mathematical steps should be able to
appreciate more detailed explanations of synthesis methods, for example,
those of Temes and Mitra (1973).

3.1. Complex Zeros of Complex Polynomials

Finding complex zeros of polynomials ranks, along with solution of linear
systems of equations, as a fundamental tool in engineering analysis. Textbooks
usually give examples that factor by the quadratic formula or inspection,
leaving the serious student to do his own numerical root finding by some
system routine on a large and perhaps inconvenient computer. Moore {1967)
described a conceptually interesting root finder that works well and fits easily
into small computers. This is the time to eliminate the frustration or missed

M
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opportunity that yesterday’s student suffered upon encountering the instruc-
tion, “In general, this will have to be done numericaliy.”

The problem is to find the n values of z that make the following polynomial
equal to zero:

f(z)= k§=j0(ak +jb,)z*=0, (3.1

The coefficients of this summation, a power series in z, may be complex,
Certainly the independent variable z and the roots in z may be complex, with
rectangular components

Z=x+jy. (3.2)

Clearly, given a value of z, the polynomial may have a complex value with
components
fz)y=u+jv. (3.3)

To be explicit, the problem is to find the roots z; so that the product form of
the summation in (3.1) is
fz)y=(a,+jbYz—2 )z~ 25)...(z—2,) (34

Polynomials in modern network synthesis commonly have only real coeffi-
cients, a condition that results in roots being cither real or in conjugate
complex pairs. Moore’s root finder was formulated for the more general case
having complex coefficients, as in (3.1), which occurs, for example, in solving
the characteristic equations associated with complex matrices. The real-
coefficient polynomial will be solved more than twice as fast if the suggestions
that follow are incorporated. However, the more general case is retained for
instructional and practical reasons, Moore’s method employs derivatives of
the polynomial. This causes some multiple-root inaccuracy not found in
nonderivative methods, such as the popular method of Muller (1956). There
are also root finders that utilize synthetic division in special ways, so that
convergence depends upon initial conditions (e.g., the Newton—Raphson, Lin,
and Bairstow methods). Some other methods that guarantee convergence are
not straightforward and are often slow, for example, the Lehmer—Schur and
Graeffe methods. See Ralston (1965) for descriptions of these six other
root-finding techniques.

There are two intriguing ideas central to Moore’s method. The first is the
Cauchy-Riemann principle that defines the derivative of an analytic (regular)
complex function in terms of the partial derivatives of u and v (3.3) with
respect to x and y (3.2). Any student of complex-variable theory or its
application will find this worth knowing. The second idea is the Mitrovic
method for evaluation of a polynomial and its derivatives. This is a much
more efficient means than the better-known “nesting” programming tech-
nique, especially on computers where polar complex arithmetic is either slow
or nonexistent.
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Topics in this section include Moore’s search algorithm, synthetic division
for linear and quadratic factors, the Mitrovic evaluation method, BASIC
program ROOTS, and polynomial scaling.

3.1.1. Moore’s Root Finder., Moore’s root-finder method adjusts the compo-
nents of z=x+jy until the squared magnitude of f=u+jv is zero at z=z,. The
root factor (z—z) is then removed from the polynomial by synthetic division,
and the process is repeated on the remainder polynomial. The adjustments on
x and y are made by the Newton—Raphson method. The method now will be
developed in detail.

The error function to be minimized over the (x,y) space is

F=|fl*=u?+v? (3.5)

as illustrated in Figure 3.1. The positive, real function F in (3.5) must have
exactly n zeros, as does the given complex function f in (3.1) or (3.4). It is well
known that u and v are well-behaved functions of x and y; ie., they are
continuous, and their derivatives exist, In such cases, the Cauchy-Riemann
condition defines f'(z), the derivative of f with respect to z:

ooy B df dv _dv _.du
f(z) = i ax-i-_]aa— _]—E. (3.6)

Furthermore, {3.6) defines a relationship between real parts and between
imaginary parts; consequently, knowledge of partial derivatives with respect to
x will furnish partial derivatives with respect to y without further work.
Proceeding, the partial derivative of F with respect to x is written by inspec-
tion of {3.5):

%=2(ug—“ +vﬁ) 3.7

The partial derivative of F with respect to y is similarly written, but the

Fiz)

x Figure 3.1, Polynomial error surface near a root.
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equalities available from (3.6) enable an expression again using only partial
derivatives with respect to x:

dF ov Ju

—_— —yuU— -+- — 1. .

By (-udr+var) (3-8)
The slopes of the error surface in the x and y directions are now available to
guide the search for one of the zero-function values illustrated in Figure 3.1,

Suppose that the search is a1 some particular coordinate intersection in the

x —y plane. The adjustment of each of these values is

Ax= -0 , (3.9
|f112
Ay=-0 a}ljf,/l?y , : (3.10)
where the steps are damped by 1 and scaled by the squared length (norm) of
the gradient
"2 a_u 2 "a-y_ 2
14 —(Bx) +(ax)' (3.11)

The gradient is the vector that points in the uphill direction of the steepest
slope, and its components are just the partial derivatives in (3.7) and (3.8). The
square root of (3.11), the gradient’s magnitude, expresses the steepness of the
slope. These are matters that will be considered in more detail in Chapter
Five. The Newton—Raphson search scheme for several variables also will be
derived there. It happens that the Moore search steps defined in (3.9)-(3.11)
are exactly the steps in the Newton—Raphson method, which converge very
rapidly. If these steps are too large, so that the new value of F exceeds the last
one, then the step sizes are reduced by a factor of 4 until a decrease in
function value is obtained. The details will be considered in Section 3.1.4.

3.1.2. Synthetic Division. Once a root is found by the search procedure just
described, then that factor is removed by synthetic division. Without loss of
generality, real coefficients will be used in a third-degree polynomial for
illustration of the synthetic division process. Consider the polynomial

f(z)=a,+az+a,2* +a,2° (3.12)
and its equivalent preduct form
f(z)=(z—z)(cy+c.z+ czzz), (3.13)
where z; is the root. The unknowns are the coefficients ¢, where k=0, 1, and
2 in (3.13), since the right-hand term is the next polynomial to be used in the
root search algorithm of Section 3.1.1. Ralston (1965, p. 371) shows that the
recursion is

k=n—1,...,0

. 20, (3.14)

Cp =4+ 70y {
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Example 3.1. Consider the factors
f(z) = (z+2)(3+2z+12%), (3.15)
which are equal to the polynomial
f(z)=6+Tz+42°+2°. (3.16)
The algerithm in (3.14) will be used to find the quadratic factor in (3.15),
which is the unknown in real problems. Proceeding with (3.14):
k=2: c,=14(—-2)x0=1,
k=1: c,=4+(-2)x1=2, (3.17)
k=0: Cu=T+{—-2)x2=3.

There is no change in the algebra when coefficients a, in (3.12) and ¢, in
(3.13) are complex; complex arithmetic is employed in (3.14) instead of the
real arithmetic previously indicated. However, when all b, in (3.1) are zero, so
that coefficients a; in (3.12) are known 1o be real, then there may be one or
more real roots and any complex roots will occur in conjugate pairs. This will
be the case in ordinary filter synthesis, so that compuling effort can be
reduced substantially in both synthetic division and evaluation of the polyno-
mial and its derivatives. Assuming real coefficients, real roots are removed, as
in (3.14), using only real arithmetic. When a root’s imaginary part is not
essentially zero, then the quadratic factor containing the root and its conjugate
is removed.

Consider the identity

(z—g)(z—z)=2"+pz+q;, (3.18)

where p;= —2x,, g;=x2+¥?, and z*=x—jy (see (3.2)). Ralston (1965, p. 372)
described removal of quadratic factors; no complex arithmetic is involved.
Without loss of generality, consider the polynomial

f(z)=ag+a;z+az’ +a,z° +azt +az’ (3.19)
and its equivalent product form
f(z)= (2" +pz+q)(co +ciz+ 2 +¢,2%), (3.20)

where the quadratic term corresponds to (3.18) with the one discovered root z,.
The recursion is
k=n-2,...,0,

Cn=cn,|=0. (3.21)

Ch =827 Pi%+1~ AiCu+2» {

Example 3.2. Consider the factors

f(2)= (22 + 32+ 2)(60+ 472+ 1222+ 2%), (3:22)
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which are equal to the polynomial
f(z) = 120+ 2742+ 22527 + 852" + 152* + 2°. (3.23)

The algerithm in (3.21) will be used to find the cubic factor in (3.22), which is

the unknown in actual problems. Proceeding with (3.21):
k=3: ¢=1—(HX0-2)x 0=1,

2 =15—-(3)x1-(2)x0=12,

l: ¢, =85—(3)x12—-(2)x1=47,

0: Cr=225—(3)x47—(2)x 12=60.

(3.24)

~ o= R
It

So far, a means to find and remove roots of a defined polynomial has been
described. It has been assumed that, given a trial value of the independent
variable z=x+jy, the polynomial’s real and imaginary parts (u and v) and
their partial derivatives with respect to x can be evaluated,

3.1.3.  Efficient Evaluation of a Polynomial and Its Derivatives. Given a value
of z, many programmers are aware that evatuation of (3.16) is better accom-
plished by the nesting
f(z)=6+2[7+z(d+2)]. (3.25)
However, the indicated multiplications are neither convenient nor fast on
most small computers, which either lack polar complex arithmetic or execute
slowly in that mode. Kokotovic and Siljak (1964) have described the Mitrovic
method, which uses only rectangular components (real numbers), in an
efficient scheme for evaluating both the polynomial and its derivative, as in
(3.1} and (3.6).
Consider a defined expression for the independent variable raised to some
power p: ’
P=(x+jy)’ = X, +iY,, (3.26)
where the upper- and lower-case x and y variables are different; for example,
22=(x+jy)(x+jy) = (x> —y)) +i(2xy), (3.27)
where it is seen that X, =x*—y* and Y,=2xy. It can be shown in general that
X =2xX, = (x> + ¥ X 2,
Y =2xY,_, — (¥’ +¥)Y, _,,
where k=2,3,...,p; X5=1; Y,=0; X,=x; and Y, =y. Although (3.28) will be
used numerically, the reader is urged to verify {3.26) by using (3.28) algebra-
ically for p=2 and p=23; this will agree with (3.27) for p=2 and similarly for
p=3.

The desired results are obtained from (3.28) and the following equations,
which are derived by substituting (3.26) into (3.1) and associating real and

(3.28)
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imaginary parts with (3.3); this straightforward process yields

u= %(akxk—kak), (3.29)
v=> (3. Y +bX,). (3.30)
0

Furthermore, differentiating (3.1) with respect to z and following the same
procedure yields

n
3—1;=§]:k(akxk_,—kak_,), (3.31)

o= Sk +bX ) (332)

Clearly, (3.29)-(3.32) can be programmed easily in the BASIC language,
especially since complex-variable calculations have been avoided. For the
common situation where the given polynomials have only real coefficients,
half the work in (3.29)-(3.32) can be eliminated, because all b, are zero. This
and savings in synthetic division by quadratic factors make it worthwhile to
have a separate real-coefficient, root-finding program.

3.1.4. Root-Finder Program. BASIC language Program B3-1 is documented
in Appendix B, including a flowchart and listing. This is similar to the
Hewlett—Packard Co. (1976a) program in the RPN language. Given a polyno-
mial as in (3.1), the program always starts at the point z=0.1 +]j1 (see Figure
3.1). Subroutine 3000 calculates (3.28), (3.29), and (3.30). Only program lines
2040-2070 are required to obtain the derivatives in (3.31) and (3.32), so that
the adjustments in x and y can be calculated for the Newton-Raphson step in
(3.9) and (3.10). If taking that step increases the objective function (goes too
far up an opposite hill in Figure 3.1), then the steps are reduced by a factor of
4 in the flowchart loop to reentry point 2190 until a lower objective value is
obtained. Note that while in that cutback loop, new derivatives are not
required, because the search direction is unchanged. It is interesting to observe
how seldom cutback is required by temporarily adding the lines in Table 3.1,

* Table 3.1. Temporary Code to Print Search
Cutback in Program B3-1

4005 PRINT "***CUTBACK***ON ITER#”; L.
5035 PRINT” ITERS="; L

Example 3.3. Input the coefficient real and imaginary parts for the polyno-
mial f(z)=1—z% The roots are on the unit circle; they are located at the four




Complex Zeros of Complex Polynomials 41

axis intersections and spaced between these at 45 degrees. Running the
program shows that these roots have coordinates equal to either unity or
1/42, with agreement through eight significant figures on most computers.
Adding the temporary statements in Table 3.1 and running the program again
show how few times the algorithm needs to reduce the step length in a chosen
search direction. Such reductions usually occur early in the search at some
distance from the root (minimum) location.

The roots are printed whenever changes in x and y are less than 1.E—5 or,
following 10 step-size reductions, when F is no greater than 1L.LE—8. The
algorithm is aborted if the latter condition fails or when there have been more
than 50 iterations (search directions). Little memory is required; there are two
vectors (single-subscript arrays) for the cocfficient’s rectangular components
a, and b, and two more vectors for X, and Y, in (3.26). These are dimen-
sioned to hold N elements, where N is the maximum polynomial degree.
However, on computers with exponent ranges of about 10exp(+ /—37),
numerical overflow occurs for polynomials of degree greater than 20. Expo-
nent ranges to 10exp(+ / —99) usually solve polynomials up to degree 35. The
difficulty occurs in the large polynomial value because of the poor initial root
guess of z=0.1+j1.

Gradient root finders such as Moore’s suffer from a chronic problem with
multiple roots. Consideration of a function such as y=(x— 1)* and its deriva-
tive shows that repeated (multiple) roots cause gradients (coordinate deriva-
tives) that tend to zero in the neighborhood of the root. This causes some
inaccuracy in repeated root values, because Moore’s method depends on
gradient scaling in the step length formulas (3.9)-(3.11). The code in Table 3.2
can be added to print the value of (3.11).

Table 3.2. Temporary Code to Print the
Squared Length of a Gradient

2085 PRINT"GRAD MAG SQD="; PM

Example 3.4. Add the program code in Table 3.2 to root-finder Program
B3-1 and solve the polynomial

1080 + 2466z + 202527 4+ 7652 + 1352 + 92° = 9(z + 1) (z + 2)(z+ 3)(z+ 4)(z+ 5).
Note that the “GRAD MAG SQD” value (3.11) is well scaled. Then solve the

polynomial
54+ 1352+ 12622+ 562° + 122* + 2° = (2 + 1)(z+ 2)(z +3)".

Note that the squared gradient length used as a divisor in the search step
adjustment is well behaved until the z= —3 repeated root is encountered.
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Repeated roots are usually determined to within two or three significant
figures; this may be adequate for most but certainly not all engineering work.

3.1.5. Polynomial Scaling. By the initial guess z=0.1+)1 for the root loca-
tion, there is an assumption that the roots are not too far from the origin.
Some polynomials may require scaling of coefficients to obtain the assumed
condition, and the roots will require subsequent rescaling to correspond to the
original problem. Two methods will be described, as given by Turnbull (1952):
(1} decreasing all roots by the factor 10; (2) decreasing all roots by subtracting
some fixed amount. The choice of method and amount depends on the
problem being solved; there is usually adequate information to make those
choices.

To reduce all root real and imaginary components by a factor of 10, reduce
all polynomial coefficients of the kth-power terms by 10exp(n—k), where the
polynomial degree is n. The following example clarifies the procedure.

Example 3.5. Consider the polynomial
f(z) = 19404 — 3942+ 222, (333)

which has roots 98+j0 and 99+j0 (available from the root-finder program).
Rewrite the polynomial with revised coefficients using the rule given above:

f(2)=194.04 - 39.42+22% (3.34)

The root-finder program will show that the roots of (3.34) are 9.8+j0 and
9.9+)0. Similarly, the roots of

f,(2) =1.9404 — 3.94z + 27* (3-35)
are 0.98 +)0 and 0.99 + ;0.

The method for shifting the roots by a given amount is somewhat more
involved but uses synthetic division in an interesting way. Again, consider the
degree-3 polynomial in (3.12) without loss of generality. Suppose that variable
z is decreased by amount h:

z=s5+h or s=z-h. (3.36)

Making that substitution in (3.12), there must be an equivalent polynomial,
F(s), in the new variable s:

1(Z)=F(s)=by+ b5+ b,s* + bss. (3.37)

This is rewritten two more ways:
F(s)=by+5(co+¢ 2 +¢2%), (3.38)
F(sy=by+s[b,+s(cy+zci) |- (3-39)

Note that (3.39) is nested in the same fashion as (3.25). Now (3.13) is written
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Table 3.3. Procedure for Decreasing Roots by Amount h

1. Setz=hin(3.14)and find ¢ _, usingk=n—1,...,0,
— 1; note the extra subscript added to (3.14).
2. Setbyg=c_,; replace a; with ¢;,i=n—1,...,0; and
replace n with n— 1.
3. Dosteps | and 2 again, but equate by=c_ .
. Continue finding b, , b, ..., b, through the n=0 cycle.
5. Find the roots of (3.37); then the roots of (3.12) are z;=s, + h.

in a more general application of synthetic division:
f(z) =1f(z)+ (2= z)}(co+ €12+ ¢ 2%). (3.40)

The first term on the right side of (3.40) is zero by definition if z is a root of
f(z); but (3.40) is valid for evaluating f(z) for any z, not necessarily a root.
That first term is found as the value of c_, when (3.14) is calculated through
k= —1 instead of just through k=0 as previously applied. Suppose that z,=h,
and (3.36) is substituted for the linear term in (3.40). Then (3.38) is the result
of synthetic division cycle {(3.14) on (3.12), and b, is obtained as c_, when that
cycle is carried on through k=0. Now note that b, in (3.39) relates to (3.38) as
b, in (3.38) is related to (3.12). So synthetic division starting with ¢;, ¢;, and ¢,
(found by the last synthetic division cycle) will yield by, cj, and ¢} in (3.39).

The procedure in Tabie 3.3 finds a new polynomial, F(s), as in (3.37), given
polynomial f(z), as in (3.12), so that s=z~—h.

Example 3.6, Given polynomial f(z) in (3.33) with roots 98+j0 and 99+ 0,
find the corresponding polynomial F(s) having roots that are 100 less.

n=2, h=100, a,=2, a,=—3%, a,=19404;
k=1: ¢ =2+(100)x0=2
k=0: ¢y=—39%4+(100)x2=-194

=—1: c_,=19404+(100) X (—194)=4=b,

n=1, h=100, a,=2  a,=—194 (3.41)
k=0: co=2+(100)x0=2
k=—1: c_,=—194+(100)Xx2=6=b,

n=0, h =100, a,=2;
=—1: ¢_;=2+(100)x0=2=b,
The polynomial with roots —2+j0 and —1+j0 is thus found to be
F(s)=4+6s+25". (3.42)
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3.1.6. Root-Finder Summary. Moore’s root finder is a practical tool that is
accurate and robust except for repeated roots, when accuracy is reduced. Tt is
based on the Cauchy-Riemann condition and the Mitrovic method for
evaluation of the polynomial and its derivative, Computation is reduced by
more than half when all polynomial coefficients are real, which is usually the
case in modern network synthesis. There are many other applications for this
fast root finder, such as in root locus plotting versus gain factors and in
z-transform calculations in sampled data system design. The structure of the
particular problem may result in roots being far from the origin of the
complex plane; in these cases, where the root finder may be slow or may fail
to converge, scaling of polynomial coefficients can reduce each root by either
a factor or a fixed amount. Roots thus found closer to the origin can then be
moved back to their original location by shifting in the opposite fashion.

The following sections will employ this root finder for network synthesis
steps and partial fraction expansions.

3.2. Polynomials From Complex Zeros and Products

The next two sections describe the composition of polynomials by multiplica-
tion and addition, respectively. The computer programs provided will con-
tinue to be in BASIC language, although these calculations are just as feasible
in hand-held computers. This section begins with composition of polynomials
from known root factors as available in the preceding root-finder section.
Complex factors will be multiplied to find the generally complex coefficients
of the resulting polynomial. Then a program will be given that multiplies a
sequence of polynomials having real coefficients.

The last half of this section includes the beginning steps in doubly termi-
nated network synthesis; both the ideas and the use of the computing aids are
important in what follows. Power transfer from a complex source to a complex
load will be introduced and then specialized to the real-source impedance
case. The generalized reflection coefficient will be defined, and the Feldtkeller
energy equation will be discussed for a given steady-state frequency of
excitation. Finally, polynomials used in network synthesis will be described,
and the fundamental polynomial relationship will be derived from power
transfer considerations of a lossless two-port network,

3.2.1. Polynomials From Complex Zeros. Only polynomials with rea} coeffi-
cients are considered, so that their roots must be real or occur in conjugate
pairs. A conjugate pair of complex numbers can always be expressed as a
quadratic factor, as previously described by (3.18). Program B3-2 in appendix
B asks for a set of complex zeros in rectangular components, then outputs the
resulting polynomial coefficients, also in their rectangular components. It is
interesting to confirm some of the previously described characteristics of
polynomials by use of this program.
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Example 3.7. Use Program B3-2 to multiply the root factors
F(s)=(s—s;)(s—82), (3.43)

choosing pairs of roots from *4+j5. Note that conjugate pairs produce the
quadratic factor described by (3.18) and that conjugate pairs from the left-half
plane (o <0 in Figure 3.2) yield all positive coefficients. The zeros of transmis-
sion (loss poles) of the two major synthesis polynomials, to be described in
Section 3.2.4, must be accompanied by both their conjugate and negative
roots, as shown by the “quad” in Figure 3.2, The special cases of real,
imaginary, or zero roots are also indicated. Also multiply all four possible
roats from the data above to obtain the quadratic polynomial with real
coefficients; further multiplication by factors with real roots does not change
this condition, of course.

X
< oo x
I |
|
l |
' I
! |
—_— ———X —X o
I !
! .'
' |
X —— WL —— X
X Figure 3.2. Possible locations for transmission

| Zeros in p(s).

For further exercise of Program B3-2, multiply the root factors given in
Example 3.4. Note that the coefficient of the highest degree term is always
unity. The interested reader might wish to add a scaling feature to multiply all
coefficients by any desired factor; this is often a requirement in network
synthesis, The actual computation in Program B3-2 occurs in lines 170-320;
those interested in details of the scheme are referred to Viach (1969).

3.2.2. Polynomials From Preducts of Polynomials. The need to multiply two
polynomials having real coefficients will be encountered throughout network
synthesis, The appropriate algorithm is not complicated; Program B3-3 in
Appendix B is adapted from Vlach (1969), where it is explained in detail. A
chaining feature has been added, so that the last product computed exists as
the first of the next polynomial pair to be multiplied. Note that the main
calculation in Program B3-3 requires only lines 210-300.
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Exampie 3.8. Use Program B3-3 1o multiply
(s*+ 35+ 2)(557 +4s— 10)(3s* + 1) = 155%+ 575" + 415* — 475" — 485 — 225 — 20,
(3.44)

using the program’s chaining feature. Also, multiply the left-half-plane and
right-half-plane quadratic factors found in Example 3.7 to confirm the earlier
results.

3.2.3. Power Transfer. Power delivered from a complex source to a complex
load will be encountered repeatedly in the following sections. It will be
specialized to the real-source case for classical network synthesis in this
chapter. Consider the source and load connection shown in Figure 3.3, It is
well known that the maximum available source power is

|E,?

Pﬂs = W 5 (345)

which occurs when Z=2Z}*, Kurokawa (1965} developed relationships for less
power transferred into other load impedance values. An important parameter
is the generalized reflection coefficient
Z-Zr
T Z+Z,°
It defines a Smith chart with the center corresponding to Z¥; this will be

explained in detail in Section 7.2. The power delivered to the load relative to
the maximum available turns out to be

o

(3.46)

PI; =1—{af* (347
The numerator of the reflection coefficient indicates that its magnitude is zero
when Z=Z* so that P=P,, as mentioned. Program A2-1, introduced in
Section 2.1, makes the evaluation of the preceding two equations quite
elementary for any range of load impedances, given a fixed source impedance.

In this chapter the source impedance is considered to be resistor R, and Z

Zs = Rs+ixs e

Z=R+jX

. [~

—

P

Figure 3.3. Power transfer from a fixed complex source to a variable complex load impedance.
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Lossless
vy
network

Z, Py
Figure 34. A doubly terminated lossless network.

is the input impedance Z, for the lossless network in Figure 3.4, The network’s
load termination is R,; the resistive terminations at both ends make this a
doubly terminated network, Any power that enters the network must exit into
R,, so that the reflection coefficient of interest is
Z,~-R,
PEZ ¥R,
TRy

(3.48)

Consequently, power delivered to Z, and R, in Figure 3.4 is described by the
famous Feldtkeller energy equation:

[H(jw)[*= L. (3.49)
Py 1)

where H is the transducer function.

3.24. Network Synthesis Polynomials. The network in Figure 3.4 is now
assumed to be composed of lumped inductors and capacitors, so that Z, and
other impedances will be well-behaved functions of complex Laplace fre-
quency s. If Z(w)= R(w)+jX(w), then one should know that R(w) is always an
even function of w and that X(w) is always an odd function of w. Thus, brief
consideration will lead to the conclusion that Z*(jw)=Z( —jw). The imaginary
axis in the s variable is jw. According (o the analytic continuation principle, jew
may be replaced by s in expressions where it occurs. Furthermore, the
resulting functions of s have significance over the entire s plane. This concept
leads to an identity with considerably greater importance than is at first
apparent:

[fGe)=f(s)f(~s), s=jw. (3.50)
This is the squared-magnitude function, and it is also an even function of w.

Example 3.9. Suppose that a given function is

f(sy= —76s*+ 11s*—33s*+ 25— 4. (3.51)

Compute f(s)f(—s) using Program B3-3, and save the result. Note that the
- resulting magnitude function is even in s.
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The transducer magnitude function in (3.49) implies the existence of H(s),
and it will be apparent later as to the convenience of defining a companion
function,

K(s)=pH(s), (3.52)
called the characteristic function. Using (3.49) and (3.50), an importan\t energy
relationship between the transducer and characteristic functions is obtained:

H(s)H(—s)=1+K(s)K(—s). (3.53)

This shows that |H(jw)| # =1, as required. Both H(s) and K{(s) are rational
functions with numerators and denominators identified as

H(s)= % : (3.54)
f
K(s)= ;((% : (3.55)

A concise statement can be made about the nature of the individual
polynomials e, f, and p. The roots of e(s} and f(s) are real or in conjugate
pairs. The roots of e(s) lie in the open (not on jw axis) left-half plane and are
the natural modes of the LC network; the roots of f(s) are called reflection
zeros or zero-loss frequencies. Polynomial f(s) is either even or odd, with
degree no greater than that of e(s). As in Figure 3.2, the roots of p(s) are
conjugate by pairs, are purely imaginary (on the jw axis) for ladder networks,
and are called the loss poles (peaks) or transmission zeros. Polynomial p(s) is
either even or odd. .

Using (3.53)-(3.55), the fundamental polynomial relationship in doubly
terminated network synthesis is

e(s)e( —s)=p(s)p(—s)+f(s)f( —s). (3.56)
Either H or K is given, so that either f or e must be found from (3.56),

respectively. The latter is illustrated in the example from Temes and Mitra
(1973).

Example 3.10. Find H(s) given
— 4 i_ 2 —
K(s)= 765°+11s"— 335"+ 12s—4 (357
43 (s2+4) :

Compare (3.57) with (3.55) to identify f(s) and p(s); e.g., f(s) is shown in (3.51).
Use Program B3-3 to calculate p(s)p(—s) and f(s)f(—s). Adding these manu-
ally (a program to do this will be described in Section 3.3.1), (3.56} yields

e(s)e( —s) = 57765" + 489555 + 1481s* + 504> + 784, (3.58)

The eight roots of (3.58) are found easily using Program B3-1:
+0.226127 +j0.828392; #0.596242 +j0.379658. (3.59)
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The last step is to associate the left-half-plane roots with e(s) as required
above. Using the four left-half-plane roots from (3.59) and Program B3-2, the
e(s) polynomial is obtained, except for a constant. By (3.58), that counstant
must be v¥5776 =76, so that

e(s)="76s"+ 1255 + 1355> + 845 + 28. (3.60)

Using the denominator of (3.57) as p(s) and (3.60), the rational polynomial
H(s) is thus found according to (3.54).

3.25. Summary of Polynomials From Zeros and Products. Programs that
calculate polynomial coefficients given complex zeros or given a sequence of
polynomials to multiply are easy to program and require very little computer
memory. Quadratic factors, magnitude functions, and polynomial factors
having roots in the left-half plane are important parts of the mathematics of
network synthesis.

The basis of doubly terminated network selectivity behavior is the Feldt-
keller energy equation (3.49), which describes the power transfer from a
source, relative to maximum available power, in terms of the reflection
coefficient at that interface. This leads to the transducer and characteristic
functions that are polynomials in complex frequency s= o +jw. There is a free
exchange of s and jw in the magnitude—function relationships (the interested
reader is referred to Van Valkenburg, 1960, for details of the underlying
analytic continuation principle). There is a straightforward procedure for
finding the transducer numerator polynomial given the characteristic function
numerator and denominator, and vice versa. The programs in this chapter
make these computations relatively easy.

33, Polynomial Addition and Subtraction of Parts

The transducer and characteristic functions H and K have been introduced by
way of the Feldtkeller energy equation. The chain {or ABCD) parameters for
two-port networks are commonly encountered as complex numbers at a
frequency, but alsoc may be rational functions of complex frequency s. This
section will introduce a simple program for adding and subtracting polynomi-
als, the main step required to use H(s) and K(s) to find the polynomials A, B,
C, and D prior to finding an LC network that corresponds to the given data.
The program and the synthesis steps will be described.

3.3.1. Program for Addition and Subtraction of Parts. Program B3-4 in
Appendix B adds or subtracts coefficients of like powers of s in two given
polynomials, or just those coefficients of even powers or of odd powers. It is
written in BASIC, but the single-subscript array R(-) is the basis of the
memory assignment; this makes its {ranslation to hand-held calculators espe-
cially elementary. The computation occurs in lines 200-370.
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Example 3.11, Consider the polynomials
P/(s)=9s*+3s+4,  Py(s)=10s*+2s+1, (3.61)

which are neither even nor odd. Try these in Program B3-4; note that the two
polynomials stay intact for subsequent operations (add or subtract; all, even,
or odd parts). The answers can be checked by inspection; real problems are
seldom this simple.

3.3.2. The ABCD Matrix of Rational Polynomials. The ABCD two-port .
parameters are defined in terms of the standard voltages and currents shown
in Figure 3.4:
V,=AV,—BIl,, (3.62)
I,=CV,-DI,. (3.63)
This form of expressing two-port behavior has a number of important proper-

ties that will be useful in many later sections. An input impedance expression
will be of use here:

Vi
Z=—. (3.64)
Il .
Similarly, the load resistance at port 2 is related to its voltage and current by
~V,
R,= i (3.65)
2

Solve (3.65) for V, and substitute in (3.62) and (3.63); then the resulting
equations reduce (3.64) to
7 = AR,+B 166
" CR,+D" (- .)
The goal is to find the ABCD polynomials in terms of H and K. It can be
seen from (3.45) and (3.49) that
E,

_ 1
|H|— 12 .

2JR R,

(3.67)

But Figure 3.4 shows that E,=1, X R +V; substituting this relationship and
(3.62) and (3.63) into the numerator of (3.67) yields

(AR, +DR,)+(B+CR R,

2R R,

To find a similar expression for K, substitute (3.66) into (3.48), and substitute
the result obtained, along with (3.68), into the definition of K in (3.52). The
result is

H(s) (3.68)

AR,—DR,)+{(B—CR,R
(AR, 1)+ 1 2). (3.69)
2/R.R, l

S

K(s)=
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Note that the magnitude symbols have been omitted in the last two equations
and that the substitution s=jw has been made on the assumption that
magnitude functions such as (3.50) are involved. Also, the grouping of
parameters is strategic, because it can be shown that, for lossless networks, A
and D are even functions of s, while B and C are odd. Further, reciprocity
requires that AD—BC=1. Beyond that, the grouping is convenient because
adding or subtracting H and K cause major cancellations. One good reason
for defining K at all is the following important result:

I:A B ]-.__. 1 (Hc+Ke)Rl (H0+K0)R1R2
¢ D \,‘R]RZ (HU_KO) (He_Ke)RZ

where the e subscript denotes an even polynomial and o an odd polynomial.

. (370)

Example 3.12. In Example 3.10, K(s) was given in (3.57) and the numerator
of H(s) was found as (3.60). Note that the denominators of H and K are the
same. Enter the numerators of H and K into Program B3-4 in that order; then
(3.70) yields the ABCD mairix numerators without difficulty. The result is:

1022 +24  1365%+96s
[A B]= 43(*+4) 43 (s+4)
C D 1145+ 725 1525* + 16852+ 32
43 (s +4) 43 (s*+4)

(3.71)

where R, =R, =1 is assumed, as explained in Section 3.4.4.

3.3.3. Summary of Polynomial Additieon and Subtraction of Parts. This sec-
tion began with a simple BASIC language program to add and subtract even,
odd, or all parts of polynomials. It continued with a look at the well-known
ABCD (chain) parameters for two-port networks. The H(s) and K(s) functions
were related to the ABCD parameters by considering input power transfer and
input impedance and then assuming s=je for implied magnitude functions.
The right tools make the task quite simple along theoretical lines that are easy
to remember after a little practice.

The strategy behind the convenient ABCD development is to obtain simple
expressions for LC impedance and admittance parameters in terms of the
ABCD polynomials already found. A continued fraction expansion of these
produces the corresponding network element values, as shown next.

34. Continued Fraction Expansion
Continued fraction expansion of reactance functions (Z, ) will be described

and used to realize a lowpass network as the last step in the LC network
synthesis procedure. These functions are the port impedance or admittance of
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lossless LC networks when open or short-circuited at the opposite port (see
Figure 3.4). They are rational polynomials that are always an even polynomial
over an odd polynomial or vice versa. Such expansions provide lowpass or
highpass network element values and can also be used to determine if a given
polynomial is a Hurwitz polynomial (all roots in the left-half plane).

3.4.1. Lowpass and Highpass Expansions. Continued fraction expansions
may be finite or infinite. Two finite examples and their equivalent rational
polynomials are:

4 2
Z](S)=28+ 1 - 120s ':365 +1 (3.72)
Bk — 605>+ 8s
ds+ L
s+ 3
1 1 1+ 3852+ 120s*
Z,(s)==—+ = . 3.73
O T T T 7 aereds (3:73)
S
4s  1/5s

A convenient shorthand for representing continued fraction expansions is
described by Vlach (1969); applied to (3.72) it is

111

210k N e

(3.74)

3.4.2. A Continued Fraction Expansion Program. Consider the rational poly-
nomial to be in one of the following forms or their reciprocals:

2 4 n
agtras +as +---4as

_ 3
a;s+a;s’+as’+ - +a,_s"!

I is even; (3.75)

ag+as’+ast+t - +a,_st!

. . n is odd. 3.76
ast+ast+as + - +a s (3-76)
Program B3-5 in Appendix B is adapted from Viach (1969); it requires only
lines 210-340 for computation.

Example 3.13. Program B3-5 will be run using (3.72) for the cases where the
rational polynomial represents an LC, two-port input impedance with an
open-circuit load or an input admittance with a short-circuit load. Consider
Case 1 for maximum degree N=4 in Figure 3.5. Certainly, the input imped-
ance of the network shown must be Z =sL +remainder, according to the form
of (3.72). Therefore, the first element must be an inductor with a value of 2
henrys. If the remainder polynomial Z_is inverted to provide Y, =1/Z , then
the next term removed must be Y =sC, where C=23 farads. Comparison of
this case with (3.72) shows how each element value was obtained for the
lowpass network. Note that a short circuit across the 5-farad capacitor would
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1
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11 _ 2453 +8s
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{a) N=3 __JW\TNV\__
2 4
1 245 + 65

(bl N=4 rwr\s rvv-\s
cges 11112050 3657 41 y-——}‘l‘ 1
e S e T2 T“
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Figure 3.5. Some continued fraction expansions.
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be senseless. Run Program B3-5, answering “YES” to indicate that the first
element is a series L, because (3.72) is considered an impedance function.
However, note that the same programmed solution applies to the network in
Figure 3.5 for Case 2, N=4, if (3.72) is considered a two-port input admit-
tance function (with a short-circuit load). In that case, an open circuit after
the 5-farad inductor would be senseless. The reader is urged to run Program
B3-5 for all the possible combinations shown in Figure 3.5.

Program B3-5 can also be used to determine whether all roots of a
polynomial (ag+a,s+ --- +4a,s") are in the left-half s plane, i.e.,, whether the
polynomial is “Hurwitz.” If any of the continued fraction expansion coeffi-
cients are negative or zero, or if the program fails with a “divide by zero”
error, then the polynomial was not “Hurwitz.” The polynomials being tested
in this way are not rational, but are just the sum of all terms in (3.75) or (3.76).

3.4.3. Finding LC Values From ABCD Polynomials. 1t should be clear from
the last section that two-port networks subjected to open- or short-circuit port
conditions are relevant to the synthesis procedure. Equations using ABCD
parameters to describe two-port networks were introduced in Section 3.3.2.
Two more of the infinite set of such descriptions are now introduced, based on
the port voltages and currents and terminal conditions. Consider the equations
based on Figure 3.4:

V,=Lz,;+ 1z, (3.1

These characterize any two-port network, lossless or not. It is important to
understand what the coefficients mean. For example, z,, is V, /1, when I,=0,
as seen from (3.78). [,=0 says that the output port is terminated by an open
circuit. These two equations are known as the open-circuit impedance parame-
ters because both independent variables are the port currents. Look at z,,
another way: it is the output voltage into an open circuit when the input
current is | ampere.
A similar characterization is based on short-circuit terminal conditions
where
L=Viy + Vi, (3.79)

L=Viyy+Vyyn. (3.80)

Now, for example, y,, is the current entering port 2 in Figure 3.4, carried by a
short-circuit load, for 1 volt applied across the input port. It is convenient to
write the open- and short-circuit equation systems in matrix notation:

V=ZI (3.81)
1=YV (3.82)

It is well known that matrix Y is the inverse of matrix Z and vice versa; doing
this algebra provides relationships between z and y parameters.
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It was shown in Section 3.3.2 how to find the rational polynomials for A, B,
C, and D. The ABCD linear equations were given in (3.62) and (3.63),
comparable to the z- and y-parameter equations above. In order to find a port
immittance (impedance or admittance) as functions of ABCD when the
opposite port is terminated by either a short or open circuit, it is necessary to
find the z and y parameters in terms of the ABCD parameters. For example,
solve for V, in (3.63):

y.o L+DL

Using this in (3.62) yields
V,=Il(%)+IZ(D%uB). (3.84)

Comparison of (3.84) with (3.77) provides z,, and z,, in terms of the ABCD
parameters. The coefficient of I, in (3.84) is further simplified for lossless two
ports because AD—BC=1 in that case, Therefore, the following identities
apply for two-port networks:

Z=%H‘ ]')} (3.85)
Y=%[ b _H. (3.86)

These are valid for complex numbers or for rational functions; the latter will
illustrate the last step in network synthesis. For example, (3.85) says that the
open-circuit impedance parameter z,,=A/C and both A(s) and C(s) were
described in terms of H(s} and K(s) in (3.70). The numerator and denominator
polynomials of H and K were defined in (3.54) and (3.55). For z;,, the result is

eo(s) +(s)

le(S)=le. (387)

This is the impedance for Case 1, N=4, in Figure 3.5. Note that 1/y,, was
relevant to N=3 but not to N=4. An example from Temes and Mitra (1973)
is given below,

Example 3.14. Given the characteristic function K=s% find z;, and 1/y,,
and the related networks. It is seen from (3.55) that f(s)=s" and p(s)=1. Then
(3.56) is

e(s)e(—s)=1—s®= (I +s)(1—s)(I +s+sz)(l —s+s2). (3.88)
As noted in Section 3.2.4, the roots of efs) are the natural modes, which must

be in the left-half plane. Therefore, the transducer function according to (3.54)
is

H(sy= ) (Ls)(l+s+57)=1+2s+257 45, (3.89)

p(s)




(a) (b}
Figure 3.6. Network realizations for Example 3-14 using (a) z;, (or 2;;) and (b) the reciprocal
of ¥;y.

Using the even and odd parts of H and K in (3.70) and assuming that
R,=R,=1, the chain matrix is found to be:

[A B}=[1+252 25+25°| (3.90)
CcC D 2s 1 +2s?
Therefore, (3.85) yields
A_28%+1 ‘

ZH=E= SZS s (39])

and (3.86) yields
3
I = E= 25°+2s (3'92)

Yu D 241

A network for this example is shown in Figure 3.6, as found by continued
fraction Program B3-5. There must be three elements according to the degree
of (3.89). Figure 3.6a uses z,, to find only the first two elements. (Why?)
Figure 3.6b uses 1/y,, to find all three elements, because y is a short-circuit
parameter, and the last element is in series. Note that both z;, and z,, could
have been used to find all three elements, two at a time, including the shunt C
in the middle twice. That would have shown whether or not R,=R, (Why?)
and could provide greater numerical accuracy. Mellor (1975) has estimated
that computer decimal-digit word length (N} and filter synthesis degree (N)
are compatible if N < N,/2. However, Lind (1978) gives a simple method for
increasing accuracy.

144, Comments on Contimued Fraction Expansion. Continued fraction ex-
pansions are an important mathematical tool with many applications, e.g., for
LC ladder network realization and the polynomial Hurwitz test. The synthesis
procedure described above is based on reactance functions (Z,.), not the
input impedance of a resistively terminated two-port network (Zy ). How-
ever, Zg o can be reduced to the corresponding Z, ., as described in Section
3.5.3.

Example 3.14 gave K and found H; conversely, (3.56) can be rewritten to
be explicit in f(s)f{ — s} when given H to find K. In the latter case, allocation of
roots (reflection zeros) to f(s) and f{ —s) is more arbitrary; it is necessary only
to keep roots in conjugate pairs and to place in f(—s) the negative of each root
in f(s). Each arrangement of root allocation in f(s)f(~s) will result in a
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different chain matrix and therefore a different network. They will all have the
same transducer magnitude function versus frequency, but their input imped-
ance functions will differ (see Temes and Mitra, 1973).

Example 3.14 gave K=f/p so that p=1. As noted in Section 3.2.4, any
roots of p(s) occur on the jw axis for lossless ladder networks. A more general
case would be the K(s) given in (3.57), where the roots of p are at w=+2. A
lowpass function would then produce a network with “traps” to produce zero
transmission (loss peaks) at these root frequencies of p(s). A very effective
method for designing netwaorks of this sort without resorting to synthesis will
be described in Sections 9.2 and 9.3. The continued fraction expansion
described here will not suffice for the synthesis of these more general net-
works., However, Temes and Mitra (1973) provide a compact summary of
Orchard’s elegant method for networks containing the four possible arrange-
ments of traps; the method is well suited for small computers.

Finally, as noted in Example 3.14, R, =R, is not the general case. However,
it is a fairly standard procedure to make this assumption, then derive one or
more clements by synthesis from opposing ends of the network, and then
decide (by any difference in answers) what the impedance scaling must be,
i.e., how R, is related to R,.

3.5, Input Impedance Synthesis From Its Real Part

Sections 3.2 through 3.4 developed a method of doubly terminated network
synthesis, along with the introduction of various computer aids for a variety of
engineering applications. The specification related to power transferred from a
source to a resistively terminated lossless network, and the power was relative
to the maximum available from the source. There are many situations where
the source impedance has no real part, so that the maximum power available
is infinite in theory. An equivalent case is the situation where the complex
source is connected to an unterminated lossless network, so that no power can
be transferred to the network. In either case, there is often an interest in the
output voltage function versus frequency. These cases arise from singly
terminated networks.

It is important to understand that the discussion of singly terminated
networks and the synthesis of input impedance from its real part are the same
thing. The need to realize an input impedance function might occur, for
example, in building a lumped-element dummy antenna to approximate the
real antenna behavior over a band of frequencies. Suppose that a constant
current source is connected to the singly terminated lossless network, as shown
in Figure 3.7. The input power must be P,=|[||’R,_, and the power in the
output resistor must be P,=|V,|*/R,. Since the network is lossless, P,=P,,
and the impedance transfer function is thus

|Z,; (@) =R, Re Z,,(w). (3.93)

Networks with only one possible signal path are called minimum-phase
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I P
—
+ Lossless *
I Vi network A& Re
| [ o
P1 zm = Rm +jx‘m Pz

Figure 3.7. A singly terminated, lossless network.

networks. A ladder network is a minimum-phase network, but a bridge circuit
is not, If the real part of the input impedance of a minimum-phase network is
known for all frequencies, then its imaginary part (reactance) is dependent
and can be found. A desktop computer program for finding the reactance at
any frequency, given the piecewise linear resistance function versus frequency,
will be furnished in Section 6.7. Here, a regular resistance function of
frequency will be given in polynomial form, and the entire Z(s) rational
function will be found. This will be the Zg, - shown in Figure 3.7. Then, a
method will be described for finding the corresponding reactance function
Z, o, so that the continued fraction realization previously given may be
employed to find the network element values.

3.5.1.  Synthesis Problem Statement. Suppose¢ that a resistance function is
given as the rational polynomial

Ag+ A+ +A @™

Rf{w)=
(«) B0+Blw2+ S e

(3.94)

Such a function may result from the fitting procedure of Section 2.5. However,
note that the denominator in (3.94) has a nonunity coefficient {B,), and the
coefficient of highest degree is unity. As mentioned earlier, resistance func-
tions are even, so that all powers of w are even. The goal is to find the
corresponding impedance function:

_agtastasid oo +a, s
bo+bs+byst+ - +1s"

Z(s) (3.95)
Remarks similar to those regarding the denominator coefficients in (3.94)
apply to the dencminator of (3.95). There are at least two ways to solve this
problem: Bode’s method and Gewertz’s method, as described by Guillemin
(1957). The latter, which follows, is more compact.

3.5.2. Gewertz Procedure to Find RLC Input Impedance. Form an even
function of complex frequency by substituting w”= —s” in the given resistance
function (3.94):

2.65)= Ag— A +AS — () TA ST
) By—Bs?+Byst— - +(—1)"s™

(3.96)
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Find the left-half-plane roots of the denominator in (3.96). The product of
these lefi-half-plane root factors is the denominator polynomial in (3.95). Tt
remains to find the numerator of (3.95).

The remaining unknowns, a,,a,,...,a,, in {3.95) can be found by solving a
linear system of equations using the known terms by, b,,... just found and the
easily derived Ay, A,,..., A, in (3.96). Gewertz solves the linear system

by, 0 0 0 |l a, Ay
_b2 bl —bU 0 al = A] ) (3.97)
b, —bs b, —b |[a Ay
- bé b5 - b4 b3 a3 A3
Gauss-Jordan Program B2-1 solves linear systems of this sort with ease. The
solution yields the numerator of (3.95), which is the desired input impedance
Zgic of the terminated lossless network. An example from Carlin (1977)
follows,

Example 3.15. Suppose that a given resistance function is

22
R(w)= : . 3.98
) = 2 5607 4 420" + 4.290° (39%)

Substituting ?= —s? in (3.98) yields

o 2.2

)= T 56— a.aas~ 4295 (39)
which must be divided in both numerator and denominator by 4.29 in order to
be in the form of (3.96). The roots of the denominator are found using
Program B3-1. Roots s, and s, are =0.502752 + j0, and roots s, through s, are
+0.397782 +j0.895596. The left-half-plane roots define a polynomial ob-
tained by Program B3-2; the resulting b, coefficients in the denominator of
(3.95) are shown in Table 3.4, Using these, by=bs=b,=0, and A;=2.2/4.29
in (3.97), the Gauss-Jordan Program B2-1 yields the a; coefficients in the
numerator of (3.95); these are also shown in Table 3.4. The rational input
impedance polynomial is

2, P(s
1.0746105>+ 1.3951845 + 1.062172 & F(5) (3.100)

Z{sy= = ;
) $3+ 129831657+ 1.360294s + 0.482804  Q(s)

Table 3.4, Input Impedance
Coefficients for a
Gewertz Example

by =0.482804 ay=1.06270
b, = 1360294 a,= 1395182
b,=1.298316 a,=1.074609

b,= 100 a;=0
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The real part of (3.100) evaluated at any s=jw gives the same answer as (3.98)
for that value of w.

What is obtained by Gewertz’s procedure is the input impedance of a
terminated lossless network; the corresponding reactance function is required
for the continued fraction expansion of Section 3.4 to apply. The conversion
of Zpic to Z, - is discussed next.

3.5.3. Reactance Functions From Impedance Functions. A particular expres-
sion for the input impedance of a two-port network will be required in order
to find Z, .. given the corresponding Zyi ¢ as found in the preceding section.
In Section 3.3.2 the input impedance of a two-port network was found using
the ABCD equations and the load impedance, We proceed snmllarly with the
open-circuit parameter equations by substituting V,= —1,Z, in (3.78) and
solving that for I,. But Z; =V, /I,; so (3.77) readily yields

Z12iy
L=z 1220 101
Zi=1zy — (3.101)
Using Z; =1, this can be written
1+Az/z,,
Z]n-—znw (3.]02)
where the open-circuit-parameter determinant is
Az=1z2,y— 2,52, . (3.103)

A means for finding y parameters in terms of z parameters was suggested in
Section 3.4.3. An equivalent expression for (3.102) turns out to be

1+ 1/yy

L=z, [+25, (3.104)
where z,,, z,,, and y,, are ratios of even and odd polynomials.
Now consider a Zg, . expression such as (3.100):
P(s P.(s)+P(s
Zo(5)= (s) _ P(s)+Po(s) , (3.109)
A AUEHFAE

where the ¢ and o subscripts denote the even and odd parts, tespectively, of
polynomials P(s) and Q(s). Two ways of writing (3.105) are

_ P, 1+P/P,
Zn= Q. TFGQ, (3.106)
z = Po 1+P/P, (3.107)

T Qe 1+Q./Q.

Comparison of the last two equations with (3.104) enables the construction
of Table 3.5. The left-hand column represents cases where the Z, - numerator
is even and the denominator is odd, so that there is a pole at the origin. The
following example 1llustrates the use of Table 3.5 and a continued fraction

expansion,
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Table 3.5. Open- or Short-Circuit Z;
Impedance Functions

Pole at Origin No Pole at Origin
z,,=P./Q, 2,=P,/Q,
2‘22=Qe/00 7@2=Q0/Qe
¥yu=P./P, yn=P,/P,

Example 3.16. Consider the pi network in Figure 3.8. Suppose that the
impedance Zg . looking back into the terminated network at port 2 is the
same as (3.100). Open-circuit impedance function z,, is selected because y,,
implies a short circuit that would prevent determination of C,. But the
presence of C; means that a port admittance function is required, so that the
selection from Table 3.5 is

2
Q. _ 1.29831657+0.482804 (3.108)
Qo+ s +1.360294s
Continued fraction expansion Program B3-5 applied to (3.108) yields C,=

0.350 farad, L,=2.890 henrys, and C,=0.931 farad after scaling from the
1-ohm source to the 2.2-ohm source shown in Figure 3.8.

—1_
Ip =

220 1 L 2
JM o ] Y o

-+ ‘I-m . 103
| [

Figure 3.8, A three-pole normalized lowpass network.

3.5.4. Impedance Real-Part Synthesis Summary. It has been shown that
lossless networks terminated on only one end can be synthesized according to
input impedance behavior. This is based on the fact that, for constant input
current, the input power (and comsequent output power) is proportional to
input resistance. A similar statement can be made concerning input conduc-
tance in the case of constant voltage sources. Singly terminated instances of
resistive sources connected to unterminated lossless networks are equivalent
by proper consideration of the reciprocity theorem.

The Gewertz procedure was described for problems beginning with the
even resistance function of frequency. Substitution of w?= —s® produces a
polynomial whose denominator left-half-plane roots produce the input imped-
ance denominator. The input impedance numerator coefficients are obtained
by solving a system of real, linear equations involving these roots and known
coefficients. The result is the input impedance Zg, . of a terminated network.
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Utiljzation of the continued fraction expansion of reactance functions from
Section 3.4 requires the conversion of Zg, ¢ to its corresponding Z; .. This is
obtained by inspection of Zy; ~ behavior at s=0 and reference to a standard
table, which was derived. The worked example relates to the looking-back
impedance at the output of a resistively driven LC two-port network. Starting
from a given resistance function polynomial, which could have been obtained
by the fitting procedure of Section 2.5, pi-network element values that realized
this behavior versus frequency were obtained. This example will be of centrai
importance as the final operation in a relatively new broadband impedance—
matching procedure considered in Section 6.7.

3.6. Long Division and Partial Fraction Expansion

The last section of Chapter Three describes an important design tool that is
useful for network synthesis in the frequency domain as well as for Laplace
analysis in the time domain. The former is illustrated by Bode’s alternative to
the Gewertz procedure (see Guillemin, 1957). The time domain application of
partial fraction expansions will be illustrated next (from Blinchikoff and
Zverev, 1976).

Suppose that a given system transfer function is

4 3 2

H s =S + 65 +22$ +3OS+14. 3.109
() s*+ 657+ 2257+ 30s + 13 (3109

As will be demonstrated, it can also be expressed in the form

0.1 0.02 0.02s+0.04

H,(s)=1+ - + s 3.110
= ey T+ ) T Gspe-sh (3-110)
where s is the Laplace complex frequency variable, and root s, is s, = —2+)3.

Using a standard table of Laplace transforms for time and frequency func-
tions, it is easy to show that the time response corresponding to (3.110) is

75

where 8(1) is an impulse function, and u(t) is a unit-step function.

The algorithm to be described operates on proper rational functions, i.e.,
those whose numerator degree is lower than the denominator degree. Clearly,
(3.109) is not proper, but would be if one long-division step were accom-
plished. The first subject treated in this section will be a compact long-division
algorithm, both for obtaining proper fractions and to convince the reader that
it is not complicated to program. This is important, because long division is
one of two main features of the partial fraction expansion algorithm to follow.

hy(t)=8(1)+ [0.1tc"—0,02e_‘+2e_‘(0.01 cos 3t— Si—“?ﬁ)]u(t), 3111

3.6.1. Long Division. Vlach (1969) gives a brief FORTRAN program for
long division; it is adapted to BASIC language in Appendix-B Program B3-6.
The calculation occurs in the last 10 lines of the program.
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Example 3.17. Using Program B3-6 and by longhand, show that

_4s?+9s5+3 _ 1
Hy(s)= 512 - 4s+1+———s+2. (3.112)

Also, perform one division on (3.109) to show the constant-plus-proper-
fraction form

1
Hi{s)=1+ . 3.113

(5) st 4657+ 22524 305+ 13 ( )
Note that the program is not dependent on having coefficients input in
ascending or descending powers, because the algorithm proceeds the same in
either case if the user is consistent.

3.6.2. A Partial Fraction Expansion Program. Chin and Steiglitz (1977) have
presented a partial fraction expansion algorithm that is claimed to reduce the
number of computer operations by a facior of about 2. They correctly explain
that this is important in spite of existing brief algorithms, because the
calculations may occur many times in an iterative process, and they may be
programmed on small computers, where program and storage size and speed
are important.

The algorithm is based on two operations, the first being long division with
a remainder (see Figure 3.9). Note that the given problem must be posed as a
proper fraction and that the numerator is in polynomial form and the
denominator is in factored form, i.e., the denominator roots must be known.

P(x)= 204+ 9x* =~ 267 + 5x - |
(x+ 1P (x—~ D +2D)

=——#L——a[2x4+7x3~3x2— 18x+23— 34—]

(x4 Dix— 1P(x+2) x+1

=r~—1———[2x3+5x2~ 13x—-5+ 44(28— 24 )]
(xﬁl)3(x+2) X+1 x+1

1 2 1 28 24 )
= [ 2+ Tx— 6+ ——| ~ 11+ -
(1—1)2(x+2)[ x_l( HT (x4 1)? ]
1 1 —-11+8, —8 12
- —_ +
(x—l)(x+2)[2x+9+x-—](3+ x—1 x+1 +(x+i)2)]

1 1 3-1 -3 l -6
— — — =+ +
x+2[2+x—l(“+x~1+(x_1)2 x+1 (x+1)1)]

1 111 2 -3 1 3
=——|2+ + + +——
x+2[ =1 (x—1)? (x-l)] x+1 (x+])2]
SR NP S Sl SV’ SRR N
x+2 x—1 (x—-1  (x-1)° 1 (x+1)?

Figure 3.9. Algebraic flow of a particular example. [From Chin, F. Y., and Steiglitz, K. JEEE
Trans. Circuits Syst., Vob. CAS-24, No. 1, p. 44, January 1977. ©1977 IEEE|]
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Figure 3.9 shows that two successive long divisions by the factor x+ 1 were
accomplished with remainder numerators —24 and 23-24/(x+ 1), respec-
tively. It is helpful to follow this process by doing the division either manually
or with Program B3-6 and writing the results of each separate division. Then a
division step by the factor x—1 occurs, leaving the constant — 11 plus the
prior rational remainder. The process is fairly clear up to the point where the
second main operation occurs. However, the next (second} division by factor
%x— 1 leaves the constant 3 plus the expression

(L 2 24 —11+8 , —8 12
x—l( “+x+l (x+l)2) x—1 @ x+I (x+l)2. (3.114)

In this identity the right side preserves the form of the preceding collection of
terms, and thus preserves the algorithm as different root factors are encoun-
tered. This illustrates the general scheme; interested readers are referred to
Chin and Steiglitz (1977) for further detail.

Two more comments are appropriate. Some ill-conditioned roots may cause
rounding errors to accumulate unless the roots are processed in order of
ascending magnitude. Note that the example in Figure 3.9 employs real roots;
the roots may be complex and therefore in conjugate complex pairs. They are
processed separately in Program B3-7 using complex arithmetic. As in the
root-finder Program B3-1, this can be avoided by dealing only with quadratic
factors, as mentioned by Chin and Steiglitz (1977).

Example 3.18. First run the example in Figure 3.9 to be sure that the output
sequence of residues is understood. Then perform a partial fraction expansion
of (3.109) by first obtaining the proper fraction in (3.113) by one long-division
step (Program B3-6). Use root-finder Program B3-1 to find denominator roots
~1+4j0, —14j0, —2+4)3, and —2—j3. Enter these roots, in that order, into
partial fraction expansion Program B3-7 to find the residues of each term.
These are shown in (3.110), except for the combined conjugate roots term,.
This is obtained with the Juseful identity

K. K* (Ki+K#)s—(Ksf + K's))

T

S—s§ s-sl*ﬂ (s—s)(s—s})

1

, (3.115)

where K; is a residue. Note that residues of complex conjugate roots also
occur as complex conjugates.

3.6.3. Summary of Partial Fraction Expansion. A long-division algorithm
that is simple enough for even hand-held computers is furnished in BASIC
language. It is useful in reducing rational polynomials to proper form, ie.,
numerator degree less than denominator degree. Long division is also one of
the two main features of an efficient algorithm that is also especially suitable
for small computers.

The input to the partial fraction expansion algorithm consists of the
numerator real coefficients and the denominator roots in order of ascending
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magnitude. The program provides the residues corresponding to the order in
which the roots were furnished and in descending root multiplicity. The
residue output order can be understood best by running the example appear-
ing in Figure 3.9 and comparing the results. A Laplace transformation to the
time domain was illustrated as one of many important applications of the
partial fraction expansion program.

Problems

3.1. Differentiate
f(2)=(z- -2
using the calculus formula
d{uvw)=vwdu+uwdv+uvdw.
Differentiate
f(z)=2—522+8z—4

and evaluate f'(2). Note why the derivative of polynomials with multi-
ple roots is zero at the root.

3.2. Given the polynomial
f(z)=2'= (x+jy)’ = (X = 3xy?) +j(3x’y — y') =u +jv.
(a) Find derivative df /dz by differentiation.
(b) Find derivative df /dz using the Cauchy-Riemann identity.
(c) Show, using f(z), that
u_dv av_ _du
dx oy and 9x dy
3.3. Given the complex polynomial -
f(z)=5+3z422+42° 22" =u+jv
for z=x+]y, use the Mitrovic method to find numerically the values of
u, v, and the following derivatives when z=1-j3:

a_u ov @. and .@X

ax’ 9x’ Dy’ dy

3.4, A root finder has located root z;= ~ 2 —j/7 /2 of the polynomial equa-
tion

f(z)=22"+92*+ 132 +2* — 132+ 4=0.
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3.5.

3.6.

3.7.

3.8.

38,

3.10.

311
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Find the polynomial that remains when the quadratic factor related to
this root is removed using synthetic division.

Derive p, and q;, defined by

(t-z){z—2)=2"+pztq;.

Linear synthetic division in Example 3.1 on
f(zy=6+T2+42°+ 2,

using root z,= — 2+ j0, gave the remainder coefficients when the z+2
factor was divided out. D¢ procedure (3.14) on this polynomial, but
with k=2, 1, 0, and —1, with ;= ~14j0. Compare coefficient ¢_,
with f(—1).

Show why quadratic factors of conjugate-pair left-half-plane roots will
have all positive coefficients.

Given the lowpass network

L o

(a) Write the Z_(5) expression using immittances
Z, =sl, Yo=sC.

(b) Let s=jw and express Z, {w)=R{w)+iX{w). Show that
Zi(w)=Zip( —w).

(¢) Evaluate Z,, at w=0.1 and w=7.91, using the expression obtained
in (a).
A l.volt rms source with Z, =3 —j2 is connected to the network shown

in Problem 3.8. At w=2, Z, =0.20+]j1.60. Find the input reflection
coefficient & and the power delivered to the l-ohm load resistor.

A fixed sinusoidal voltage source with impedance Z,=R,+)X, is con-
nected to a variable load impedance Z=R +jX, as in Figure 3.3. Given
the definitions in (3.45) and (3.46), verify algebraically that (3.47) is
true, i.e., the power P delivered to Z is P=P_(1 —|a|?).

Find the inverse of the two-dimensional chain matrix

(2 1]

- | I
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3.12. Given the resistive network
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e

find chain parameters A, B, C, and D.
3.13. Find short-circuit parameter y,, in terms of open-circuit parameters z;.

3.14. Derive algebraically the ABCD chain parameters in terms of the
short-circuit admiitance parameters; i.e., derive (4.34).

3.15. Suppose that the characteristic polynomial K(s)=s’. Find the asso-
ciated transducer function H(s).

3.16. Given the transducer function
|H(w){2= 1 +€2T§(w), E-':%,
find H(s), K(s), the ABCD polynomials, and the lowpass network L-
and C-element values.

3.17. Synthesize the four-element, lowpass, doubly terminated LC network
providing the Chebyshev response

P
{H(w)[*= o= +0.25T(w),
2

where T,(w) is the degree-4 Chebyshev polynomial of the first kind.
Show the K(s), H(s), A(s), B(s), C(s), and D(s) polynomials. Find the
four element values and the termination resistances at the input and
output ends of the L.C two-port network.

3.18. Suppose that an LC network terminated in 1-ohm resistance has the
following Chebyshev input resistance function:

1.25

R(w)= —=0—.
“) 1+0.25Ti(w)

Use the Gewertz method to find the coefficients of the network’s input
impedance function:

g+ 2,5 +a,8" +a,8°
bo+ b5+ b,s*+ by +5*

Zpic(s)=
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3.19.

3.20.
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Check the result by evaluating the two equations at w=0 and w=1
radian.

The Butterworth input resistance function for a three-element lowpass
network is

1
R{w)= ]
(w) 14w
The corresponding Z(s) function would be
;
Z(s)= .
®) 1—s®

The Gewertz method yields the corresponding input impedance func-
tton:
2
25t +4s+1
$+257+2s+1

Obtain the partial fraction expansions of Z (s) and of Zg;(s). Com-
pare these results and describe the similarities briefly.

Zrie(s)=

Find the component values of a five-element lowpass filter having the
response shape determined by the Legendre polynomial. The polyno-
mial recursion expression is

(2n+ 1P (X} —nP,_ (%)
Pn+l(x)— ([‘l+1)

The polynomial starting values are Py(x}=1, and P,(x)=x. Scale the
function for a 1—dB response at an w=1 radian passband edge.



Chapter Four

Ladder Network Analysis

Nearly.all the design procedures in this book lead 1o ladder networks: these
occur commonly in engineering practice. Ladder network analysis is quite
practical for hand-held calculators. Computers having only 224 program steps
can accommodate jadder analysis routines for networks with nine dissipative
lumped elements, and the newer hand-held computers can do much better
than that. More general network analysis, e.g., the nodal admittance maitrix
with LU factorization, is largely wasted on ladder networks, where most nodal
matrix entries are zero. There is a great need for efficiency in ladder network
analysis beyond fitting routines into small computers, Iterative (repeated)
analysis at many frequencies and for many combinations of network compo-
nent values occurs in optimization—the computer adjusiment of components
to obtain improved performance (Chapter Five). So ladder network analysis is
extremely important for design confirmation, automatic design adjustment,
and insight into certain impedance-matching and selectivity functions.
Chapter Four is based on a well-known method. An output current is
assumed to exist. It is then traced back to the input by successive application
of Kirchhoff’s current and voltage laws to find the input current and voltage
that would produce the assumed output. Since the ladder network is assumed
to be linear, all voltages and currents thus found can be scaled by any factor
representing steady-state changes in the input excitation. The discussion will
almost always concern steady-state sinusoidal excitation. However, a conve-
nient method of frequency sampling for a band-limited function will be shown
to provide the impulse and other time responses of that network. This amount
of calculation requires the speed and memory of at least a desktop computer.
The ladder networks considered here are guite general. The “menu” of
element types can include nearly any one- or two-port subnetwork that can be
programmed in a describing subroutine. Dissipative lumped elements (R, L,
and C); dissipative uniform transmission lines in cascade or as terminated
stubs; bridged-T networks; embedded two-port networks, inciuding those
described by data sets at each frequency; and two-terminal elements bridging
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nonadjacent nodes can be accommodated. Each branch of the basic ladder
network may contain a large variety of series-connected-element subsets
connected in parallel, and vice versa. A compact means for describing the
network topology is an important part of Chapter Four.

All branch voltages and currents are available by the ladder network
analysis method employved. Beyond direct applications, these provide exact
sensitivity (partial derivative) information about how network performance
changes with respect to each component value. This is an important part of
gradient optimization methods and plays a significant role in manual and
automatic network-tuning considerations,

A convenient, accurate, and familiar ladder network analysis program is
ong of the most important tools an individual can have in the world of radio
frequency (rf) engineering. .

4.1, Recursive Ladder Method

A definite form, nomenclature, and convention wili be employed throughout
Chapter Four. Various parts have been discussed in numerous references. The
ladder network structure is shown in Figure 4.1.
¢

4.1.1. Ladder Nomenclature. Series (even-numbered) currents and shunt
(odd-numbered) voltages are shown in Figure 4.1, with numbering beginning
at the branch across the load impedance Z, and proceeding back to the input,
which may be either a series or a shunt branch. All voltages and currents will
be rms (root mean square) values. Voltages beiween nodes (across series
branches) may be obtained as the differences between the node voltages, and
currents in shunt branches may be obtained in a similar way. If a branch does
not exist physically, its immittance (impedance or admittance, as appropriate)
is set equal to zero.

Each branch might contain only a single lumped element; e.g, Y, =juC
and Z,=jwL. If these occurred in reverse order, the immittances would be -
Y, =1/jwL and Z,=1/jwC for nonzero elements. The load branch Z, =R, +
JX, might be set to a very large real part (1E10) and a zero imaginary part if
an open-circuit load is to be simulated. The load real part, R, must never be
zero, as explained below.

Vs Va Vi
e Z‘3 Za 22 - ZL
la Iy T lz [ ID
Y5 Y, Y,

l

Figure 4.1. The ladder structure with afternating shunt admittances and series impedances.




Recursive Ladder Method 71

4.1.2. Complex Linear Update. load current I; in Figure 4.1 can be se-
lected arbatrarily, but for several reasons (to appear later in the chapter) it is
much more usefu! to specify load power P, and load impedance Z, , and thus
determine the load current:

IO= f{—L . (4.1)

All other branch voltages and currents correspond to this condition; this
choice in no way precludes the later rescaling of all voltages and currents by
some meaningful factor. Again, this decision means that R, must never be
zero, although R = 1E~ 10 is perfectly satisfactory.

The recursive calculation of node voltages and series currents is shown in
Table 4.1. Load current I; is found from (4.1) and multiplied by Z; to produce
the complex number V,. The current in the Y, branch is V,Y,. Admittance Y,
is calculated at this time, and the branch-1 current is computed and added to
the load current. Kirchhoff’s current law states that this sum is equal to
branch current I,. These operations are easily accomplished with Program
A2-1, for example.

Each [ine in Table 4.1 has the general form

E=BC+D, (4.2)

where the variables are not the ABCD parameters. The variable € is either an
impedance Z or an admittance Y, as they appear in Table 4.1. There are two
good reasons for performing the operations in (4.2) in the rectangular format
shown in (4.3) rather than in a polar format such as Program A2-1.

=b,c,— b +d,,
A= Or (4.3)

a;= bicr""' b.,ci + di .

o

Table 4.1. Typical Ladder
Network Recursion
Scheme

\\

=V,Y,+];

Vi=1,Z,+V,

14 = V3Y3 + 12, etc,
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The r and i subscripts indicate real and imaginary parts, respectively; e.g.,
@ =a_+ja,. First, polar-to-rectangular conversions require cosine and sine
functions that execute slowly 'in nearly all computers. Second, few if any
versions of BASIC language allow variables to be declared complex, nor is the
polar-rectangular conversion provided as a single operation. Providing a
subroutine to remedy this deficiency is not convenient because few BASIC
language sets have subroutine argument lists to transfer the several indepen-
dent and dependent variables to and from the subroutine.

4.1.3. An Elementary Topology Code. The means for specifying the arrange-
ment of two-terminal elements for the ladder structure in Figure 4.1 is now
described. The concepts will be extended for paralleled combinations of
elements in series, and vice versa, in Section 4.1.5. Inclusion of arbitrary
two-port networks will be described in subsequent sections of this chapter.
The “menu” at this point will consist of just three kinds of components:
resistors, dissipative inductors, and dissipative capacitors, assigned by integers
1, 2, and 3, respectively, Provisions for as many as nine different component
types will be assumed, the arbitrary limitation (see Section 4.1.5) being that
the descriptor must be a single, nonzero integer. The scheme employs a triple
of component type number, a value for each of the element kinds, and its
quality factor Q. A program using this scheme requires two integer pointers to
keep track of its progress in the recursion shown in Table 4.1. Figure 4.2
shows a typical network and these parameters. Only the right-hand three
columns are input by the user. The program will know when it has worked
back to the network’s input, because it will encounter a type-number zero in
the next memory location, signalling that the input element has been pro-
cessed.

The component types (1, 2, or 3) are shown in a column and correspond to
the appearance of components in order from the load end back to the input
end. Note the important use of a minus sign on some element-type numbers.

C,
g 8.°% 7 5§56 4 3 Cay
———o—)—{ ‘-—)—O— ZL
Rg Ly
N K Type Value Q
2 -3 275 500
2 3 2 58 100
3 5 -1 94 [
4 6 2 43 250
5 8 -3 325 2000

Figure 4.2. A typical lumped-element network with pointers and component triples.
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This always indicates to the program that the preceding ladder branch
immittance was zero, i.e., a null prior branch. If the first —3 in the type
column had been a positive 3, then the program would think that capacitor C,
would have been in branch 1 (Figure 4.1). The value is in the units specified
separately, e.g., in microhenrys or picofarads. The Q column is the component
quality factor; it is meaningless for resistors, of course. A program feature
allows Q=0 to indicate a lossless element (see Section 4.1.4). The two integer
pointers N and K are used in the program to keep track of component
number and branch number, respectively. It is very important that the reader
understand this simple scheme. It puts some of the work on the user, but
programs employing this scheme are very efficient in both memory and speed.
The scheme can also be extended in many ways; for example, the column of
component values is often the set of variables that an optimizer can adjust for
improved performance. Subsequent sections in this chapter extend the topol-
ogy capability in many ways.

4.1.4. Ladder Analysis Program. Program B4-1 in Appendix B is written in
BASIC language. Some adaptation to make it more appropriate for hand-held
computers is discussed in Section 4.1.5. The program will be explained and
illustrated using the concepts previously discussed.

Program input begins with a request for the frequency, inductance, and
capacitance units; typically, this might be 1E6, 1E—6, and 1E—12 for
megahertz, microhenry, and picofarad, respectively. Then the load resistance
and reactance values, in ohms, are requested. They are assumed to be
frequency independent in this program, but that can be changed without great
difficulty. The power delivered to the load is requested next; this enables
calculation of the load current according to (4.1). Referring to Program B4-1
in Appendix B, the main analysis loop at each frequency begins at line 1200,
where the frequency is input in the units previously specified. Radian fre-
quency is then calculated for subsequent use.

The recursion in Table 4.1 is implemented in the loop from lines 1300
through 1390. It is first initialized with load current magnitude (4.1) and phase
angle zero in code line 1220, Variable F1 is a flag to indicate that a null
branch was processed in the previous complex linear update cycie. This is set
up in subroutine 9000, where a zero value is assigned to the null-branch
immittance. Otherwise, branch immittance is assigned by the calculated sub-
routine call it line 1385. The variable MK had previously been assigned from
the component type array M(+); in line 1385, type MK =1 would send the
program to subroutine 9100, MK =2 to subroutine 9200, etc. The actual
complex linear update (4.3) occurs in subroutine 9900, called at line 1370. A
little thought will show how elementary yet effective this ladder network
analysis scheme can be.

1t is important 1o understangd the operation of the element-type subroutines
9100, 9200, and 9300 in Program B4-1, There is a small amount of standard
overhead. If the branch number is odd (an admittance is anticipated), then the
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impedance, which is always calculated for a resistance or an inductance, must
be inverted. A similar test of opposite properties is made for the capacitance
subroutine (line 9300), where it is most convenient to calculate the admittance
and invert it if the branch number is even. The Q parameter has been applied
to add a series resistance to inductors and a parallel conductance to capacitors
according to

Z=R+jX=X(d+jl); (4.4)
Y =G+jB=B(d+ijl), (4.5)

where the decrement d is equal to 1/Q (line 1150). Also, X=wL and B=wC.
Note that a lossless element may be described by Q=0 and vet avoid a
“divide-by-zero” in the decrement calculation because of the test and replace-
ment in line 1140, which sets Q=1E10. There is some question as to whether
Q is frequency independent. It is always possible to calculate Q in an arbitrary
way in subroutines 9200 and 9300, where the frequency information is
available. However the decrement is determined, inversion of (4.4) or (4.5)
requires the identity
1 _d-jl

d+jl &4y
This is coded in lines 9240-9260, which are potentially in common between
subroutines 9200 and 9300.

(4.6)

Example 4.1. Run Program B4-1 for the three examples specified in Figure
4.3. The topological input is terminated by entering 0,0,0. Note that any
number of frequencies may be analyzed sequentially once the basic informa-
tion has been input.

The input impedance is calculated last by lines 9955--9985; these will be
discussed in Section 4.5.1.

4.1.5. Branch Topology Levels and Packing. The flexibility of the topologi-
cal description may be extended considerably by defining branch levels, as
illustrated in Figure 4.4. The analysis program keeps track of which branch
number is being processed, and even-numbered branches are processed using
a branch impedance value. If the branch were to contain several paralleled
elements, their admittance should be calculated, added, and then inverted to
give the branch impedance. This state of paralleling admittances in an
even-numbered branch will be called level 1. Suppose that the branches to be
paralleled are composed of elements in series; then these impedances should
first be added, and the separate resulis should be inverted, so that the level-1
operation can proceed. The state of adding series impedances to obtain
subsets to be paralleled in an even-numbered branch is called level 2. Branch
2 in Figure 4.4 contains two level-2 subset branches and one level-1 branch.
The dual case is shown in branch 5 of Figure 4.4,



3 400 2

30+j10 &
Example a: ow
3, 325,200

325
2,400, 100

50 MHz; nH, pF.

V,=17.3205+j5.7735 =18.257T4 [18.4349°
I,=—32922E-3+;1.7714=1.7714 /90.1065°

Vy=—205.2845+j7.5860 =2054246 /177.8837°

100 W
Example b:

—32,400,100 325
3,325,200 > I

Zi, = 0.320569396 —|10.84356363

I LYY i O 20 — 30 2

50 MHz; nH, pF
V,=44.7216—j67.0820 =80.6227 /- 56.3098°
1,=22361+j0 =22361 /0°

V,=47.5313+)213.9106=219.1277 /771.4723°
[,= —19.5803 +j4.9622=20.1993 /165.7790°

4 3 3B 3 1
5O+ ]0 & ———y
Example c: 50 W
~3,325,0 .
2,400, 100 oo

50 MHz; nH, pF
V, =500 =50 /0°
=140 =1 /0° (because P; =R;)

V4=50-]9.7942 =509502 /—11.0830°
1,=0.9260—j0.3986=1.0081 /—23.2896°

Figure 43. Three ladder network examples with answers.
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_.“__rvv\_

N TYPE.d VALUE
o -nm SE-3
2 23.001 [.75E-6
3 12.02 45E--3
4 202 . 5.E—3
5 23.001 1.75E—6
6 ~10 0.
7 23.001 [1.5E—6
8 20 205E-13
9 13.001 6.25E—6
10 2.0 205E-3
il 23.001 115E-6

Figure 44. Branch topological extensions to two levels.

Study of the component-type array (integer part of middle column) in
Figure 4.4 shows that level 2 is described by adding 20 to the element-type
code; i.e., an even-numbered branch having a paralleled subbranch consisting
of L and C in series would be designated by 22 and 23, Similarly, an
even-numbered branch consisting of just L and C in parallel wounld be
described by adding only 10 to the level-1 designation (i.e., 12 and 13),

Consider Figure 44 in detail. The first component, —22, is an inductor
(type 2), and the minus sign indicates that the prior branch, namely, branch 1,
is null. The second component, 23, is a capacitor; it is in series because branch
2 is an even (impedance) branch and level 2 is specified. The program should
sum the L and C impedances. The third component, 12, indicates a change of
level. The program code should recognize this, invert the impedance sum, and
start an admittance sum. Then the 12 is processed as a capacitive admittance,
which is added to the admittance sum. The next 22 and 23 begin a new
impedance sum, which is terminated by the change of level indicated by — 1.
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This last impedance sum is inverted, added to the admittance sum, and this is
then inveried to become the final branch-2 impedance. Only then is the
resistor processed; but it is branch 4, since the minus sign indicates a
null-branch 3. .

Note that the resistor is iniroduced with a zero value; this is one of two
degenerate situations that may exist. The null resistor is needed to separate the
branch-2 description from the branch-5 description. The second degenerate
condition is covered by the following two rules: (1) level 1 can come before or
after level 2, or not at all; (2) multiple level-2 entries must be separated by
level 1, even if by a null element. These dummy elements might be null C in
parallel or null R in series.

Depending on the mass storage capability of the small computer, it may be
possible for the program owner to have another program to prompt him for
input and arrange it in the proper form. However, the topological scheme just
described is easily mastered by sole vsers.

There are several ways to save memory in hand-held computers that are
register oriented. Referring to the topology data shown in Figure 4.4, one way
to save registers is to store each component type and its decrement (d=1/Q)
in one register to the left and right of the decimal point, respectively. For
example, the data in Figure 4.2 would be stored as —3.002, 2.01, — 1.0, 2.004,
and —3.0005. Unpacking is simplified by use of the integer and fractional
operators. Calls to the component-type subroutines are still easy, because most
calculators ignore the sign and the fractional part of the numbers. However,
any level-1 and level-2 increases to the mantissa magnitude would need to be
removed; this usually occurs anyway in the test to see if levels 1 and 2 are
indicated. The unscaled component values would be paired with the registers;
this occurs naturally in the HP-67/97 calculators, where primary /secondary
register pairing is featured. In other programmable calculators, the pairing is
by a fixed register number difference, e.g., registers 1 and 21, 2 and 22, ete.
Packing the N and K components and branch integers into one N.K format
also saves one register,

4.1.6. Recursive Ladder Analysis Summary. The concept of working back-
ward in a ladder network, from what is arbitrarily assumed to have occurred
at the output end to what caused it at the input end, is well known. It is useful
because the network is assumed to be linear. The method is valuable for both
computations and algebraic formulations, as will be demonstrated in Section
8.3. There is only one complex functional form, which is solved repeatedly; it
requires just one multiplication and one addition. This operation is best
programmed in assembly language for fast evaluation on machines providing
that opportunity along with a higher-level language, e.g., BASIC. The voltages
and currents obtained for shunt and series branches, respectively, are often of
direct interest; how they enable the exact calculation of component sensitivi-
ties will be shown in Section 4.7.
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A detailed scheme for describing the network to the computer has been
discussed. It requires minimal memory and controls program branching
during numerical evaluation of the network at each frequency, An arbitrary
component “type” number may be assigned to single- or even multiple-
element component “types”. The subroutines for each single element can be
called separately and by the multielement types for maximum programming
efficiency. A level-0 BASIC language program has been described, and several
examples were run to illustrate its speed and simplicity.

Several enhanced features for the ladder network analysis approach were
described, and other additions will be presented in the following sections.
These include embedded two-port networks and bridging between nonadja-
cent nodes of the ladder network.

4.2, Embedded Two-Port Networks

An essential feature of any ladder network analysis is the ability to include
two-port networks connected in cascade in the ladder network. The uniform,
dissipative transmission line connected in cascade may be treated as such a
two-port subnetwork. Transistors with feedback, three-port circulators with
one port terminated,. and bridged-T equalizers are other common examples
that will be discussed later. The two-port networks may be described by
various parameter sets, but this analysis will be accomplished using a unique
application of the ABCD (chain) parameters. Conversion among various
parameter sets has been described by Beatty and Kerns (1964).

The approach will be to reduce the ABCD characterization to an L section
of two adjacent ladder branches. Then the standard complex linear update
will apply with negligible modification. This topic is developed by first
discussing additional properties of the ABCD parameters. This will expose the
inefficiency in the common use of the ABCD parameters for ladder network
analysis, such as in Hewlett—Packard (1976b).

4.2.1. Some Chain Parameter Properties. It is convenient to redefine the
output current direction and port subscripts for cascaded, two-port subnet-
works (see Figure 4.5). Then (3.62) and (3.63) are equivalent to

1,=CV,+DI,. | (4.8)

The purpose is to cascade a number of subnetworks, where Figure 4.5 might
be the jth one. Then the input current and voltage are also the ocutput current
and voltage from the subnetwork immediately to its left. Denote the ABCD
matrix of the jth subnetwork at T;. Then it follows that the total network’s
ABCD matrix T is simply the product of all n of the subnetwork chain
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+ Two-port
V. ABCD
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Figure 4.5. A typical cascaded, two-port subnetwork.

maltrices:
T=T XT,XTy%x-- ><TJ->< -+ XT

- (4.9)
This is a popular means for analysis, but it will be shown to incorporate some
gross inefficiencies.

The two-port networks for series Z and shunt Y are shown both separately
and combined in Figure 4.6. The definition of the ABCD parameters is clear
from (4.7) and (4.8); e.g., A=V, /V, when I, =0. Applying this approach to
the Z and Y two-port networks in Figure 4.6, their product is

OB DCF

For emphasis and review, the L-section ABCD matrix on the right-hand side
of (4.10) was obtained using complex arithmetic as follows. The upper
left-hand corner element was obtained as 1-1+Z-Y. The upper right-hand
element has even more trivial operations, namely 1-0+2Z-1. Similarly, the
lower left-hand element was found from G- 1+ 1-Y. Finally, the lower right-
hand element resulied from G-+ 1- 1. Further cascading will cause muitiplica-
tion by another branch matrix having two I’s and a 0. Clearly, this is an
ineffective technique for cascaded two-terminal elements such as the Z and Y
branches most commonly encountered. It is reasonable if most of the subnet-
work ABCD matrices are nontrivially full. It will obtain the complete ABCD
matrix for the entire network. However, the reader should confirm what the
fundamental ABCD definitions from (4.7) and (4.8) show: two network
analyses with Z; =1E—10 and Z, =1E+ 10 will provide the overall ABCD
matrix values. This matrix is sometimes required. Kajfez (19803) described its
use in noise figure calculations, and (3.66) is another application that will be
considered in much more detail. A more efficient ABCD calculation is now

o
'

' a

% z i Foa e 2 e
+ + \I', + ;l, +
v, v, 1 vy | Va

Figure 4.6. An L section by cascading Z and Y two-port networks.
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considered for two-port subnetworks occasionally embedded in a Z and Y
ladder network.

4.2.2. Chain Parameters in Complex Linear Updates. Equations (4.7) and
(4.8) are normalized to A and D, respectively, and (4.7) is reordered:

V., g
L_vCyy 4.12
D= ep T (412)

These two equations should be compared to those in Table 4.1. Consider the L
section shown in Figure 4.7. The two-port subnetwork is given a component-
type integer assignment, say 6. In the situation in Figure 4.7, the branch
pointer K indicates that the next branch is to be an impedance, because N=4
(an even number). Equation (4.11) is then relevant, since current I,=1,
(already known) is to multiply an impedance. Also, node voltage V.=V, is
already known from the back-to-front recursion in progress. These fit into the
first equation shown in Figure 4.7, using Z,=~B/A. To make (4.12) fit the next
complex linear update equation, V; must be temporarily stored and not
allowed to migrate to the second equation in Figure 4.7; V, =V, is slipped into
that place. 1, migrates normally, Y;=C/D, and the solution I, is obtained, as
shown in Figure 4.7. Finally, V, is recalled from storage, denormalized by
multiplication by A, and placed as shown in the third equation in Figure 4.7.
Current I migrates normally, but is denormalized by multiplication by D.
Then the ladder recursion continues normally. In fact, it is not really dis-
turbed; when component-type 6 is encountered in the topological list, the
program should go to the subroutine for ABCD two-port subnetwork type 6,
where its ABCD parameters are computed and the several modifications are
controlled. The reader should inspect the “next-branch-is-odd™ case shown in
Figure 4.8.

The technique just described is a little intricate, but it need be programmed
only once in its own special subroutine. Other component-type subroutines
can call it any number of times. The technique is independent of how the
ABCD parameters involved were cbtained. Also, much of the algorithm is

v, i, v, v, v
/ / / 7 |a Next 5 Ib 3
V=12, + = = Oy available {B/A) —T-—---
><?‘E'—- Modification branchi(6} I
Last
L=l =VeYs + 1, (c/oy I_' used

branch({3)

*Canvert Vg = A\g
Ig = Dlg

Figure 4.7. ABCD L sections: the next-branch-is-even case.
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|
a Vb lh Va Vb
/ / / . 9 7 b 5 lp  Last 3
bg = Ve Y5 ¥4 — {B/A} used —C— ———
~— Modification Nexi branchfz.}j
ViV =g Zg + available '_I (C/D)
- branchi{?}

lg = VoY +1g

*

*Convert Vy = AV,
1y =Dl

Figure 48. ABCD L sections: the next-branch-is-odd case.

especially suited to programmable calculators, e.g., register.arithmetic for
denormalizing variables.

4.23. Summary of Embedded Two-Port Networks. The conventional use of
ABCD parameters for cascaded subnetworks has been reviewed. It was shown
that where only a few nontrivial ABCD subnetwork matrices are involved, the
usual procedure, which multiplies all branch and other ABCD matrices to
obtain the overall ABCD matrix, is quite wasteful. It usually amounts to
complex multiplications by 0+4j0 and 1 +j0 many times. The review illustrated
the mechanics of ABCD matrix multiplication, which will be applied algebra-
ically in Section 8.1. It was also mentioned that two recursive analyses with
extreme load impedance value would calculate the overall ladder network’s
ABCD parameters should they be required for special applications.

The normalization of the two ABCD-parameter equations resulted in their
matching the form of the standard complex linear update formula. Then it
was shown that the impedance and admittance quantities appropriate to the
ladder branch were simply B/A and C/D, respectively. Thus an L section,
turned in the direction to match the next two ladder branches to be consid-
ered, allowed the recursion to proceed. One complex linear update variable
had to be denormalized, stored, and then recalled; another had to be swapped
into a nonstandard position. The process is somewhat intricate, but is indepen-
dent of how or where the ABCD parameters were obtained, Thus the ABCD
L-section method requires programming only in one subroutine, and this can
be done with little programming code.

4.3. Uniform Transmission Lines

Dissipative, uniform transmission lines with real characteristic impedances will
be considered (see Murdock, 1979, for the even more general case, if re-
quired). These will be treated as embedded, cascaded two-port subnetworks in
the ladder network environment, as just described, or as short- or open-
circuited stubs having only two terminals. The latter will reduce to the same Z
or Y case as the dissipative lumped elements treated in Section 4.1. There are
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many occurrences of these components in filter models, especially in micro-
wave filters; one of the latter will be designed and analyzed in Section 9.1.
Because of prior formulation, this topic reduces to a consideration of the
* ABCD-parameter calculations, some useful approximations, functionai-form
shortcuts in the programming associated with the calculations, and additions
to the topological list technique.

' 4.3.1, Transmission Line ABCD Parameters. The ABCD parameters for
' dissipative, uniform transmission lines have been given in many places (for
| instance, Matthaei et al., 1964, p. 28):

A=D=cosh(NP+j8), (4.13)
B=Z,sinh(NP+j#), (4.14)
C=Y,sinh(NP+j#). (4.15)

I

|

|

|

| Real characteristic impedance Z, is the reciprocal of admittance Y, angle 8 is

i the line elecirical length at some frequency , and NP is the frequency-
independent loss, in nepers, for that length of transmission line. Note that |

| neper=38.686 dB. The hyperbolic functions above have complex arguments.

: They may be evaluated by the following indentities from Dwight (1961, pp.

153, 4):
. . eNP(cosf+jsind)—e~NF(cosf—jsinf)
sinh(NP+j8 )= 3 , (4.16)
| . eNF(cos@+jsin8)+e “P(cos#—jsind)
cosh(NP+j6 )= 3 . {407

Note the functional similarity; only one interior sign is different, so that one
program segment with a flag variable should suffice for evaluation. Program-
mers of hand-held calculators should also note the efficiency of the polar-to-
rectangular conversion of unity at angle # to obtain cos(#)+]jsin(d) in one
aperation,

4.3.2. Lossy Transmission Line Stubs. A compact means for calculating the |
input impedance of a short- or open-circuited dissipative transmission line will
be described. The analysis of Section 3.3.2, leading to (3.66), is directly
applicable for an arbitrary load impedance at port 2 of a two-port network:
_AZ +B

|

Zl‘ch+D’

(4.18)

where Z, is the stub input impedance, and the ABCD parameters are given in
(4.13)~(4.15). For Z, approaching infinity and zero, it follows that

7, o0= el
YOS tanh(NP+;68)°
Z, sc=Zytanh(NP+j8), (4.20)

(4.19)



Lniform Transmission Lines 8

for the open- and short-circuited-stub cases, respectively. It is possible to
avoid (4.16) and (4.17) entirely by the identity
tanh(NP} +jy

tanh(NP +j0 )= W ,

(4.21)

where the definition for y will occur in many places throughout this book:
y=tanf. (4.22)

There is no point in stopping with this exact result for two reasons. First,
short- or open-circuit terminations in the real world are only approximate.
Second, this fact provides an opportunity to drastically shorten the calcula-
tions in both programming steps and execution time. Consider the series
approximation

NP? | 2
tanhNP=NP—-§-+—1—5-NP5— (4.23)
For dissipation less than 1 dB, the second term is less than 1/226 of the first
term. An approximate stub input impedance expression is obtained for these
assumptions:
_7 K+iy
=LKy

y=tan; K= { NP for 8§C, (4.24)
NP~! for OC.

Clearly, only one subroutine with a flag variable will suffice for both kinds of
stubs in ladder network analysis, using either exact Equations (4.19)-(4.21) or
approximate Equation (4.24) with (4.22). Component menu descriptions with
sample data will be given in Section 4.3.4,

4.3.3. Lossy Transmission Lines in Cascade. Section 4.2.2 shows that param-
eters A and D are required for normalization purposes in the L-section
formulation for embedded ABCD two-port subnetworks. They are equal,
according to (4.13) and (4.17). Furthermore, the L-section branches are

2 =7, tanh(NP+j8), (4.25)
£ =Y tanh(NP+j0), (4.26)

where the considerations above for the tanh function apply. The approximate
form is recommended only for the more limited hand-held computers. The
rest of the calculation for the cascaded transmission line is accomplished as
for any cascaded two-port subnetwork (see Section 4.2.2). The transmission
line component topology code will be considered next.

4.3.4. Transmission Line Topology Codes. Each cascade and stub transmis-
sion line component will require five items to describe it: type, nepers loss,
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Table 4.2. Transmission Line Component Topology and Numerical Data

Type Name Z, NP :Ad Zy Zin

4  SCstub 70 0.0567 40.0 0 6.8506 +}58.4061
4 OCswb —-70 00567 400 1E10 9.7068 —j82.7569
5  Cascade 70 00691 171.54 20-—j30 29.0996—j39.9780

characteristic impedance (Z;), radian frequency reference, and the electrical
length, in degrees, at that frequency. Optimization is anticipated, and the two
variables for adjustment could be Z, and electrical length, in degrees, at a
reference frequency. Both of these gquantities will be in a reasonable numerical
range (well scaled). Electrical length at any arbitrary frequency will be
w
= 90;,—0 . (4.27)
Table 4.2 shows some typical data for illustration and numerical testing.
Stubs are type-4 components with the sign of Z, indicating the termination.
The dissipative, uniform transmission line subnetwork in cascade is type 5.
The stub input impedance was calculated by the approximate relationship in
(4.24); the exact equations were used for the cascaded transmission line.
Register packing for hand-held calculators is easy. Two pairs of registers
are employed for each topological entry (see Table 4.3). The first register in
the first pair contains the type integer in the integer part and the nepers in the
fractiona! part (the loss thus being limited to the realistic maximum of less
than [ neper, or 8.686 dB). The second register in the first pair contains Z,, a
potential optimization variable. The first register in the second pair contains
the reference radian frequency, and the second register contains the electrical
length at that frequency, also a potential optimization variable. Each transmis-
sion line component thus requires two topological pairs instead of just one, as
previously encountered. Actually, a component could occupy as many register

Table 4.3. Tapological Input
Data for the Filter
in Figure 4.9

4,05 1.0
29531E1Q 90.0
5.05 1.0
2.9531E10 90.0
—4.05 1.0
2.9531E10 90.0
5.05 1.0
2.9531E10 90.0
—4.05 1.0

2.9531E10 90.0
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pairs as required, since the topology pointer (N in Section 4.1.3) is incre-
mented in the subroutine for that particular component.

Example 4.2. A three-stub transmission line filter, to be designed in Section
9.1, is shown in Figure 4.9. It is composed of three shorted stubs that are
separated by cascaded transmission lines. All elements are 90 degrees long at a
bandpass center frequency of 4700 MHz (2.9531E10 radians). The characteris-
tic impedance is normalized, so that Z;=1 is assumed. Loss for each of the
line lengths is 0.05 nepers, or 0.4343 dB. The hand-held calculator, paired-
register topological description is shown in Table 4.3.

ZD=1aD=90° 20=1'90=

Y, =K &, =80° Yy =K 84 = 80°

Figure 4.9, A microwave equal-stub filter from section 9.1.

4.3.5. Transmission Line Summary. Dissipative, uniform transmission lines
with real characteristic impedances (Z,) have been analyzed using both exact
and approximate methods. For two-terminal stubs with either open- or short-
circuit terminations, the approximate analysis is suitable, because the termina-
tions are realized with relative inaccuracy in practice. The faster execution and
more easily programmed approximate method is especiaily attractive for
hand-held caiculators. There is less justification for an approximate calcula-
tion for cascaded transmission line subnetworks, but it is still an option for
hand-held computers as opposed to desktop or larger machines. The approxi-
mation involves the computation of the hyperbolic tangent function with
complex argument. Identity (4.21) utilizes only rea] arguments and enables the
use of series approximation {4.23) for the tanh function. The first term of the
loss-related series is usually satisfactory.

The menu of ladder network components was extended by type-4 stubs and
type-5 cascaded transmission lines. The stub termination was indicated by the
sign of the characteristic impedance, a negative number chosen to select the
open-circuit termination. Optimization and other reasons lead to the choice of
nepers, Z,, radian reference frequency, and electrical degrees at that fre-
quency as the four transmission line parameters. It was shown how these may
be placed in calculator register pairs and remain consistent with the topologi-
cal data previously defined. A microwave filter example indicated how ele-
mentary such a circuit description can be,
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4.4. Nonadjacent Node Bridging

There are many applications where single components (e.g., R, L and C) are
connected between nonadjacent nodes of a ladder network. The bridged-T
network is often employed for servo lead/lag phase compensation and for
group time delay equalization in radio circuits. There are also a number of
narrow-band filter design methods that realize transmission loss poles by
bridging nonadjacent nodes with L or C. This section considers convenient
means for analyzing such networks without having to resort to the less
efficient nodal analysis.

4.4.1. Derivation of Bridged-T Chain Parameters. The approach for analyz-
ing the bridged-T structure in Figure 4.10 is to find its ABCD parameters and
then treat it as another cascaded two-port subnetwork, as described in Section
4.2. The four branch admittances may be composed of any number and kind
of components. A specific delay equalizer, bridged-T arrangement will be
considered in Section 4.4.2, and its ABCD parameters will be obtained using
the following development.

Consider the separate two-port networks in Figure 4.11. The left one is the
top branch of the bridged-T, and the right one is the remaining T structure.
Paralleling these two structures produces the complete network in Figure 4.10.
It will be shown that addition of the two separate short-circuit admittance
matrices provides the short-circuit matrix of the entire bridged-T network.

To obtain the shori-cirenit parameters for the subnetworks, defining Equa-
tions (3.79) and (3.80) are recalled. It is easy to see for the subnetwork in
Figure 4.11a that y,,,=V,;, =Y. Generally, y,,=1,/V, when V,=0.If V =1,

o —~0
Figure 4.10. The bridged-T structure with admittance branches.
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Via l2, Iy I3,
Y, - Y, ~——— Y, -
+ + + I +
Via Vo Vig ifJ Voo
(a) (b

Figure 4.1}, Two subnetworks that form a bridged-T network when paralleled. (o) Matrix Y,;
(b)Y matnx Y,

then it is seen that y,,= —Y,; the sign is due to the I, current convention,
Furthermere, y|, has the same value (reciproeity).

The two-port subnetwork in Figure 4.11b has y,, equal to the admittance
looking in when the output is shorted. It follows that

Yi(Y2+Y5)

Y™ —*—“———Y[ Y, Y, (4.28)

The output admittance y,,, is obtained from (4.28) by swapping the Y, and Y,
variables. To find y,,;,, the output must be shorted and the current-division
rule applied to find the part of the input current that flows through Y, in
Figure 4.11b. The input current I, is defined by I,=y,,, when V,=1. The
current-division rule says that

Z,

_IZEIIZZ-G-—Z;’ (429)

where Z=1/Y for each variable involved. This leads directly to
—Y\Y,

Y21 = _—Y,+Y2+Y3 . (4.30)

The two subnetworks in Figure 4.11 have been described by their y
parameters. The independent variables are the terminal voltages; these coin-
cide when the network terminals coincide. Also, [, =1,,+1,, and I, =1, +1,,
where I, and I, are the port currents for the complete bridged-T network in
Figure 4.10. It follows from (3.79) and (3.80) that y,,=y,1,+¥> and an
analogous argument applies for each of the other y parameters. This is simply
an addition of the two subnetwork matrices. Thus the y parameters of the
bridged-T network in Figure 4.10 are

Ny )
I Y AT, +Y, 4 -
Yy(Y,+Yy)
Y2 IV, e ‘ (432)
Y[YI

Y,. (433)

Ynp=¥n= —W—



88 Ladder Network Analysis

A similar development could be accomplished by addition of open-circuit (z)
matrices, as explained by Seshu and Balabanian (1959).

Section 3.4.3 showed how to find z and y parameters in terms of the ABCD
parameters. The ABCD parameters in terms of the y parameters are found in
an entirely analogous way. They are provided in the matrix identity

A B)=_:l( Yo 1) 4.34
(C D Yo \¥n¥2—YaYne Yu/ (4-34)

It is tempting to substitute (4.31)-(4.33) into each element of (4.34). It is

always worth checking algebraically to see if gross simplification or cancella-
tion of mutual terms may be accomplished. But, for analysis purposes, it
usually turns out that carrying forward the numerical results of important
stages of the computation is by far the most effective procedure.

4.4.2. A Group Delay Equalizer. Geffe (1963) has described the lowpass
group delay equalizer shown in Figure 4.12. Suppose that the five component
values have been determined, and what remains is the analysis task for this
subnetwork. Using decrement d=1/Q for each component, a comparison of
Figures 4.12 and 4.10 shows that

Y, =Y,=wCy(dg, +il), (4.35)
Y4=[""L1(du+j1)]_l, (4.36)
Y= { [0Cy(dey+i1)] 7 +ela(dy 1)) - (4.37)

It is important to recognize that all paris of these calculations reside in the
component type-2 and type-3 subroutines described in Section 4.1.4, So the
bridged-T subroutine calls for the type-2 and type-3 subroutines to evaluate
the main parts of (4.35)—-(4.37). This means that the bridged-T topological
input list must consist of four register pairs in the proper order, and it must
control the topological pointer N appropriately before type-2 and type-3

Note: These sections may be used only if
1

- 4= <-L —0577
L| 0!2 + ﬁ2 < B E
Y
Resonance Tests
_1
G G =2 Type 111a:
—_— - 1. L resonates with }C, at
4ot W)= Jaz + ,B1
i # - 302 2. 1, and G, resonate at
_ 4 wy=y B%-3a’

Ly = by

Figure 4.12, Geffe’s type-Illa lowpass group
delay equalizer, [From Geffe, 1963.]
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Table 4.4. Topological Input
~ Data for the Geffe
Bridged-T Equalizer

6.4, L, value
6.dc, C, value
6.chy, L, value
6.dc, C; value

subroutines are called. The registers for storage of the ABCD parameters are
available for all preceding computations. If the order of the calculations is
well planned, it is not difficult to calculate the four complex numbers
according to (4.35)-(4.37), then the short-circuit parameters in (4.31)—(4.33),
and finally use the ABCD parameters in (4.34) to compute A, D, B/A, and
C/D, as required in Section 4.2.2. The paired-register topological code for a

_ type-6 bridged-T network appears as in Table 4.4,

4.4.3. Interpolation of Nonadjacent Node-Bridging Current. Figure 4.10
showed a T network bridged by a branch with admittance Y,. It is often
necessary to know what voltages and currents exist internal to such networks,
e.g., the voltage across Y,. Cases also occur where the bridging component
bypasses more than one node. Moad (1970) described an approach that solves
this problem efficiently. The following similar development is based on
computing two of the bridged subnetwork’s ABCD parameters and thus
finding the bridging current. This establishes the correct output current for the
bridged subnetwork, so that the ladder recursion may continue normally. in
fact, the recursion also is used twice to find the two required ABCD parame-
ters.
Consider the subnetwork in Figure 4.13, which is bridged by impedance Z_,
The ladder recursion method will arrive at port b with values determined for
both node voltage, V,, and Iy, the current in the KA (even) branch. If I,
(thus 1)) were known, the recursion could continue to the subnetwork’s input

zl:
a L
a%e Srae—
ABCD
+ bridged
\Y subnetwork

Figure 4.13, A subnetwork bridged by branch impedance Z_.
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port (node a in Figure 4.13), at which time I_ could be added to I,, and the
recursion could again proceed normally. Equation (4.7) applies to the bridged
subnetwork. Kirchhoff’s law for node b in Figure 4.13 yields

I.=I;-1L,. (4.38)
Also, Figure 4.13 shows that
V.-V, =1Z_. (4.39)
Substitution of these two equations into (4.7) yields .
| LZo-Vy(A-1)
b~ B+Z,

Only A and B need to be determined. But (4.7) shows that A=V_ when V=1
and I, =0; also, B=V, when I,=1 and V,=0. Two analyses of the ladder
subnetwork using these output terminal conditions will provide A and B. Then
(4.40) yields I, and (4.38) yields bridging current I ..

This procedure begins when the recursive ladder method encounters a
component-type code that indicates a node-b condition, as in Figure 4.13. V, -
and I are saved and replaced by 1 and 0, respectively, The complex linear
update is allowed to find V,=A, and this is saved. Then the complex linear
update is restarted at node b in Figure 4.13, with V=0 and I,=1; it is
allowed to find V,=B. Then I, is calculated according to (4.40); that and the
saved V) value are used to restart the complex linear update from node b for
the third and last time. The subnetwork voltages and currents will then be
correct, Upon arrival at node a in Figure 4.13, 1, is increased by I according
to (4.38) and the ladder recursion method continued toward the ladder input
terminals.

{4.40)

Example 4.3. Suppose that the embedded subnetwork is the bridged-T
shown in Figure 4.14, with recursion variables I, =2 and V,=3. To find A
according to its definition from (4.7}, set I, =0, V =1, and find V. Since
there is no current through the 40-ohm branch, node-d voltage to ground must
be 1, and the branch current must be 1/30. Therefore, A=V,=14+50/30
=8/3. Setting V,=0 and I,=1, node-d voltage to ground must be 40 and

Figure 4.14. A resistive bridged-T embedded network.
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,=1+40/30=7/3. Thus B=V,=40+50x7/3=470/3. Then (4.40) shows
that 1,=3 /100 and (4.38) shows that I =1.970.

4.4.4.  Summary of Nenadjacemt Node Bridging. A general method for find-
ing the ABCD parameters of any bridged-T network was presented. Equations
for the short-circuit (y) parameters were derived in terms of the four branch
admittances. These can be converted to ABCD parameters for use in the
embedded subnetwork technique described in Section 4.2. A time delay
equalizer bridged-T network was discussed as an example. It was emphasized
that existing subroutines for RLC impedance computation could be called by
the bridged-T-component subrouline to minimize computer coding.

For T networks and more extensive subnetworks that are bridged, there
often is a need to find the internal voltages and currents, The approach above
does not provide this information and will not solve the larger problem in any
case. An efficient technique, which uses the ladder recursion scheme two extra
times to find the A and B chain parameters of the bridged subnetwork, was
described. These values, the bridging branch impedance, and the bridged
subnetwork’s known output voltage and current enable the simple calculation
of the bridging current. Thus the ladder recursion scheme may proceed
through the bridged subnetwork, calculating correct voltages and currents as
in the unbridged situation.

Network analysis that includes bridge subnetworks must be conducted with
the possibility that a null condition might occur. Therefore, division such as in
(4.40) should be protected by the addition of IE—9+j0 to the denominator.

4.5. Input and Transfer Network Responses

The methods described so far make it easy to obtain the input voltage and
current of a ladder network given the topological data and load power.
Several input and transfer response functions often required in practice will be
described. Quantities related to impedance and power will be defined first.
Then a definition of scattering parameters will be given as a basis for certain
wave response functions and for important applications later in this book.
Logarithms (log) in the following equations are with respect to base 10,

4.5.1. Impedance and Power Response Functions. Assume that ladder net-
work input voltage and current are available (see V| and I, in Figures 3.4 or
3.7, for example). Then the input impedance is

\s
Z,=—I—'=Rl+jx,. (4.41)
1

This calculation is made in Program B4-1 by lines 9955—-9985. Line 1381
detects that the input has been reached, because the component-type integer is
zero. If the next branch number is even, then the last processed branch is in
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+
@ E, R, ix, @ E, ix

Figure 4.15. Series and parallel impedance forms.

shunt (see Figures 4.3b and 4.3c). Then the voltage and current are in the
complex linear update (Table 4.1), so that lines 9970-9985 are correct for
impedance calculation. 1f the next branch is odd, then line 9965 in Program
B4-1 swaps the respective real and imaginary parts of the voltage and current;
otherwise, the calculation would have produced the admittance instead of the
impedance,

The parallel impedance form is often required when a lossless voltage
source exists and for various other reasons. The parallel-ohms form is much
more widely accepted than admittance mhos; the latter, when it is used
(primarily by microwave engineers), is often given in millimhos. The parailel
input impedance form is

R R2+X2 . (R2+X2)
=T XemTTx
where R, is the reciprocal conductance, and X, is the negative of the
reciprocal susceptance (see Figure 4.15).
It is well known that power P may be computed as the real part of the
product of sinusoidal voltage and conjugated current:

P= Re(VI*). (4.43)

(4.42)

Therefore, the power input to the network is
P =V, L, +Vl, (4.44)

Irtir

where subscripts r and i denote real and imaginary parts, respectively.
It is assumed that power delivered to the load impedance was an arbitrary
independent variable the user specified. Therefore, efficiency in dB loss is

P
n= 1010gm§ld13. (4.45)
L

Negative values of (445) imply an active network with power gain, ie.,
P,>P,.

4.5.2. Scattering Parameters. Two-port network equations have been writ-
ten in terms of ABCD (chain) parameters in Section 3.3.2 and in terms of both
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1 I Iz 2
Z, —C — it O
8y — 3 by |
+ + Linear +
E, Vi network Va Z
handiads —= |
zZ, K

Figure 4.16. Linecar network port scattering waves.

z and y open- and short-circuit parameters, respectively, in Section 3. 4 3. In
exactly the same way, the scattering parameter equations are

b; =52, +8x3,, (4.46)
b,=8,,a,+55a,. (4.47)
The variables labeled a, (p=1 or 2) in Figure 4.16 are called the incident

waves, and those labeled b, are the emerging waves. Kurokawa (1965) defined
the scattering variables in terms of the port voltages and currents:

V +Z71, . (4.48)
a,= .
2\/
—Z7*1
bp = _P_mu (4.49)

Ry

where p 15 1 or 2, corresponding to the ports shown in Figure 4.16. The waves
may also be interpreted in terms of signal flow graphs (see Hewlett—Packard,
1972),

Note the possibly complex, port-normalizing (reference) impedances Z7 in
(4.48) and (4.49); they may or may not be equal to the actual source and load
impedances. This subject will be treated in more detail in Section 7.1. It is seen
from (4.48), with p=1 and Z_=Z3}, that the numerator is equal to E_. Then,
the port-1 incident wave Is

V,+ 7201 E
a,= Zh__E . (4.50)
2Ry 2Ry
The squared magnitude of (4.50) is recognized as the maximum power
available from the Z, source, as defined by (3.45). This fact and the following
development show that the coefficients in (4.46) and ¢(4.47) have units that are

the square root of power.
The net real power incident on a port turns out to be

P, =la,[*~[b,|% (4.51)
This can be confirmed by substituting (4.48) and (4.49) into (4.51). The power
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identity in (4.43) results after some algebra, using the identities

|Z?=2Z*, 2ReZ=Z+2Z* (4.52)
The reflection coefficients looking into port p are defined by
Pp= ? . (4.53)
P
But definitions (4.48) and (4.49) in (4.53) yield
- Fhx
Pp= EZF;—_'_ZZD—; . (4.54)

It is important to note that this is essentially (3.46), which enabled a simple

calculation of power transfer from a complex source to a complex load.

Kurokawa (1965) discusses the differences in reflection of power waves and

traveling waves on transmission lines with real or complex Z;. In general,
traveling waves are not closely related to power.

Finally, the transducer function, S,,, is defined by (4.47):
IS _ b2
1=,

(4.55)

a,=0

The side condition that there be no reflection from the load is important in
itself; it requires that Z; =73, (Why?) Using (4.48) and (4.49) in (4.55) and
equating a, from (4.48) to zero yields the general transducer function

1+Z3 R}V,
S = -0 =5 T ZS=ZD. 4.56
Tz R; E ! (4-26)

4.5.3. Wave Response Functions. Scattering parameters normalized to com-
plex port impedances will be used throughout Chapter Seven; the more
familiar case of real port-normalizing impedances will be assumed. Also, the
source impedance will be assumed to be equal to the port-1 normalizing
resistance R,. Then, the input reflection coefficient from (4.54) is

Z]_Rl

pl=m’ (457)

which is the same as (3.48). When Z;, =Z, =R, +j0, (4.57) is equal to coeffi-
cient S, in (4.46). The reflection coefficient looking into port 2 is defined in a
similar way, and will be used in Section 6.7. A low reflection coelficient
magnitude indicates a high-quality impedance match as Z, approaches R,.
Three ways to express this condition are return loss, standing-wave ratio
{SWR), and mismatch loss.

Return loss is commonly used in microwave design; it is defined to be:

RL= —20log,g|p| dB. (4.58)
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The standing-wave ratio is the ratio of voltage or current maxima to minima
on uniform transmission lines, where a standing wave may exist as a result of
load reflection. It is defined as

1+ |p|
I=lol’
where the reflection magnitude is usually obtained from (4.57). However, if
(4.54) defines a gencral reflection coefficient, then (4.59) may be interpreted as
an arbitrary, real function of a complex variable. It is also a well-behaved
function that works well in network optimization. This will be discussed
further in Section 5.5.

Mismatch loss is the ratio of power delivered to power available at an
interface; it is simply (3.47) from Section 3.2.3, expressed in dB:

MIS= — 10log,o( 1 —|o}%) dB. (4.60)

The basis of networkssynthesis in Chapter Three was a lossless, two-port
network, The issue was thus the power transferred from the source, since it
had nowhere else to go but to the load impedance. The transducer function
for general linear two-port networks considers both mismatch loss and dissipa-
tive loss (efficiency) or network activity (gain}.

The transducer loss is the sum of mismatch loss (4.60) and efficiency loss
(4.45), Tt also may be computed in terms of the forward scattering transfer
parameter S,

SWR = (4.59)

TL= —20log,o|S- (4.61)

The expression for S,, in (4.56) allows a complex source and load if they are
equal to their respective port-normalizing impedances. The important situa-
tion when they are not 80 related is discussed in Section 7.1. As mentioned,
the more familiar case occurs with real terminations equal to their respective
port-normalizing resistances. Then (4.56) simplifies to

RT V, .
S, =2/ =5 = ifZYisrealand Z,=Z7, (4.62)
RY E,
which is simply a scaled ratio of the voltages shown in Figure 4.16. The reader
should remember the conditions that are attached to (4.62).

Finally, there is an extremely simple way to calculate (4.62) when using the
ladder recursion scheme from Section 4.1: just add on a series branch, namely
source resistance R,, at the network’s input terminal. Usually, the program is
made to pause at the input terminals so that some of the other responses
described above can be computed. When the recursion compleies one more
cycle, the source voltage E, is obtained. The angle of S,, is available immedi-

ately:
#, = —argE,. (4.63)

This is valid because the load current phase is the zero-degree reference and
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the load impedance is a resistance. Equation (4.62) shows that when the load
power is set equal to

|
PL = H{—?’ N (4.64)
then
TL=20log|E,. (4.65)

4.54. Conclusion to Network Responses. Some impedance and power re-
sponse functions were described. Scattering parameters were defined by two
linear, complex equations in the same style as previously used for ABCD, z,
and y parameters. The mathematics of scattering parameters is straightfor-
ward, but lack of familiarity with the general case makes its development
worthwhile. For instance, scattering parameters are often described for a
50-chm port reference impedance. This is the circumstance that has revolu-
tionized accurate, automatic measuring equipment for all kinds of networks
over extremely wide frequency ranges. However, there are some network
responses that are explained better in terms of scattering parameters with
some arbitrariness of port normalization, and this will be a necessity in
Chapter Seven, Various wave response functions were then defined, and an
efficient means for extending the ladder recursion analysis method for S,,
calculation was explained.

Singly terminated (lossless source) responses have not been mentioned
explicitly (e.g.. V,/V, in Figure 4.16). 1t is easy to extract these numbers from
a ladder network analysis algorithm and calculate the logarithm of that
magnitude. Unfortunately, the selectivity expression of interest typically is

ref

v
SEL =20log,, v
L

dB, (4.66)

where V  may be the input voltage at a midband frequency. This reference
voltage may be contingent upon a certain input current or power, ofr similar
load conditions. Then the excitation will have to be maintained at that level at
all response frequencies. This can be confusing when the analysis scheme
requires load power to be specified at every frequency. Experience has shown
that one should not approach these definitions carelessly. Renormalizing at
each frequency, by making the source excitation variable equal to unity, helps
to eliminate confusion.

Finally, most response functions have an associated angle that makes the
calculation of group time delay possible. Group delay, in seconds, is defined
to be

d
To=— . (4.67)
where angle ¢ is in radians. Time delay may be converted to degrees per
megahertz by multiplying (4.67) by 360E6; this is especially useful for oscilla-
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tor frequency stability calculations. Numerical differentiation will be discussed
in Section 4.7.2. It is the easiest way to compute time delay, but it trades
execution time for computer coding. Tellegen’s theorem (Section 4.7.3) pro-
vides a basis for computing exact time delay and its exact sensitivities, but this
particular application requires much more memory and coding. Therefore, it
is recommended that the angle be computed at a frequency perturbed (in-
creased) by 0.01% (a 1.0001 factor) and again at the desired frequency. The
difference between these two angles, in degrees, is used in the numerator of
the formula
__—h¢
To= G503 f,’

which gives the delay in reciprocal frequency units. Suppose that the fre-
quency of interest—f, in (4.68)—is 50 MHz. According to Program B4-1 in
Section 4.1.4, the frequency units would be input as 1E6; therefore, the time
delay would be in microseconds when calculated by (4.68). The only remain-
ing problem is the occasional 360-degree jump in the calculated angle that
might occur between the perturbed and desired frequencies. A simple program
test can prevent this.

(4.68)

4.6. Time Response From Frequency Response

For most industrial engineers, there has been a gap between academic
concepts and applied design and analysis. This section uses a desktop com-
puter to close that gap for the Fourier and convolution integrals. A means for
rapid steady-state frequency analysis of ladder networks has been developed
that requires very little code and avoids most trivial calculations, such as
complex multiplication by zeros and ones. This makes practical a method of
nurnerical evaluation of the Fourier integral and, subsequently, numerical
evaluation of the convolution integral, This enables the conversion of a
system’s band-limited frequency response to its impulse response in the time
domain. Then the convolution integral enables the response to any arbitrary
time excitation to be calculated in a reasonable amount of time, using a
desktop microcomputer. Complicated networks and dense time samples could
weaken this claim; the understanding of this process and its fundamental
simplicity may be reward enough for design engineers. Afler all, bigger and
faster computers are always available at some additional expense of time and
convenience,

This section begins with a review of the Fourier integral under the condi-
tions that the system impulse time response is a real function and causal, i.e.,
cannot anticipate the excitation. Then Simpson’s rule for numerical integra-
tion will be appiied, as previously discussed. Finally, the convolution integral
will also be evaluated by Simpson’s rule according to a related general
formula. This material follows Ley (1970), and the program has been adapted
t0 BASIC language from the original FORTRAN.
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4.6.1. Real Causal Fourier Integrals. The familiar Fourier integral
=1 (= oot
h(ty=_ f_wH(w)e de (4.69)

may produce values of h(t) that are complex and nonzero in negative time,
The system frequency response 1s H{w) and the corresponding time impulse
response is h{t). Those wishing to review its applications should see Blinchi-
koff and Zverev (1976). When h(t) must be real and also causal {zero in
negative time), (4.69) may be written as

h(ty=2 [ Rwycos wtdo, (4.70)

where R(w) is the real part of the system frequency response function H. In
practice, the integration is completed only to some finite frequency on the
assumption that H is band limited, e.g., is zero above some limiting frequency.

Example 4.4. Suppose that H(w) is the impedance of a parallel RC network,
i.e., the response function V/I. This could be calculated by an analysis
program in the general case. Here, use the equation .

1
Then the real part is
1

1+w?
Appendix B BASIC Program B4-2 calculates 25 values of R(w) from 0 to 12
radians in program lines 130-19Q. Clearly, (4.72) is a band-limited function.
Running Program B4-2 shows that the real part is only 0.0069 (21.6 dB loss) at
12 radians. Program lines 200-350 evaluate (4.70) for the impulse response;
particularly, lines 300-329 implement Simpson’s rule (2.32) for the numerical
integration required. Running Program B4-2 from the beginning shows the
frequency samples and then ‘the impulse response samples. They correspond
reasonably well with

R(w)= (4.72)

h(ty=e"", (4.73)

which is the exact impulse functiion corresponding 1o (4.71), the Laplace
transform pair. The BASIC function on line 115 is there simply to slow the
program output rate.

4.6.2. Numerical Convolution of Time Functions. The convolution integral is
defined by

F(t)= fo ‘h(t—7)F,(r) dr, (4.74)

where 7 is the dummy variable of integration, F, is the excitation function, and
F, is the system output function. The system impulse response is h(t). The case
of (4.73) is shown in Figure 4.17. Convolution involves folding, shifting,
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Figure 4.17. Graphical interpretation of the convolution integral for an exponential impulse
response. (a) Impulse response; (b) folding; () shifting; (d) driving function; {e} product to be
integrated. [From Ley, 1970.)
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multiplying, and integrating the proper functions. Figure 4.17a is the impulse
response function shown with values for + at 0, A7, and 2 A+, [t is folded by its
negative argument in Figure 4.17b, then shifted by the amount 2 A7 in Figure
4.17c. The unit-step excitation shown in Figure 4.17d (an arbitrary choice)
multiplies the shifted function according to (4.74), with the resulting integrand
in Figure 4.17e. This area is the output function F, at time t=2 Ar, the shift
interval.

The second application of Simpson’s rule is the convolution process ilius-
trated in Figure 4.17. Integration of Figure 4.17e uses the three samples

fo=h(2A7)F;(0),
fi=h(Ar)Fi(Ar), (4.75)
f,=h(0)F,(2Ar),
according to the integrand in (4.74). Then the integral estimate by (2.32) is
Fo(2ar)= 5T (f+41, +1,) (4.76)
This result ¢can be compared to a general expression by Ley (1970):
F(kAt)= %3(f0+4f, +2f,4 - +2f, _,+ 4, +1), (4.77)

where
f,=h{t—7)F(),
t=k Ar; k=2,4,6,..., (4.78)

T=nAT; n=012....k

The algorithm calls for a choice of k, the even number of integration intervals,
and letting n vary from 0 to k to obtain the output time response F_ (k Ar). The
reader is urged to write the algebraic expressions in (4.77) and (4.78) for k=2
to confirm the (4.76) case shown in Figure 4.17e.

Lines 480-620 in Program B4-2 accomplish this numerical convolution.
The unit-step excitation is computed in lines 410-430 and provides an
estimate of the exact step response

gy=1—ct. (4.79)

For engineering accuracy, about 100 frequency samples and 40-dB band
limiting are required.

4.6.3. Time Response Summary. Simpson’s rule for numerical integration
has been employed for both the Fourier and convolution integrals. The
Fourier integral can be evaluated over a finite range for band-limited response
functions. Furthermore, its integrand is the product of the system transfer
functions real part and the cosine function when the system has a real
impulse response that is zero in negative time.

It does not take long to compute and save 100 frequency response samples
for fairly complicated ladder networks. These are used to compute and save
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the corresponding impulse response time samples. Finally, the numerical
convolution integral can be evaluated for arbitrary time functions specified at
matching time samples. The memory requirements for practical problems
usually fit easily into desktop computers having 8-32 kilobytes of random-
access memory.,

The fast Fourier transform (FFT) must be mentioned before leaving this
topic. It is clearly superior to the above and is available as standard software
from several desktop computer manufacturers. Serious users of the frequency-
to-time-domain transform should consider special programs built around this
technique, which are more efficient by at least an order of magnitude. It was
not described because of its computational complexity.

4.7, Sensitivities

Sensitivity quantifies the relative change in a response function (Z) with
respect to a relative change in any one of several independent variables; f.e.,

. _ Az/z
o Ax /%

for small changes in the ksh variable x,. Often, Z is complex, and is evaluated
at some given frequency. In this case, the sensitivity is also a complex number.
For example, Z might be a ladder network input impedance, and x, might be
an inductance value in microhenrys. Alternatively, Z might be a time function
evaluated at some given time. Hopefully, a system being built will have
sensitivities with magnitudes less than unity, otherwise it might react badly to
component tolerances and to its environment.

For each response, there are as many sensitivity numbers at a frequency or
time value as there are variables in the problem. Applications include compo-
nent tolerances, optimization (Chapter Five), and large-change calculations,
e.g., network tuning. This section further defines real and complex sensitivi-
ties, relates them to partial derivatives, shows ways to obtain partial deriva-
tives approximately by finite differences and exactly by Tellegen’s theorem,
and provides several examples. Most of the discussion is limiled to the
frequency domain, as justified in Section 4.7.4. Programs A2-1 and B4-1 will
be used for calculations.

)

(4.80)

4.7.1. Sensitivity Relationships. The partial derivative operator abbreviation

d

Ak":a“;

(4.81)

will be used throughout. As the change in the variable, Ax,, approaches zero,
{4.80) approaches the common sensitivity definition

z X Z
E=7 o (4.82)
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which can be viewed as a normalized partial derivative. Recalling the deriva-
tive formula for natural logarithms (in), (4.82) can also be written as

z _ AnZ
oAdnx ]

(4.83)

which shows that the normalized derivatives are describing relative changes in
logarithmic space. Optimization (automatic component adjustment) in loga-
rithmic space often is better behaved because of the normalization of partial
derivatives that would otherwise be badly scaled (grossly different magni-
tudes).

Suppose that Z=|Z|e!. Then differentiation of Z in the right-hand term in
(4.82) follows the rule for differentiation of a product, namely d(uv)=vdu+
udv. 1t follows that

Z & B
which reduces to a useful ldenuty:
Sz =8%+08] . (4.85)

This says that when the complex sensitivity of a complex response function is
obtained, the real sensitivities of both the magnitude and angle (phase) are
immediately available.

First-order prediction of response behavior for small changes in several
independent variables may be derived by recalling the total differential

Table 4.5. Useful Identities for Partial Derivative Applications

|1 Z=U+jW Z¥=U—jW.
2, AZ= == |AZ]e’®.
3. AZ= AU +jAW.
4, AaV+ BD=a(AV)+ B(Al); a and # are scalars.
5. For Z=|Z|e#*:
Z*(AZ)
AlZ|= Re Z =|AZ|cos(f —¢),
(AZ) .
Agp=1Im 7 seconds. Multiply by 360E6 to get degrees /MHz.
6. AlZPP=2[UAUY + WEAW)|=2 Re[Z*(AZ)].
. 9Z, dZ, dZ, if x. is only in domain of Z
. — e —m s ¢ .
X, = 0Z, %, if x, is only in domain of Z;
lo
AloggU = g:o (AL).
9, log e =0.434 294 482,
R, +R,)’
10. Insertion-loss rali0='|sz,'|1( 1+Ra)

4R R,
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formula:
dZo= A ZAx, + A Z A%+ -« + A Z A%, . (4.86)

Dividing both sides by Z and placing x, /x, in each term on the right-hand
side yields

Ax,

4z gz & | gz 8%

Z ¢ 2 %,
This shows that the relative change in a (complex) response is approximately
the sum of relative signed changes of all independent variables weighted by
the (complex} signed sensitivity numbers. Table 4.5 provides some useful
identities for partial derivatives of complex variables.

(4.87)

+ o+ 87 "

n

4.7.2. Approximate Sensitivity. 1t is essential that the reader feel comfort-
able about partial derivatives, especially those that are complex, First-order
finite differences will be explained because it is a practical method and should
convince even the most apprehensive reader that partial derivatives are nice. It
is presumed that the connection between reai-function slope and derivative
can be recailed, particularly as it defines an ordinary real first derivative. The
kth variable x, has been discussed; a formal notation of the entire set of
variables needs to be introduced; it is called a column vector:

x=| . | (4.88)

Xn

It may be written in row form, using the transpose operator that swaps rows
and columns:

X=(X;, Xy, 0, Xy ot s Xy) - (4.89)

A convenient definition of a finite-difference approximation to a partial
derivative is now possible:

Z'm(x + Axk) - Z'm(x)
Ax, )

For instance, suppose that there is a ladder network with n L’s and C's. For
their nominal values residing in the vector x defined by (4.88), the input
impedance Z, (xX) is computed at a frequency that does not change. Now the
kth component x, is changed by a small amount, Ax,, and the slightly
different input impedance Z;,(x + Ax,) is calculated. These three numbers, two
being complex, are used in (490} to approximate the partial derivative. Tt
requires n+ 1 complete analyses of the ladder network to get all n partial

(4.90)

AZi=
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Table 4,6, First-Order Finite Differences for the Network in Example b in

Figure 4.3
Ax=x+A
k A AYZ, ATZ,
L 0.0001 —Q0.001799 4 j0.003402 —0.001800+ j0.003405
L 0.01 —0.001764 +30.003363 —0.001836 +j0.003445
C 0.0001 —0.001999 +j0.03691 —0.002000 +j0.03692
C 0.0l —0.001968 +j0.03651 —0.002032 +j0.03733

derivatives. How much is x, perturbed? Computers with 7 to 10 decimal-digit
mantissas require x, to be increased by about 0.01% (a 1.0001 factor). If it is
much less than that, the change in Z,, may fall off the end of the mantissa’s
digits, and no change is seen. If it is much more than that, this linear
approximation of slope is too crude. It is easier to talk about the latter
“truncation” problem in terms of the Taylor series, which will be discussed in
the next chapter.

The network in Example b in Figure 4.3 was analyzed by Program B4-1; its
input impedance was calculated for 0.01 and 1% changes in each variable,
namely L and C. The perturbation was tried as an increase and as a decrease.
The input impedances were employed in (4.90), which was evaluated using
Program A2-1. The results are shown in Table 4.6. These values differ from
exact results in the third significant figure.

4.7.3. Exact Partial Derivatives by Tellegen’s Theorem, There are several
exact means for finding derivatives of complex network functions. It will be
shown in Section 7.1 that the coefficients of bilinear functions, which have the
form of (2.1) or (4.18), can be determined by only three independent function
evaluations. Because the derivative of the bilinear function can be written
easily, its exact value is also available with respect to one of the n variables.
Fidler (1976) has given a means to obtain the exact partial derivatives of a
bilinear function with respect to n variables in just 2n+ 1 function evaluations,
However, Tellegen’s theorem enables the calculation of exact partial deriva-
tives of complex responses with respect to all n variables in just one or tweo
network analyses, depending on whether the response is at only one end of the
network or is a transfer function, respectively. This is a spectacular result, and
the comptiter memory requirements for variables and code are not too severe
for desktop computers. Branin (1973) and others have observed that the same
result is available algebraically with a slight savings in computation; so
Tellegen’s theorem is not really necessary. Even so, it is worth knowing for its
general enlightenment and compactness. Penfield et al. (1970) have neatly
derived 10] fundamental theorems in electrical engineering using Tellegen’s
theorem. They correctly claim that no circuit designer should be without it.
Tellegen’s theorem states that for any two entirely different (or identical)
linear or nonlinear networks (N and N) having the same branch topology and

|l
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obeying at least one Kirchhoff law, the respective branch voltage and current
sets (vectors) have null inner products; ie.,

Vi=0=V"L (4.91)

This also applies in time or frequency domains. The second network, N, is
called the adjoint network; it may or may not be different. First, observe that
an inner product is defined in terms of two vectors such as (4.88) and (4.89);
suppose that they are the n-element vectors x and y. Then the inner product of
x and y is

Xy=x,y,+ Xy, - +XY, - (4.92)

Example 4.5. Apply Tellegen’s theorem to the networks from Figure 4.3b
and c; they are reproduced in Figure 4,18b and c. The branch-4 current arrow
has been reversed so that each branch has its current entering its positive
voltage, consistent with each branch in the common topology shown in Figure
4.18a. All branch vcltage and current values are shown in Figure 4.18 as
found by Programs B4-1 and A2-1. Tellegen’s theorem says that

Vi=v i +V,L+Vv,+v,i=0 (4.93)

In fact, using Program A2-1, vTi=0.0085+ j0.0116, which is as close to zero
as might be expected for the digits carried. There are three more such inner
products that should be equal to zero: VL, V7§ and V7L Evaluate them using
the data from Figure 4.18. The reader should write a brief program that calls
Program A2-1 subroutines in order to calculate the inner products of complex
numbers; it is much easier, and a lot of time will be saved and errors avoided.

Penfield et al. (1970) generalize the Tellegen theorem statement to include
the conjugation and any linear operator; for the partial derivative operator
with respect to any variable

AVTi=0=V"AL ' (4.94)

Consider the network in Figure 4.18b to be its own adjoint network N and N.
The port input impedance is

v
Z,=—o, (4.95)
-1,
and its partial derivative with respect to L yields
—AV,=AZ, -1, (4.96)

where currents are the independent variables. The branch-2 equation in terms
of independent current I, is

V,=L-eL(d+jl), (4.97)
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Figure 4.18. Two different networks having the same topology. (a) General topology; (b) original
network N; {(¢) adjoint network N.
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and its derivative with respect to L is
AV, =1, w(d+jl). | (4.98)

Using the differentiation operator on the original network N, the left-hand
side of (4.94) is

AV T+ Av L+ AV, D+ AV, =0, (4.99)
and the right-hand side of (4.94) is
Vo AL+ V,- AL +V,- AL+ V,-AI,=0. (4.100)

Then, subtract (4.100) from (4.99), separate the pair of port terms from the
rest, and substitute (4.96) and (4.98):

s a4 D 0, . 0
AZ LI+ VAT, =m IJ—VJA(I;
+ Loo(d+i1)i,— V00 + 4071, - 0 AT (4.101)
All partial derivatives with respect to currents are zero because currents are
independent variables. Partial derivatives with respect to L of branches 1 and

3 are zero because neither branch contains the variable L. Hopefully, these
considerations have not hidden the simplicity of the result:

AZin= % ) (4.102)

4

where
g =w(d +j1)I3. (4.103)

This says that the exact partial derivative of input impedance with respect to L
(in henrys) is found by denormalizing the unit-source sensitivity term g,.
Similarly, the exact partial derivative of input impedance with respect to C (in
farads) in Figure 4.18b is

AZy, =%, (4.104)

where now
g.= —w(dc+jl)V§. (4.105)

Only one analysis at the given frequency is required to evaluate all currents
and voltages in (4.102)-(4.105). If these exact answers are to be compared
with the approximate values in Table 4.6, then the chain rule will have to be
used to account for units:

9Z _3Z aH
nH -~ 30 amH’ (4.106)

where the last term on the right is equal to IE—9.

Figure 4.19 contains the general excitation patterns that depend on the
selected response function. Transfer functions require two network analyses,
including one in the backward direction. Figure 4.19 also shows general
expressions for the unit-source coefficients that depend on the nature of the




Partial derivative expressions

Corresponding excitation patterns
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Figure 4.19, Tellegen excitation and unit sensitivities.
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branch immittance; these arc in matrix form and may not interest all readers.
They do reduce to (4.103) and (4.105) for the two-terminal L and C illustrated.
The interested reader is referred to Bandler and Seviora (1970).

4.7.4. Summary of Sensitivities. Sensitivity has been defined and written in
several equivalent forms. Several identities related to partial derivatives were
given in Table 4.5 because they are often required in the use of sensitivity
relationships. First-order finite differences were explained, so that the reader
could become more familiar with partial derivatives. It is also a simple way to
obtain reasonably accurate derivatives. Finite differencing reduces complexity
and saves computer program steps but runs much slower than some exact
methods.

" Tellegen’s theorem was explained using operator notation according to
Penfield et al. (1970). It applies in both time and frequency domains. The time
domain partial derivative calculations run a long time because network
analysis of a response requires numerical integration of state variable or
similar equations. Then the sensitivity calculations often require numerical
integration in backward time, using the stored impulse response. This is
feasible but perhaps overly ambitious for desktop microcomputers. The fre-
quency domain application of Tellegen’s theorem for obtaining exact partial
derivatives was explained. It boils down to obtaining the currents through
impedance components or voltages across admittance components. These
complex numbers are about all that is required to compute exact partial
derivatives for sensitivity or optimization purposes. No more than two net-
work analyses are required at each frequency to get the response sensitivity to
all variables. This is an amazing result!

Problems

4.1. Write the sequence of topological element-type codes for the “T”
interior of the bridged-T network in Figure 4.12, i.e., ignore L,. Use
type=2 for the inductor and type=3 for the capacitors. The answer
should be a string (sequence) of four positive or negative integers.

4.2. Write the topelogy code table for the following network:

Zy 0 0“)——e°'°'o—(zm 2 0

[ X1

.
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4.3.
44.

4.5.

4.6.

4.8,

Ladder Network Analysis

similar to Table 4.3. Assume that stub transmission lines are type 4 and
cascade transmission lines are type 5 (also, Z,; =50 ohms, Z,,=25
ohms, #=45°, each line has a 0.06-neper loss, and wy=2.9E10 radians).

Add level-1 and level-2 capability to the flowchart of Program B4-1.

Consider the network in Figure 4.1 using only branches Z,,Y,, Z,, Y.,
and Z,. Suppose that the following data apply at some frequency:

P =10W, Z,=30+]l5, Y,=0.02-0.0t,

Z,=150—]14, Y,=0.014j0.15, Z,=40+]65.
Construct the table of numbers in the format of Table 4.1. What is the
rms current through Z, and the rms voltage across Z,?

Show the L-section branch expressions (Figure 4.7) for a lossless
cascade transmission line.

Find open circuit parameters z,, and z,, for the lossless network in
Problem 4.2. Hints: Find z,; by definition; next, find chain parameter
C for the entire network by multiplying subnetwork chain parameter
matrices; then convert C to z,, by identity.

Given the two lossless transmission lines:

Use (4.18) and (4.22) to

{a) Express Z,(y), where y=tan#é.
(b} Express Z,(y).

(¢} Show that when Z,=R |, then

- +1
a=mn~l[(R+l+%) "} R=(§) _
2

Find V, when V_, =2 volts for the following network:

out

i2 52

25

<+
5
<+

o - O
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4.10.

4.12.

4.13.
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Solve by using (4.40) and by paralleling short-circuit-parameter matri-
ces. Compare the amount of work required for each method.

Given the following network:

ZD
Z, > 4
o | -C

Find Z,, when Z,= 50 ohms, §=130°, Z.=5+j12, and Z = 10—j3.

Consider the following two-port dissipative (lossy) network:

R, 1 2

AA-

—+ F

5h Py

Suppose that the 8 matrix is normalized to the terminating resistots.
Show why S,;=1/E, when P,=0.25/R,. What is the phase reference?

Derive an expression for the input reflection coefficient Sj, of the
network in the preceding problem when the load is an arbitrary
reflection coefficient, I', .

Consider the polynomial
f(x)=5x*+2x"+19x + 1.

Calculate its exact derivative expression, obtained by calculus, using
x=S5. Perturb x to the value 5.0005, and use the first-order finite
difference to estimate the same derivative.

Suppose that you have a complex numerical value for the reflection

coefficient in (4.57) and also a complex numerical value for its deriva-

tive with respect to the network variable x,.

(a) Give an expression for the partial derivative of the magnitude of
the reflection coefficient with respect to x,.
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4.14.

4.15,

4.16.

4.17.
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(b) Note the SWR definition in (4.59). Give an expression for the

partial derivative of SWR with respect to x, in terms of the
reflection coefficient and its derivative found n (a).

Consider the series dissipation resistance in an inductor:

| L wl/Q

e Y Y Y Y Y AMAA~————
Find the unit-source sensitivity gq using (4.4) and d=1/Q.

Find the unit-source semsitivities g, and g, for a dissipative cascade
transmission line.

Verify numerically the three Tellegen theory examples suggested below
Equation (4.93).

Again consider the network in Figure 4.1 using only elements Z;, Y,,
Z,, and Y, (not Z, this time). Suppose that at some frequency
P =10 W, Z,=30+j15, Y,=0.02-j0.01,
Z,=150-j10, and Y,=0.01+j0.15.
(a) Find the exact partial derivative of Z, =V, /I, with respect to
branch impedance Z, using Tellegan’s theorem.

(b) Find an approximate value for the same partial derivative by
first-order finite differences. Perturb Z, by 5—]l, i.c., increase Z,
to 155—j11 ohms.




Chapter Five

~ Gradient Optimization

This chapter shows how design engineers who can write a simple BASIC
language subroutine can also use a standard program to select automatically
the optimum set of variables for a great variety of mathematical problems,
especially for circuit design. The subject of optimization requires more “feel”
and art than any other in this book; so it is appropriate to begin by giving the
reader some general appreciation of what may and what may not be possible.
Intelligently applied optimization frequently provides betier answers with less
work than belabored, closed-form or approximation theory.

Design or operation of a system ideally involves three¢ steps. First, it is
necessary to identify the system’s variables and to know how they interact.
Second, a single measure of system effectiveness must be formuiated in terms
of those variables. Only then is the third and last step possible—the choice of
system variables that yield optimum effectiveness.

The casiest systems to model are described explicitly by algebraic equa-
tions, and these will be the basis of most examples here. But a prime
application is the ladder network simulated implicitly by the analysis methods
of Chapter Four, An optimizer can automatically adjust some or all compo-
nent values in networks to improve one or more responses sampled at a
number of frequencies. Engineers have always “tweaked” or tuned systems in
the laboratory in this way. However, there are compelling and increasingly
common technical and economic reasons for eliminating this practice when
possible. The synthesis methods in Chapter Three reveal their limited possibili-
ties. Parasitic elements, including dissipation, are usually not considered, and
there is no way to deal with element bounds that usually exist. Also, engineers
may be unable to assimilate the vast amount of information measurable on
systems or encountered during long mathematical procedures such as network
synthesis. Optimization often alleviates these difficulties and almost always
furnishes insight into how the system variables interact. Sensitivity was consid-

. ered at a fixed set of system values in Chapter Four. In optimization,
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dg d,
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Frequency
Figure 5.1. A sampled-difference error criterion.

sensitivity is computed at each such “point™ in variable space, and this point
moves along toward better sets of values.

Regardless of the means for designing and simulating a system, the second
step is finding a measure of effectiveness. It usually involves value judgment
and is either trivially simple or practically impossible to accomplish. Filter
effectiveness in the least-squared-error sense is simple: the differences (d,)
between desired and obtained filter response at each of several significant
excitation frequencies may be squared and summed to indicate effectiveness.
These differences are shown in Figure 5.1.

Aaron (1956) noted: “As with all models of performance, the shoe has to
be tried on each time an application comes along to see whether the fit is
tolerable; but, it is well known, in the Military Establishment for instance, that
a lot of ground can be covered in shoes that do not fit properly.” Such is the
case with the least-Pth error criteria, with P being equal to 2 or a larger even
integer.

The third step is optimization. The word optimum, meaning best, was
coined by the mathematician-philosopher Leibniz in 1710 and has an interest-
ing history dating back to ihe eighth century B.C. Figure 5.2 shows how
optimization might proceed for network problems. This amounts to adjusting
a certain number of system parameters vntil the performance satisfies a
preassigned requirement. Optimization is a successive approximation proce-
dure, an automated design trade-off, achieving the best in a rational manner.
Optimization amounts to handing the computer a set of input values and
having the program hand back a set of answers. The computer then automati-
cally re-inputs the adjusied data for many more such “runs” until some
defined performance goals have been obtained more closely. The performance
error function can be pictured as a surface over many dimensions, such as the
two shown in Figure 5.3. Then optimization is a search for a lower elevation
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Figure 5.2, Circuit optimization iteration.

on that surface. Facetiously, Hyde (1966) quotes Joseph Petzval as having said
in the 1800s that the optimal solution is the best one you have when the
money runs oui.

It should be mentioned that maximizing some function, say Q(x), is
equivalent to minimizing its negative, e.g., —Q(x); the sign just turns the
surface upside down, All subsequent discussion refers to minimization without
loss of generality.

Figure 5.3. A surface over two-variable space; an elliptic function. [From TABLES OF FUNC-
TIONS WITH FORMULAE AND CURVES by Dr. Evgene Jahnke and Fritz Emde, 1945,
Dover Publications, Inc., New York.]
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Sooner or later, discussions about optimization turn to the blind-man-on-a-
mountain analogy: how does he get down? It is surprisingly informative to
exercise the following system function on either hand-held or desktop comput-
ers. Program the objective (performance) function

Q=_P2*L4Q2*(2_2., ‘ (51)

P,=(9+ X, + X, +25*X, s X,— 36X, +50+ X, — 164)+2,  (5.2)

where

and )
Q=X *X | —4+X ,—3+X,—8)*2. (5.3)

The “*+” indicate multiplication in the BASIC language. Also program the
partial derivatives of the objective function Q with respect to the independent
variables X, and X,, respectively:

G, =P,+ 18+ (X,—2)+ Q,# 2 (X,—2), (5:4)
G,=P,+50% (X, +1)—Q, *3. (5.5)

These equations have been programmed in Appendix-A Program AS5-1 for
HP-67/97 calculators. The reader should try inputting several trial pairs of
X,,X; values to minimize Q. Use the derivatives G,,G, to guide your
strategy; a necessary condition for a minimum Q value is that both derivatives
be equal to zero. A good starting point might be x=(5,3)". Examine the
points (2, 1.99759808) and (5.84187,0.92000) and their immediate neighbor-
hoods. This function has three minima and one finite maximum. The need for
some background and a reasoned strategy should become evident.

Chapter Five begins with an elementary treatment of quadratic forms,
mathematical functions that are ellipsoids in multidimensional variable space.
This is shown to be the basis of the conjugate gradient search schemes. The
need for a sequence of searches in selected directions will then be clear. A
particular linear search, implemented by Fletcher (1972b), will be studied in
detail. This is an important part of the Fletcher—Reeves optimizer, which
requires less than 1900 bytes of memory. It will be discussed in detail and
several examples will be given. Network objective (performance error) func-
tions will be considered next, followed by effective methods for dealing with
all sorts of constraints, including variable (component value) bounds. Finally,
a brief contrast between gradient and direct-search methods will be drawn.
There are reasons for considering the latter, and several sources will be cited
for those who may wish to investigate.

5.1. Quadratic Forms and Ellipsoids

When a function is suitably near a minimum, such as shown in Figure 5.3,
such a function is approximately a paraboloid that has elliptical cross sections
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Figure 54. A paraboleid function over iwo-dimensional variable space.

(level curves; see Section 5.1.3). This is similar to the situation illustrated by
Figure 3.1 for the root finder. It is shown here in Figure 5.4 for the more usual
case where the local minimum value is not zero.

The two-dimensional case illustrates all important properties of the n-
dimensional case and will be used in all descriptions. However, it is important
to be comfortable using matrix algebra 1o describe the n-dimensional sets of
equations; otherwise, the huge amount of notation would be unmanageable. A
little practice with the following examples should overcome the handicap of
those not familiar with these slight extensions of the material in Chapter Two.

One central example will be employed to develop many important mathe-
matical and geometrical concepts. A list of some terms that will be of interest
is given in Table 5.1. The reader may wish to consult Aoki (1971) during or
after working through this chapter; his text is an excellent undergraduate
treatment of the topics in Table 5.1, and much more.

Table 5.1, List of Pertinent Matrix Algebra Terminology

Conic section Matrix Positive definiteness
Conjugate vectors Muitiply, pre, post Quadratic form
Eigenvalue Newton’s method Quadratic function
Eigenvector Norm Rotation of axes
Euclidean space Nonlinear function Saddle point
Gradient vector Nonlinear programming Subspace

Hessian matrix Orthogonal matrix Symmetric matrix
Inverse of matrix Orthogonal vectors Transpose

Jacobian matrix Parabolotd Taylor series

Unit matrix
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| 5.1.1. Quadratic Functions. A quadratic function of many variables is de-
. fined in matrix notation by
F(x)=c+b"x+ ix"Ax, (5-6)
‘ Matrix A is always real and symmetric {equal to its transpose). Consider what

this means for a specific two-dimensional function that will be used as a
central example:

F=612+(—60—132)x+1x"| 26 —104y 5.7

! ( )x 2"[—10 26 ¥ (>-7)
Expanding all terms, the equivalent, ordinary algebraic equation is

‘ F=612—-60x,—132x,+ (l3xf— 10x,%, + 13x§). (5.8)

The reader should be able to obtain (5.8) from (5.7) by applying the skills
obtained from Sections 2.2.1 and 4.7.2. The essential feature of a quadratic
function is that there are no variables that are raised higher than to the second
power and no products composed of more than two variables; ie., the
equation is of second degree.

Level curves are the loci on the variable space where the function value is
some constant value. Two level curves for (5.8) are shown in Figure 5.5 on the
X, X, variable space. Level curves in more than two dimensions are harder to
visualize, but it is useful to consider a three-variable space (for example, a

x4

Figure 5.5, Level curves for F=32.86 and F=292 in Equation (5.8).

S
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Figure 5.6, Level surface in three variables. A two-dimensional subspace also is shown. [From
Acton, 1970.]

quadratic density function). This might appear as in Figure 5.6. Any cutting
plane through Figure 5.6 would resemble Figure 5.5. Such reduced degrees of
freedom define a subspace, such as the inclined-plane subspace shown in
Figure 5.6. A subspace in Figure 5.5 would be a line. One reason subspaces
are significant is that many minimization algorithms search in an orderly
sequence of subspaces until the minimum is found.

The level curves for the central sample function that are plotted in Figure
5.5 will be studied in more detail. The next two sections deal with finding the
center of the loci and the orientation of their axes, respectively. In the process,
some concepts of major importance will emerge.

5.1.2.  Gradients and Minima. First recall real functions of real (single) var-
iables. A quadratic function is ‘
y(x)=c+bx+%ax2. (5.9)

|

The necessary condition for an extreme value or inflection point is that its first
derivative be equal to zero:

y{x)=b+ax=0, (5.10)
which produces the coordinate of the extreme value:
. X= T . . : (5.1 1)
The nature of the function at x is determined by examining the second
derivative: ' ‘ '
y'(X)=a. ' (5.12)
If a is strictly positive, (5.11) is the minimum point. If a=0, then (5.11) is an

inflection point, being neither a minimum nor a maximum. This familiar
analysis extends to multidimensional functions without substantial charnge.
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The matrix algebra rules for differentiation applied to (5.6) produce
g(x)=b+Ax, (5.13)

where g(x) is often written as VF(x), called grad F. Whichever symbol is used,
g is a vector, like x; g is the gradient of F. From the central example in (5.7),
the vector b and matrix A can be identified so that (5.13) can be written as:

—60 26 —10
= + ; 5.14
B(¥) [—132] [—10 26]" (>14)
Some readers may be more comfortable differentiating (5.8) with respect to
both x; and x,:

g, =V, F=26x, - 10x, - 60, (5.15)
g,=V,F=—10x, +26x,— 132. (5.16)

Appendix Program AS5-2 evaluates the function value and the gradient ele-
ments (derivatives) for this particular example. The reader is urged to use that
program in conjunction with Figure 5.5. Note that the gradient vectors are
always perpendicular to the level curves and point in the direction of steepest
ascent. :

Finding the minimum of an n-variable quadratic function requires setting
each of the n gradient components equal to zero. This means setting (5.13)
equal to vector zero; this is equivalent to setting both (5.15) and (5.16) to zero
for that particular example. When (5.13) equals zero, then

Af=—b. (5.17)
But the matrix inverse A~ ' is defined by the relationship
AT 'A=U, (5.18)

where the unit matrix U has all zero elements, except for I’s on the main
diagonal. A property of the unit matrix is that when it multiplies a vector, the
result is just that vector. Multiplying both sides of (5.17) by A~ yields the £
values where g(X)=0:

R=—A""p. (5.19)
Identifying b and A by comparing (5.13) with the example in (5.14), (5.19)
yields '
% 1 [26 10]] 60]_15
s === = s . 5.
[xz] 576[10 26][132] [7} (5-20)

where inverse matrix A~' was found by the three conceptual steps for finding
inverses: transpose, form the signed cofactors, and divide by the determinant
(see any book on matrix algebra, for instance, Noble, 1969), A glance at
Figure 5.5 shows that the center of the level curves is indeed at (5,7), the
vector from the origin to the center. The solution (5.19) is the translation of
the ellipses from the origin, as shown in Figure 5.7, The rotation of the ellipse
with respect to the major axes is discussed in the next section, as well as the
issue of whether (3.19) determines a true minimum function point.
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Figure 5.7. Translation of an ellipse. [From
Acton, 1970.]

5.1.3. Quadratic Forms and Graphics. The preceding section related the
coefficient matrix A of a set of linear equations to the quadratic function
defined by (5.6). The terms at the extreme right in (5.6) are known as the
quadratic form Q(x):

Qx)= xTAx. (5.21)

Matrix A was assumed to be a real, symmetric matrix; when A is two-
dimensional, the quadratic form is

Q(x)= xT[ ; ll; ]x= ax3 + 2kxx, + bx3. (5.22)

Equation (5.22) is an ellipse centered at the origin. Solving (5.22) for x,,
elliptical level curves for Q can be plotted by

—kx,* \/k2 i—b(axi—Q)
5 :

Appendix Program AS-3 uses key B to input valugs for a, b, and k that define
matrix A according to (5.22). Key C is used to input the ievel-curve function
value Q. Key A evaluates (5.23) upon entry of various x, values. The reader
can check Figure 5.5 with Program A5-2, assuming a displaced origin at (5, 7).
More important, (5.23) shows that the rotation of the ellipses results from the
presence of cross terms such as xx, in (5.22); if k=0 in (5.23) then the x,
points are symmetric about the x, axis.

The type of conic depends on the elements of A, namely, a, b, and k,
defined by (5.22) (see Figure 5.8). In general, any matrix A is said to be
positive definite if

(5.23)

X=

x"Ax>0 forall x=<0. (5.24)

For the two-dimensional case, a little thought shows that k?<ab in (5.22)
salisfies the positive-definite criterion. Thus the positive-definite matrix in the
quadratic form of (5.21) produces the ellipse in Figure 5.8a; a maximum
exists, analogous to the real-variable function’s second derivative test, as
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Figure 5.8. Quadratic-form conics, (a) Ellipse: (k?<ab; (b) parallel straight lines: k=ab; (c)
hyperbola: k2> ab. [From B. Noble, 1969.]

discussed previously. Students of the eigenvalue problem
Ax=Ax (3.25)

may be interested in knowing that the eigenvalues A are inversely proportional
to the squared length of the ellipses” axes, and the eigenvectors x give their
directions (see Noble, 1969).

Any matrix is said to be singular if its determinant is zero; this would
certainly be the case in (5.22) if k®=ab. Consider the parallel lines in Figure
5.8b in light of the linear equations defined by (5.13). Finally, there is the
indefinite matrix case when k” > ab in (5.22) associated with the hyperbola in
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Figure 5.9, A saddle point for a function of two variables. [From Murray, W. (1972). Numerical
Methods for Unconstrained Oprimization. New York: Academic, Reprinted with kind permission
from the Institute of Mathematics and Its Applications.]

Figure 5.8¢. This is the general situation when the quadratic form in (5.21)
may be positive or negative for all x. This produces a saddle point, as
illustrated in Figure 5.9. A saddle point occurs in function (5.1) at point
(2, 1.99759808), as readily determined using Program AS5-1 with 0.1% displace-
ments.

5.1.4. Taylor Series. The reader should recall Taylor series of reai variables.
An expansion of a function about the point x=a is

YO =¥(a) +y @)(x~a)+ 3y @(x—ay + o . (5.26)
It is important to define the difference,
Ax=x-—a, (5.27)

so that (5.26) reads:
y(@x)=y(a)+y'(a) Ax+1y"(a) Ax* + Ly @A (5.28)

Figure 5.10 shows the situation for the Taylor series representation of a real
variable. Notice the slope and the “neighborhood” at x=a, in which a
truncated Taylor series might be valid, i.e., when all derivative terms greater
than a certain order in (5.28) may be ignored. On the other hand, if the

yx}
yla)

Figure 5.10. Taylor series representation in x or Ax about the point x=a.
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function is known to be quadratic, as (5.9) for example, then y'"’(x) in (5.28)
will be zero anyhow. The reader should understand this single-variable case
before proceeding. The multivariable case is formulated in exactly the same
way.

The multivariable function in (5.6) can be expanded by a Taylor series
about point p, where the displacement from p is

Ax=x-p. (5.29)

The vector p might be the location of the blind man standing at p=(10, 10)¥ in
Figure 5.5. Then the Taylor series for a real function of the vector x is

F(Ax)=F(p)+g(p)'Ax+ 1Ax"H(p)Ax + h.o.t, (5.30)

where higher-order terms (h.o.t) are presumed to be insignificant. Matrix H is
known as the Hessian:

¥F  _F
A ax? 0x; 9%,
H= (3.31)
0’F IF
9%, X, ax?

By differentiating (5.13), it is seen that H=A for a quadratic function. It is
thus possible to expand the quadratic sample function in (5.7) about an
arbitrary point, say p= (10, 10)". The result in terms of (5.29) is '

F(Ax) =292+ (100, 28)Ax+%AxT[ 26 —10
—-10 26
where Ax, =x,— 10 and Ax,=x,— 10. This describes the function in Figure 5.5
with respect to point p. For quadratic functions, this is the same as shifting the
origin; the reader should replace x, by x;+ 10 and x, by x,+10 in (5.8) and
confirm that it is equivalent to (5.32).
Analogous to (3.13), the gradient of (5.30) 1s

VF(Ax)=g(p) + H(p)ax. (3.33)

]Ax, (5.32)

So the blind man on a quadratic mountain at point p (Figure 5.5) could
calculate where the minimum should be with respect to that point. In a
manner similar to (5.19), the step to the minimum is

A= —H(p) 'g(p)- (5.34)

Note that the second derivatives in H must be known. For the central sample
function used as an example, the step from point p=(10, 10)" to the minimum

18
o et 1 (26 10Y{ —100)_{ -5 3
ax=-H"g 576(10 26)( —28) (—3)' (>33)

See Figure 5.5 to confirm this step.
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5.1.5. Newton’s Method. Tt is convenient to digress at this point because
(5.34) is in fact Newton’s method for minimizing a function of many variables.
This has been used in Section 3.1.1 in the root finder; it will be used again in
Section 6.3 for broadband matching. The Newton, or Newton-Raphson
method as it is sometimes called, assumes that the current position (x value) is
close enough to the minimum so that the higher-order terms in (5.30) are not
significant. Another consequence of this assumption is that the partial deriva-
tives in H are nearly equal to the values in the quadratic matrix A term in
(5.13).

Newton's method is usually stated in a somewhat different way. It is said
that there are, for example, two functions: f,(x)=0 and [,(x}=0, generally
nonlinear. Newton’s method assumes that they are linear; then they corre-
spond exactly to (5.15) and (5.16), for example. If they were linear, then the
step from the current X position to the minimum, where f, =0=f{,, would look
like (5.34). The Hessian in (5.34} is a matrix of second partial derivatives of
F(x) from {5.6), but it is a matrix of first partial derivatives from g(x) in (5.14).
So the statement of Newton’s method usually is: given a vector of functions

f= [ f ]:o, (5.36)
f,
form the so-called Jacobian matrix of first partial derivatives:
af, of,
J= ¥y Bx 5.37
oo, of, | (5-37)
x %

The Jacobian corresponds to the Hessian in the development concerning F(x).
Then, an estimated step to the minimum is

Ax=-~J7'f. (5.38)

Comparison of (5.38) with (5.34) shows that J in (5.37) is analogous to H in
(5.31), and f in (5.36) is analogous to g in (5.13).

It is interesting to look back at Moore’s root-finder coordinate steps ((3.9)
and (3.10) in Section 3.1.1). In Newton’s terminology, f,=u, f,=v, and the
equivalence of the root-finder steps in the variable space to that in (5.38)
follows.

5.1.6. Summary of Quadratic Forms and Ellipsoids. This has been a concise
look at the matrix algebra crucial to gradient methods for nonlinear program-
ming. It is the foundation of the powerful conjugate gradient method to
follow. The subject has been treated by using a central, two-dimensional
example and its geometric interpretation. It generalizes to n dimensions, and
the fact that the matrix algebra was carried along with the example makes the
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Figure 5.11. The negative gradient and Newton
vectors of a quadratic function. [Reprinted with
permission of Macmiilan Publishing Co., Inc. from
Introduction to Optimization Technigues by M. Aoki.
Copyright © 1971 by Masanac Aoki.}

generalization more easy to follow. The reader should not miss this opportu-
nity to “see” what differential calculus has to say about multidimensional
functions, Taylor series representations, and the idea of linearization in the
case of Newton’s method. The concepts of single-variable functions were
stated so that this transition could be related to calculus that every engineer
should recall.

Newton’s method describes a change in each component of the variable
space, which converges to a minimum in just one step for quadratic functions
(see Figure 5.11). The Newton vector, or step, can proceed to the minimum
(the origin, as shown in Figure 5.11) in just one step. But what if the function
F(x) is not quadratic? Also, what if second partial derivatives are not known
or inconvenient to compute? Might not a sequence of moves in the direction
of steepest descent (negative gradient} lead to the minimum? In how many
steps? These are questions that will be considered next.

5.2. Conjugate Gradient Search

Gradient optimization methods assume the availability of partial derivatives.
Usually, finding first partial derivatives adds considerable complexity to the
programming task or slows program execution time, Second partial derivatives
are even less convenient to obtain. Fortunately, there are a number of search
methods that do not require second derivatives; the popular conjugate gradi-
ent methods belong to this class. Methods that require only function values
without any derivatives will be mentioned briefly in Section 5.7.

Almost all optimization methods select a sequence of directions leading to a
minimum (or maximum) function value. A minimum in any particular diréc-
tion is located by varying just one variable, usually some scalar that deter-
mines the distance from the last “turning™ point, and this procedure is called a
linear search. The linear algebra jargon and the special case of linear searches
on quadratic surfaces will be described. Several elementary search direction
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choices will be mentioned, especially the relaxation method (varying each
variable in turn) and the steepest descent strategy, which selects the steepest
slope direction at each turning point. After considering several more impor-
tant properties of quadratic functions, conjugate vectors and conjugate direc-
tion search methods will be defined. Finally, the Fletcher-Reeves conjugate
gradient search direction formula will be discussed with examples.

5.2.1. Linear Search. At the point in variable space (x) where a new search
direction (s) has been selected, some clear description of the next linear search
must be available. The common notation is

K =xitas,  i=12,.., (5.39)

where the superscript denotes that this is the ik linear search or iteration. The
search parameter is the single variable o;, which determines the distance of
x'*! from x'. For well-posed problems, there will be some optimum &; that
determines the lowest value of F(x) in the s’ direction; in that sense, the linear
search is concerned with a function of only a single variable, namely F(a;).

Consider the nonquadratic surface over two-variable space previously intro-
duced in (5.1)—(5.5). Suppose that the starting point x=(7,3)7 is selected,
where the gradient turns out to have the value g=(72080, 159976)". Since the
gradient is the set of coordinates describing the direction of maximum
function increase, a reasonable choice for a linear search might be to the
“southwest,” i.e., in search direction s=(— 1, — 1)', Table 5.2 summarizes a
set of moves in this direction according to (5.39) using Program A5-1, A graph
of this function of «; is shown in Figure 5.12. A new turning point is in the
vicinity of x=(5.25,1.25)", and a new search direction must be obtained,
preferably by a more effective procedure than illustrated. Some simple alterna-
tives are considered in the next section. A particular linear search strategy will
be considered in some detail in Section 5.3.

Before continuing, examples based on quadratic functions can be imple-
mented much easier if the linear search parameter a is obtained in closed form
for these cases. Consider the standard quadratic function defined by (5.6) and
write F(x'* ') by substituting (5.39):

F(x")y=c+b"(x'+as) +(x'+ f)z-,si)TA(xi +as). (5.40)

Table 5.2, Searching to the Southwest on (5.1} From x,=7, x,=3 Using (5.39)

o as, ' as, X X, F v,F V,F
0 0 0 7 3 160,016 72,080 159,976
1 -1 -1 6 2 20,740 20,704 43,212
2 -2 -2 5 | 1,972 —4,824 —8,764
1.5 - 1.5 ~1.5 55 1.5 1,740 5,170 10,400
.75 —-1.75 ~7.75 525 1.25 38 —462 —728
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Figure 5.12. A plot of the function in Equation (5.1) in the {—1, — 1)¥ direction from point
x=(1, )"

But {5.40) is just a function of the single variable « during the linear search.
To find the minimum in the search direction s, it is necessary to differentiate
F{«) in (5.40) with respect to @ and to equate this to zero. The result is:

-(5) ¢
(s) Asi

~ —
a,=

(5.41)

where g'=g(x’). This provides an exact value of the linear search scalar « to a
minimum from any point x' on a quadratic surface in an arbitrary search
direction §.

Example 5.1. Consider the central sample quadratic function {5.8) shown in
Figure 5.5. Suppose that a linear search is to begin in the negative gradient
direction from the point x'=(10, 10)". To find «; and then the minimum point
x'*!in that direction, (5.41) will require g' and the s'= —g' arbitrarily chosen
for this example. The quadratic function gradient vector was defined generally
by (5.13) and, for this example, by (5.15) and (5.16). Using Program AS5-2 for
x,=10 and x,=10, find g=(100,28)". Appendix Program AS5-4 solves real-
variable inner products as in the numerator of (5.41) and conjugate forms as
in the denominator of (5.41). The significance of the latter will be discussed in
Section 5.2.4. As previously noted, the matrix A is described for this example
function by a=b=26 and k= — 10. The sequence 26, ~ 10, and 26 is entered
into an HP-67 calculator with program AS5-4 running, and key B is pressed to
input thesédata. The sequence — 100, —28, — 100, and —28 is input using
key A. The (5.41) numerator inner product is found using key D {10784}, and
the (5.41) quadratic form is found using key E (224384). Then (5.41) yields
&,=0.048060. Program AS5-4 also evaluates (5.39). Input — 100, =28, 10, 10 by
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using key A. Then input the value above for & and press key C; x'*!
coordinates are: xb*!'=8.65432 in the X register, and x}"'=5.194 in the Y
register. Program AS-2 evaluates this as F'*'=F(x'*')=32.86. The reader
should plot this linear search on Figure 5.5. Note that the linear search
minimum occurs at the point of tangency to the level curve F=32.86. It is also
important to note that the search direction is always orthogonal to the
gradient at such points of tangency.

5.2.2. Elementary Search Schemes. Two obvious schemes for selecting
search directions will be discussed. First, there is a relaxation (univariant)
scheme by which the coordinate variables are adjusted in sequence, each one
obtaining & minimum function value in that coordinate direction. Figure 5.13
shows a typical case for two variabies. It is seen that the minima in each
coordinate direction are tangent to level curves and that the successive search
directions are orthogonal. The behavior in Figure 5.13 is called zigzagging. In
sharp valleys such a procedure can fail (hang up), as illustrated in Figure 5.14.
Univariant searches on quadratic surfaces without cross terms among the N
variables will succeed in exactly N linear searches (iterations), as seen for the
two-dimensional function in Figure 5.15.

Another search direction choice is the steepest-descent method Cauchy
described in 1847, Each linear search for a minimum is made in the negative-
gradient direction, as illustrated in Figure 5.16. Once the first search is made,
the result is similar to the univariant method. The underlying reason is that
the linear search directions are tangent to the level curves at the minimum

X2

-

Xq

Figure 5.13. Univariant search strategy on a nonquadratic function. [From Box et al., 1969.]
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Figure 5,14, Failure of the univariant search in a sharp valley. [From Beveridge and Schechter,
1970

point where the gradient is orthogonal. Zigzagging near a minimum in a
curving valley results in notoriously slow progress, because all linear search
directions are either orthogonal or parallel. An extreme case is shown in
Figure 5.17. What is needed is a search direction criterion that breaks this
trend and is adaptive in some sense to valleys. Conjugate gradient methods do
this and are discussed in Section 3.2.4.

08 +—

0.4 }—
*2

-0.4

Figure 5.15. Level curves of a quadratic function “without cross- terms. [From Beveridge and
Schechter, 1970.]
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Figure 5.16, Steepesi-descent search strategy on a nonquadratic function. [From Box et al,
1969.]
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Figure 5.17. A difficult situation for the steepest-descent strategy.

5.23. More Quadratic Function Properties. Before proceeding, it is useful to
examine three more properties of quadratic functions in N variables, i.e., those
structured as in (5.6). First, it is always possible to create N new variables that
are linear functions of the original ones so that all cross terms in the new
variables disappear. This means that all quadratic functions of N variables
can be minimized in exactly N steps in N suitable linear searches (see Figure
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5.15, for example). Second, all changes in components of variables are linearly
related to the corresponding changes of gradient components between the
corresponding points no matter where the two points in question may be
located on the functional surface. Thus the mapping of changes in variable
values of quadratic functions onto the gradient space 1s invariant. Third, it will
be shown that the altitude above the minimum value of 2 quadratic surface is
equal to a quadratic form composed of the gradient at the point in question
and the inverse of its constant Hessian. All of these concepts contribute to a
practical understanding of gradient optimization.

Quadratic forms were considered in Section 5.1.3, where it was shown that
they are equivalent to quadratic functions, except for a shift of origin to the
minimum point. It was also shown that quadratic forms define ellipsoids
whose axes are inclined with respect to the coordinate axes if there are cross.
terms among the variables. It was shown for the two-variable case that a
diagonal matrix (k=0} in the quadratic form (5.21) would not produce cross
terms; this is true for any number of variables, Therefore, an important issue
is how to rotate the coordinate axes to align them with the ellipsoidal axes, i.e.,
effect a change of variables. The motivation is to eliminate cross terms in
N-variable quadratic forms and thus show that the minimum can always be
found by no more than N linear searches (see Figure 5.15).

If the matrix in the quadratic form is A as in (5.21), then what is required is
a coordinate-transforming matrix P such that

PTAP=A, (542)

where P is a so-called orthogonal matrix, and A is a diagonal matrix. The
eigenvalue problem (5.25), which appears in nearly all branches of engineering
and physics, was mentioned in passing in Section 5.1.3. The eigenvectors of
matrix A are geometrically the directions of the related ellipsoid’s axes. The
columns of P can be composed of the eigenvectors of A to produce the result
in (5.42). Suppose that the quadratic form Q(x) in (5.21) is to be expressed as
Q(y). Then it happens that the change of variable is accomphshed by the
substitution

x=Py. (5.43)
This can be confirmed by substituting (5.43) into (5.21} and using (5.42):
Q)= (Py)"A(Py) =y Ay =Q(y), (5.44)

where Q(y) has no cross terms, because A is a diagonal matrix. The interested
reader is referred to Noble (1969) for details.

Example 5.2. Again working with the A matrix from the central example
(5.7), its eigenvalues turn out to be 36 and 16, and its eigenvectors are (1, — )T
and (1, 1)T. The important concept is that these eigenvectors can be used as
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the columns in matrix P; then (5.43) defines the substitutions
X =Y, +¥;, (5.45)
==Y 1Y¥,. (5.46)
Using these in (5.22) produces
Q(¥)=T72y,+32y,, (547)

so that the cross terms are indeed removed, and the minimum could be found
in no more than two linear searches.

It is straightforward to show that changes in the gradient vectors of a
quadratic function are mapped by a constant linear transformation to the
corresponding changes in the variable vectors. As Figure 5.18 illustrates,
points A and B in the x space have gradient values (perpendicular to their
level curve), and these gradient vectors can be plotted in their own space.
There may be more than one x with the same g. Apply the gradient expression
(5.13) of a quadratic function to points X' and x'*! and their corresponding
gradients g' and g'*!; the two equations may be subtracted to yield

("' ~g)=Ax %) (5:48)
Using A to indicate the differences and inverting (5.48), the mapping result is
Ax=A""Ag. : (5.49)

This result was anticipated by Newton’s step in (5.34), which went to a
minimum where g'*'=0 was required. The importance of (5.49) is that it
shows the invariance of that mapping, independent of locations on any
quadratic surface.

Finally, it is shown that the altitude above the minimum wvalue of a
quadratic surface at some point p is equal to a quadratic form composed of
the gradient at the point in question, g(p), and the inverse of its constant

X2 9z

X1

{a) (b

Figure 5.18. A mapping of variable space to gradient space. (@) Constant objective function
curves in the variable space; (b) corresponding loci and points in the gradient space. [From
Davidon, 1959.]
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Hessian, A~ . Consider the function in (5.30) and its gradient in (5.33) when
H=A. When this gradient is zero, Ax in (5.34) corresponds to the location of
the minimum value. Substituting this in (5.30) yields

F(p)—F(a%)=1g' (MA ™ 'g(p). (330)
This is the amount by which F(p) exceeds its minimum value.

The most popular optimization algorithm is the Fletcher—Powell method,
which was first described by Davidon (1959). It is also known as the variable
metric method, and it is worthwhile to observe that the latter name comes
directly from (5.50). Davidon noted that the matrix A~ in (5.50) associates a
squared length to any gradient. Therefore, he considered the inverse Hessian
matrix for any nonlinear function as its metric or measure of standard length.
His optimization method starts with a guess for H™', usually the unit matrix
U. This produces the steepest descent move according to (5.34). Following
each iteration, Davidon “updates™ the estimate of the inverse Hessian, so that
it is exact when 2 minimum’is finally found. In the interim, Davidon’s metric
varies, thus the name, There is also some statistical significance to the inverse
Hessian for least-squares analysis (see Davidon, 1959), ‘

Variable metric methods in N dimensions require the storage of N(N +1)/2
elements of the symmetric, estimated inverse Hessian matrix; so they are not
considered here for personal computers, although such methods converge
rapidly near minima. There are many variable metric algorithms, but Dixon
(1971) showed that most of these, which belong to a very large class of
algorithms, would produce equivalent results if the linear searches were
absolutely accurate. Instead, another kind of conjugate gradient algorithm will
be described, because it requires only 3N storage registers; it converges
rapidly to good engineering accuracy, but lacks the ultimate convergence
propertics of variable metric methods. It is the Fletcher—Reevés conjugate
gradient algorithm, which was originally suggested for very large problems
{e.g, 1000 variables) on large computers. It is very effective for many
problems (e.g., up to 25 variables) on desktop computers. The nature of the
conjugate gradient search direction is described next, followed by a descrip-
tion of the Fletcher- Reeves algorithm,

5.24. Fletcher—Reeves Conjugate Gradient Search Directions. Two vectors,
x and y, are said to be orthogonal (perpendicular) if their inner product is
zero, i.e., :

x"y=0=x"Uy, (5.51)
where the unit matrix has been introduced to emphasize the following con-
cept. The vectors are said to be conjugate if .

xTAy=0, {5.52)

where A is a positive-definite matrix, Conjugacy requires that the vectors are
not parallel. More remarkably, conjugate vectors relate to A-quadratic forms
as depicted in Figure 5.19. Just as illustrated for ellipsoids without cross terms,
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fix) = C,

0<C, <6,

fix) = x" Ax

A>0

x Minimize f{x) on L
x* Minimize f(x} in €2,

where L is a member of E?

Figure 5.19. Two A-conjugate vectors on a quadratic surface. [Reprinted with permission of
Macmillan Publishing Co., Int. from Intreduction to Optimization Techniques by M. Aoki,
Copyright © 1971 by Masanao Aoki.)

a sequence of N A-conjugate linear searches to minima will terminate at the
quadratic function minimum. That is why the two vectors in Figure 5.19 are
rqelated as shown; clearly, there are an infinite number of such pairs in
two-variable space. Like the previous ellipsoids without cross terms (Figure
5.15), each linear search must find the exact minimum in that direction.

Example 5.3. A negative-gradient line search from p=(10,10)7 to a mini-
mum was calculated for the quadratic function in Example 5.1. The minimum
in the direction s'=(—100, —28)" was found to be at x,=5.1940 and x,=
8.6543. The surface, depicted in Figure 5.5, has its global minimum at
x=(5,77; therefore the vector from the line-search minimum to the global
minimum must be in the direction s?=(—0.1940, —1.6543)F. The conjugate
form, as in (5.52), may be evaluated using Program AS5-4:

—0.1940, —1.6543)] 26 —10 [—100]=0.114¢0. 5.53
( 3)[—10 26 || —28 0 (>39)

Therefore, directions s' and s” are conjugate,

What has been illustrated is that conjugacy plus line search (to an exact
minimum) equals quadratic termination (no more than N searches to find the
minimum). It has been remarked that the sequence of “quasi-Newton” moves
in the variable metric scheme results in conjugate search directions (1o a
sequence of line minima}). How else might the sequence of conjugate search
directions be generated? Fletcher and Reeves (1964} show that the following
recursion generates a sequence of conjugate directions:

s"=—gj+BiSi_1; i=1,2,...,N, (554)
@'

R i=2,3,...,N. (5.55)
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The Fletcher—Reeves formula is quite simple. As is common practice, the first
search direction is the negative gradient. Then, each new search direction is a
linear combination of the current gradient and the last search direction; the
amount of the latter is scaled in proportion to the squared ratio of magnitudes
of the current and last gradients. Derivation of the 8, scale factor is given in
Appendix C. Only three vectors must be stored at a time: the x variables, the s
search direction, and the g gradient components.

Example 5.4. Example 5.1 was a line search in the negative-gradient direc-
tion. It will now be shown that Example 5.3 illustrated a second search
direction to the global minimum that happens to agree with the Fletcher—
Reeves formula. Program A5-2 shows that at the first turning point, x=
(5.1940,8.6543)", the gradient is g=(~ 11.4990,41.0718)". The last gradient at
point p=(10,10)" was (— 100, —28)". Equation (5.55) shows that 8,=0.1687;
thus (5.54) yields a new search direction: §?=(—5.3675, —45.7929T. A second
linear search in this direction would find that «,=0.0361, as in (5.39). Thus
a,s” = (~0.1940, — 1.6543)", as already found by other means in Example 5.3.

Convergence will not be achieved in just N linear searches on nonquadratic
surfaces. The Fletcher—Reeves policy is to periodically restart the search
direction sequence with the current negative gradient direction. An effective
choice is to generate N directions by (5.54) and then start over again with the
negative gradient. This has been justified experimentally by many researchers.

5.2.5. Summary of Conjugate Gradient Search. Linear searches have been
described, and three strategies for selecting their sequence of directions have
been discussed. The relaxation (one-at-a-time) method was shown not to be
generally effective; however, it is significant because it works well on ellipsoids
without cross-variable terms such as x x,, etc. The steepest-descent strategy is
effective far from a minimum but tends to zigzag badly in curved valleys. The
conjugate gradient method tends to follow curved valleys better, since it uses
prior gradient information to moderate zigzagging.

Several additional properties of quadratic functions were discussed to
clarify choices and introduce some concepts that are likely to be encountered
in the field of nonlinear programming. The concept of diagonalizing a
quadratic form, i.e., making a linear change of variables to obtain alignment
with the ellipsoidal axes, amounts to justification for the application of
A-conjugacy in search direction selection. It also shows the clear possibility
for quadratic termination: the sequence of N linear searches to exact minima
in N-variable space so that the global quadratic minimum is found. The
constant nature of the mapping of variable to gradient space for quadratic
functions was mentioned because of its close relationship to Newton’s method
and the variable metric search scheme. Davidon’s use of the inverse Hessian
matrix as a metric for gradients leads to a simple expression for quadratic
function elevation above the global minimum,. It is also the basis for naming
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the variable metric method, since Davidon (and later Fletcher and Powell)
publicized the idea of updating an estimate of the inverse Hessian matrix.

Finally, conjugate directions were defined in comparison to orthogonal
directions. The Davidon-Fletcher—Powell variable metric search directions
are A-conjugate, but the symmetric, inverse-Hessian matrix estimate requires
a substantial amount of memory to store. The Fletcher—Reeves method
requires memory for only 3N vectors and works nearly as well, except for final
convergence. The Fletcher—Reeves search algorithm works well for engineer-
ing accuracy in the memory space provided in desktop computers.

The mechanics of a linear search by Fletcher are discussed next, because of
the important assumption that each linear search is stopped at the exact
minimum in that direction.

5.3. Linear Search

Nearly ali gradient search methods require linear searches, i.e., line searches to
minima in a sequence of directions. The single, real variable in such searches
has been defined as « in (5.39). A value for a may be calculated according to
(5.41) when the surface is known to be a quadratic function in the general
form of (5.6). However important a quadratic model may be in formulating
search strategies, the usual surface is not at all quadratic except in the
immediate vicinity of local minima, so that linear searches must find the
minimum as a function of & by a comprehensive procedure.

Figure 5.20 illustrates a typical linear search profile. There ar¢ three stages
in the linear search for the optimum value &: (1) estimate the order of
magnitude of &; (2) establish bounds on the vicinity of the minimum; (3)
interpolate the value of « within those bounds.

First, the slope in the search direction (directional derivative) will be
defined, and an order of magnitude of a will be determined based on the
expected quadratic behavior of a near the minimum. The classical cubic
interpolation using two function values and two derivatives will be explained,
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Figure 5.20. Profile of linear search function F(a).
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and terminating criteria will be discussed. Finally, the linear search procedure
programmed by Fletcher and used in the following Fletcher—Reeves optimizer
will be described and illustrated by an example.

5.3.1. Slope in the Linear Search Direction. The components of the gradient
vector at any point p, namely g(p), indicate the rate of change of function
value in each coordinate direction. During linear searches, Figure 5.20 indi-
cates the need to have the function’s rate of change in some arbitrary direction
s. This may be obtained by recalling the Taylor series expansion about point
p, as given in (5.30). In this case, the Ax displacement is conveniently
expressed according to (5.39) as ts, where t is some real scalar similar to a. The
classical definition of a derivative is then:

F(oy=lim 0O F®)

iy = (559

However, the numerator of (5.56) may be replaced using (5.30). Only the
gradient term will remain, since all other higher-order terms will vanish in the
limit. For linear search purposes, the point p will be represented as p=x'+ as',
so that the directional derivative becomes:

F(a)=g(x +ag)'s. (5.57)
This provides the means for determining the slope at any point on the
function illustrated in Figure 5.20. This slope will be required for several

purposes, such as in estimating the gross magnitude of the first trial « value, as
discussed next.

5.3.2. Finding the Order of Magnitude of the First Step. The issue at the
turning point, where a new linear search begins, is the choice of the initial
value of & as employed in (5.39): should « =0.01 or a =10 be tried? Fletcher
(1972b) reported that extensive testing indicated that the rate of change of
function value with respect to iteration (linear search) number was fairly
constant, except when close to an optimum seolution. Thus he advocated the
assumption that F*!—Fi=F —F~! To develop this concept, he further
assumed quadratic behavior for F(a):

F(a)=ay+a,a +a,a’. (5.58)
The slope versus a according to (5.58) is
F{a})=a,+2a,a, (5.39)

and setting this to zero gives the value of & at the minimum:

—a,

&:

TR (5.60)
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Then, the minimum function value in this direction 1s

. at
F(a)‘_—"a.o"‘raz. (5.6])

It is now possible to form an estimate for the initial value of & when
initiating a new lincar search. The function decrease between the last and
current turning peint is F'~'—F'=F(0)—F(&), where the right-hand-side
function values are seen in Figure 520. Using (5.58)-(5.61), it may be
confirmed that
—aF'(0)
—s
But F'(0} is available from (5.57), so that Fletcher’s estimate for the first valoe
of a at a new turning point is

Frl-F= (5.62)

— 2(Fi7 1 Fl)
(g)s

In practice, the author has found that approximately a 10% decrease in

current function value can be expected during each linear search; therefore,

the numerator of (5.63) can be replaced by —0.2F(0). Note that the denomi-

nator is negative, since it is the directional slope at the turning point (origin in
Figure 5.20).

(5.63)

&=

5.3.3. Extrapolation, Bounding, and Interpolation. Having taken the first or
subsequent step in a linear search, where the new a=a«,, several possible
conditions may exist. If the slope is still negative and the function value
decreased, another step is appropriate. As seen in Figure 5.20, this could result
from toc short a step. More information is now available, particularly the
slopes at two points. Fletcher (1972b) linearly extrapolates these two slopes,
again assuming the quadratic behavior of the F(a) function. Figure 5.21
applies where the extrapolation of the slope to zero predicts the necessary

h Slope F'(a)

Gl ——— —

G1 = Current slope
G5 = Last slope

G5

Figure 5.21. Linear extrapolation of the a slope to zero.
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condition for a minimum. By similar triangles,

G5-G1 _%
G5 &’ (5:64)
The increase beyond the a step just taken is & —a,, so that
N - _ Gl
o—a = (X]Z, where Z-= —Glj—_—a . (565)

Fletcher limits the extrapolation to be no more than four times the prior step;
i.e., Z in (5.65) is limited to 4. The variable names employed correspond to the
program code to follow.

Figure 5.20 shows that a minimum has been bounded in « when either
F(a) >F' or when the slope is positive. Suppose that this occurs at a =A. There
are now four pieces of information: the two function values, F(0)=F and
F(A)=F9; and the two slopes F'(0)=G5 and F'(A)=GI1. These four items
enable the fit of a cubic function, which can interpolate the minimum between
the bounds. The cubic function approximates a flat spring fitted to the known
function values and slopes, provided that the slopes are small. Davidon (1959)
suggested the following formulation, and it has been widely applied since then.

Suppose that the fitting function has the form

h(a)=a,+a,a +a,e?+a;0°, (5.66)
Then, at a=A,

FO=F+G5-A+a\?+ad%, (5.67)

G1=G5+2a,A+3a,A% (5.68)

The last two equations can be solved for coefficients a, and a,:
JFS-TF)—A(2G5+G1)

a, Y (5.69)
2(F—F9)+AG5+G1)
a;= X . (5.70)
It is convenient to define the constant z as
3(F-F9)
z=———— "+ Gl +GS5, (5.71)

A

The cubic interpolation step in « is then obtained by differentiating (5.66) and
equating that to zero. The root of the resulting equation that is between a =0
and a=A is thus obtained after considerable algebra:

. Al—(Gl+W—z) 57

AW +GI-G5 (>-72)
where an additional defined constant is

W= (22~ G5xG1)'"", (5.73)

The forms of these equations are designed to minimize cancellation by
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subtraction of nearly equal quantities. As before, the variable names corre-
spond to those appearing in the following BASIC language optimizer pro-
gram.

Example 5.5. A problem from Dejka and McCall (1969) illustrates the cubic
fitting procedure. Given the function

F(x)=(x,—x3)" +(x,— )2, (5.74)

estimate the minimum along the line as, where s=(1, )T. Suppose that the
minimum is bounded between the poinis @ =0 and a = 1.5. The four pieces of
information can be obtained from (5.74): at x=(0,0)7, F(O)=F=1, and
g0=(-2,00"; at x=(1.5,1.57, F(1.5)=F9=0.812500 and g(1.5)=(5.5,
—1.5)", where g is the gradient vector. To get the slopes at a=0 and a= 1.5,
(5.57) is employed: F'(0)=G5=—2 and F'(1.5)=G1=4. Then (5.71) yiclds
z=2.3750, (5.73) yields W=3.693322, and (5.72) predicts that a minimum
within the bounds is at &=0.904071, where (5.74) yields F(X)=0.016723. By
inspection of (5.74) the true minimum is at & =1, where F(X}=0.

5.3.4. Fletcher's Linear Search Strategy. The three stages of linear searches
described above have been applied in the conjugate gradient optimizer Pro-
gram B5-1 in Appendix B. The general view of this Fletcher—Reeves optimizer
will be treated in Section 5.4. The emphasis here is on the linear search
strategy as programmed by Fletcher (1972b). A flowchart of this part of the
optimizer is shown in Appendix D, as modified for just one variable (line 860
was removed). The features of this chart will be discussed briefly, and an
example will be considered.

There are some initial calculations preceding reentry point 490 in Appendix
D, the last one estimating the first value of the linear search scalar & according
to (5.63). The step size according to (5.39) is Ax=as, and this is calculated
and tested for an absolute change of less than 0.00001, a stopping criterion.
Initially the convergence flag ICON would not be set, so that the algorithm
increments x from its value at the beginning of the linear search and then
recalculates the function and its gradient values at that point.

Fletcher’s algorithm then checks to see if the magnitude of the slope has
decreased by more than a factor of 10; if so, the linear search is terminated
rather than approach the minimum more closely. Otherwise, a test is made for
either of the two conditions that will initiate a cubic fit, namely a function
increase or positive slope, When either condition is detected, the program
branches to line 710, the last Ax step is withdrawn, and a new step length is
computed by cubic interpolation. The program then continues to reentry line
490 to take that chosen step.

The extrapolation based on the linear slope (quadratic function) assump-
tion is indicated in the flowchart in Appendix D when none of the three
preceding tests cause branching. The extrapolation factor is calculated accord-
ing 1o (5.65), and the program again returns to reentry line 490.
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Figure 5.22. Profile of the Fano filter squared-error function in Equation (5.75).

Example 5.6. A highly nonlinear, real function from Section 8.5 will be used
to illustrate the linear search algorithm previously described. A squared-error
function is: . ) :
. 2
sinh~ [ (sinh?0.8814N)(10°~ 1) /(107 1)]'/*
sinh™'(1.3)

F(N)= (3.7%)
A profile of this function is shown in Figure 5.22. Optimizer Program B5-1
requires a subroutipe starting at line 1000 to calculate the error function, in
this case (5.75). This BASIC language code is shown in Table 5.3. The
derivative of the quantity in the largest brackets in (5.75) is obtained by finite
differences in a manner similar to (4.90), as programmed in line 1040 of Table

Table 53. Subroutine for (5.75) in Optimizer Program B5-1

1000 REM FANO FILTER SQUARED-ERROR FUNCTION
1002 DEF FNS(X)=(EXP(X)— EXP(—X))/2

1004 DEF FNI(X)=LOG(X +SQR(X+X + 1)

1006 DEF FNQ(N)=N — (FNI((FNS(.8814 # N)*%2+335. I1)2+.5))"

/FNI(1.3) .

1010 Q=FNQ(X(1))}**2 -

1020 IF Y%=0THEN F=Q

1030 IF Y%=1 THEN F9=Q

1040 G(1)=(FNQ(1.0001=X(1)) - FNQ(X(1)))/(.0001 *X(]))

1045 G{1) = Z«FNQ(X(1)+G(1)

1050 RETURN
.9999 END

“The symbol ==* indicates exponentiation.
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5.3. The derivative of F(N) with respect to N follows by elementary calculus,
as programmed in line 1045. The reader should run the modified Program
B3-1, starting with several different values of variable N. Be sure 1o start once
with N=1.9, so that an undesired minimum is obtained, as shown in Figure
5.22. It is also useful to place diagnostic PRINT statements in the optimizer
program, using the Appendix D flowchart, so that the program decisions are
observable.

3.3.5. Summary of Linear Searches. There are three stages in the linear
search for a minimum in a particular direction: (1) estimate the order of
magnitude of the search scalar «; (2) establish bounds on the vicinity of the
minimum; (3) interpolate the value of a within these bounds. The function to
be minimized is usuvally not quadratic, so that linear searches must have
comprehensive features to handle the nonideal circumstances. However, basic
strategies are obtainable from some important, ideal assumptions.

The initial value of linear search scalar « is found by assuming a quadratic
linear search profile in variable a; that, coupled with the fact that the function
usually decreases about the same amount in each linear search, establishes a
reasonable first value for the a step. The minimum is considered bounded
when either the function value has increased or the slope is found positive
after the step is taken. If the step was so small that the slope is still negative,
then limited, linear extrapolation of the slope to zero is taken to lengthen the
initial step. Once bounded, cubic interpolation is used to locate more closely
the minimum in that direction. This process is repeated until convergence is
obtained.

The flowchart in Appendix D shows the linear search strategy in the
Fletcher—Reeves optimizer program. Tt was slightly modified for just one
variable to illustrate its behavior on a nonlinear, squared-error function of a
single variable. Fletcher terminates the linear search whenever the adjustment
is very small or when the magnitude of the slope in the direction of linear
search has been reduced by a factor larger than 0. The flowchart for
Fletcher’s linear search is applicable to the linear search in optimizer Program
B3-1. In fact, the linear search constitutes most of the program, the remainder
involving the choice of search directions, as discussed in Section 5.2.4, The
next topic will be the entire Fletcher—Reeves optimizer.

54. The Fletcher—Reeves Optimizer

The FORTRAN program written by Fleicher (1972b) some years after the
publication of the algorithm by Fletcher and Reeves (1964) has been trans-
lated to BASIC and appears in Appendix Program B5-1. A summary of the
Fletcher—Reeves strategy is followed by a discussion of the program listing, an
example network problem, and mention of potential scaling difficulties.
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5.4.1. Summary of Fletcher-Reeves Strategy. The unconstrained, nenlinear
programming problem is:

mxin Qx)=F(x;,%3...,Xn), (5.76)

where x is a vector composed of N variables. The process is easily visualized
by inspection of Figure 5.3. This objective function and its gradient VQ must
be added to the BASIC language computer code provided. The gradient is:

o (8F 3F  @F\"
The gradient may be described analytically, if available, or found numerically
by 0.01% finite differences. The user should consider an “awful warning”
concerning excessive numerical noise, such as might occur if a named variable
might inadvertently be declared an integer as opposed to a floating-point
number. The resulting discontinuous behavior of the objective function will
have a disastrous effect on partial derivatives obtained by finite differences.
Almost all gradient optimizer programs will appear unacceptably sluggish
under these circumstances.
Given an initial starting vector, x°, a sequence of linear (line) searches,
xtl=xi+ag', (5.78)
is performed in a calculated direction s in the variable a;. Each search
terminates when a minimum is approximated so that the directional derivative
is nearly zero:

F'(a)=(g*")s'=0, (5.79)

The comprehensive procedure to accomplish reasonably accurate line searches
on arbitrary functions of «; was discussed in Section 5.3.

The first linear search direction is the negative gradient (steepest descent),
i.e., with 8,=0 in the direction formula '

s=—g+B8s"; i=12,.. N ~(5.80)
This describes a sequence of directions calculated after estimating each linear

search minimum. The new search direction is simply the negative gradient
plus a fraction of the just-used search direction. The fraction is:

| g=0; p=—E . i35 N, (5.81)
Colg?

i

! where the squared-norm notation

‘ 1l 2 @) '(@) (5.82)

defines an inner product. It is seen from (5.80) that certain curvature informa-
tion is accumulated for influencing the choice of subsequent search directions.
This strategy was developed on the assumption of quadratic functions where

o
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convergence is obtained in exactly N linear searches. Because the objective
function is seldom quadratic in practice, (5.80) is restarted in the steepest
descent direction ( 8,=0) after every N iterations (linear searches).

An important program feature is the criteria for stopping the iterative
search for a minimum. This implementation by Fletcher stops when the
changes being made in every component of the x variable vector are less than
0.00001, or when 100 iterations (linear searches) have been performed, The
running time of the algorithm increases dramatically for even smaller changes;
engineering problems often allow even earlier termination. Perhaps a better
stopping criterion is the relative changes of variables. One advantage of
real-time computing is the ability of the user to manually intervene whenever
appropriate.

5.4.2. The BASIC Language Computer Program. Appendix Program BS-1
is a listing of Fletcher’s program VA®G8A as translated into BASIC from
FORTRAN, These 114 lines require only 1849 bytes in the Commodore PET
computer, and only 15 additional bytes are required for each optimization
variable. The program requires the user to define the objective function as
subroutine 1000. The particular objective function and the gradient defined in
lines 1000-1060 will be discussed in the next section. Unused BASIC names
are given in line 60. Each execution of the program requires the user to state
the number of variables, which should be consistent with the defined objective
function. Then the starting values of the variables are requested. That run-
time input is coded in lines 70145,

Some program control constants are set in lines 150-170; this is less flexible
than originally provided by Fletcher (1972b). The number of iterations is
limited to 100, the absolute change in each variable must be less than 0.00001
for convergence, and the first step length in each iteration is based on an
expected 10% decrease in function value.

The flowchart in Appendix D for a single-variable linear search is very
nearly applicable to the entire B5-1 program; the reader should generalize it
by reference to the complete program listing. The initial and subsequent
setting of search direction to steepest descent is made by lines 230-240. The
FOR-NEXT loop, to accomplish N searches before resetting to steepest
descent, spans lines 260-850. These directions are calculated in lines 330-400
according to (5.80) and (5.81). Having chosen a search direction, the slope in
that direction is computed by lines 410-440 according to (5.57). The linear
search occurs as discussed in Section 5.3, except that each variable is in-
creased by line 535 according to (5.78), and lines 850 and 860 implement
repeated sequences of N linear searches.

5.4.3. The Rosenbrock Example. Lootsma (1972, pp. 29, 67, 68, 74-88, 101,
120, 185} gives many standard nonlinear programming (NLP) test problems,
perhaps the most popular being the so-called Rosenbrock banana function,
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described by

Q=100(x,—x3)’ +(1 —x,)%. (5.83)

The gradient is
g = —400(x|x2—x3|)—2(1 —X), (5.84)
82=200(x, — 7). (5.85)

These equations are programmed in lines 1000-1060 in Program B5-1. There
is a required feature in this BASIC language conversion of the original
FORTRAN program (see lines 1020 and [030). The objective function must
have the name Q; these two lines then assign this value to either names F or
F9, depending on the value of integer flag Y%. This must be included in each
different objective function subroutine to replace the subroutine argument list
feature found in FORTRAN but missing in BASIC. The shape of this surface,
especially the long, curved valley, is illustrated in Figure 5.23.

X2

35 r

o

[N
[T T T T
mp_.-'oo

—1.0 -

Figure 5.23. Some level curves for the Rosenbrock function in Equation (5.83). [Reprinted with
permission of Macmillan Publishing Co., Inc. from Introduction to Optimization Technigues by
M. Acki. Copyright @ 197t by Masanao Aoki.]
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Table 5.4, Typical Output for the Rosenbrock Problem®

# VARIABLES, N=1?

2

INPUT STARTING VARTABLES X(I):

171 -
ITN=10 IFN=1 ITN=14 1FN =47
F = 400 F=8.44751143E — 03
1 X(1) G I X G(h
1 I 800 1 92560972 1.84971288
2 —1 — 400 2 85135558 — 107955505
ITN=1 IFN=5 ITN=15 IFN =49
F=132.3379952 F=5.85904863E — 03
I X G(I) I X(I) G(D)
1 102183049 21.1560238 i 923520252 — 0367466431
2 — 551091525  — 11230658 2 852575064 — 06291833
ITN=2 IFN=8 ITN=16 IFN =52
F=1.11719726 F=129751824E — 03
I X(i) G I X(I) G(l)
1 — 0564383475 —2.18894177 1 975016735 962065277
2 — L.B410067IE—04  — 673877548 2 948062727  —.518981593
ITN=73 IFN = I8 ITN=17 IFN =54
F =.393823649 F=6.76262365E — 04 :
i X0 G(Iy 1 X0 GI)
1 386114878 784104271 ! 974015938  — 0112750203
2 1360583 —2.60527968 2 948602602  —.0208891644
ITN=4 IFN=2I ITN=18 IFN =55
F = 349279705 F=23.53812794E — 05
1 X(1) Gl I XM G()
1 414709915 ~2.52994041 1 997877715 217552957
180178959 1.63892907 2 995204262 —.111134487
ITN=§ TFN =23 ITN=19 IFN =57
F= 334620229 F = 5.48555021E— 06
f X(I) G(Iy , 1 X G(D
1 422829231 — 500579577 1 997659736 - 9.54650997E — 04
2 74919157 — 77308031 2 995315613 - 1.86720026F — 03
ITN=6 TFN =26 ITN=20 IFN =59
F= 244148841 F= 7.56015734E — 09
I X(1) G(N i X G
1 542205182 111706106 I 1.00001798 3,43919836E — 03
2 275392712 —3.71874958 2 1.00002745  — 17014041 1E— 03
ITN=7 IFN=28 ITN= 21 IFN=61
F= 216721811 F=211894212E~ 10
| X(I) Gil) I X G(l)
I 534919786 ~ 490506925 | 1.00001434 5.58176544E — 06
2 284084414 — 410952665 2 1.00002915 1.18787284E — 05

“The output for iterations 8—13 has been omitted,

147
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The output for the Rosenbrock problem, starting at x;=1 and x,= —1, is
shown in Table 5.4 (see Figure 5.24). The data show that ITN =21 iterations
(linear search directions) and IFN =61 function and gradient evaluations are
required to locate the global minimum at x=(1,1)" to at least 0.00001
accuracy in each variable,

The reader should run this example to observe the effects of several
changes. Several new starting points should be tried. The accuracy set in line
160 can be reduced. The number of variables can be set to 20 instead of 2 by
inputting the latter number when asked and setting all but the first two
variables to an arbitrary number, e.g., 0. This will illustrate how much of the
computing time is in search overhead, because the full 20 variables will be
treated by the Fletcher—Reeves algorithm even though only the first two
determine the problem defined in subroutine 1000, It is informative to add the
statement 392 Z=0. This causes the search to be of steepest descent at all

X2

10— /:,;f

Optimum value of x
09— /

08|— /
- 07 e

0.6}— 4

§
05— 7
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I O T

~0.1 1 02 03 04 05 06 07 08 08 1.0 x
-0

—0.2

—0.3
04

-0.5
Steepest descent
—-0.6 —
07—
08—
08 |—

—1.0L_ Starting value of x

Figure 5.24. Trajectories in the x plane for the Fletcher—Reeves and steepest-descent algorithms.
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times. The trajectory is shown in Figure 5.24. It will not reach the minimum in
the specified 100-iteration limit; inputting GOTO150 will cause the program
to continue the searches. Delete temporary statement 392 and add 855
GOTO0260. This disables the policy of resetting to steepest descent after every
N iterations.

5.4.4. Scaling. The new user may construct a problem of his own design
only to find that it won’t optimize. The difficulty is often in the scaling of the
variables, 1.e., sensitivity. This is equivalent to partial derivatives; so the user
should be aware of a rule of thumb regarding units of the variables. In the
context of electrical network problems, suppose that the level curves in Figure
5.23 belong to the two variables in one of the L-section networks of Figure 4.3.
For the frequencies of interest, these network L and C design variables make
sense in units of nanohenrys and picofarads. A useful rule of thumb is: if any
variable is increased by unity, do solutions still make sense? Another symptom
is the gradient vector; the magnitude of its elements should be roughly equal
and about unity within a factor of 1000* ‘. But suppose that the inductance is
specified in microhenrys; then an increase from 0.4 to 1.4 microhenrys is a
much bigger jump than from 400 to 401 nanohenrys. What is at stake is seen
in Figure 5.23; a bad choice of variable units can squeeze the curved valleys
into razor-thin slits, so that the optimizer’s finite word length search is in
fundamental trouble.

An illustration of this effect is easily created using the Rosenbrock exam-
ple. One or more initial variable values input at the beginning are rescaled,
c.g., increased by a factor of 100. Then, at the beginning of subroutine 1000,
these variables are decreased by 100 and then increased again before returning
from that subroutine. Also, the corresponding derivatives must be decreased
by 100 before returning (an application of the chain rule from calculus). Upon
trying this, the effect on the gradient is immediately obvious-—the number of
function evaluations is increased by about half again. The reader is urged to
try this on the Rosenbrock function to observe scaling and its effect on search
difficulty.

5.4.5. Summary of the Fletcher—Reeves Program. The Fletcher—Reeves
search strategy has been reviewed and BASIC langnage Program B5-1 has
been described in the context of previously discussed topics. The Rosenbrock
two-variable, nonlinear problem was described, and a number of enlightening,
temporary program modifications were suggested. Also, the subject of scaling
of variables was mentioned; it is the foremost pitfall the new user is likely to
encounter when formulating his own objective function.

In addition to scaling, an “awful warning” was issued to be sure that only
smooth functions are modeled for gradient optimization. This is especially true
when the gradient vector is obtained by finite differences. Another warning
about gradients is that evaluation of analytical expressions should be checked
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by comparison with finite differences before even trying optimization. Failure
in optimization is commonly due to incorrectly formulated or programmed
gradients, so that the optimizer is working with bad information.

The great virtue of the Fletcher-Reeves algorithm is that its compulter
memory requirements are proportional to 3N, where there are N variables.
The Fletcher—Powell and other variable metric algorithms require a memory
proportional to N2 They all belong to the class of conjugate gradient algo-
rithms, but the variable metric algorithms, being quasi-Newton, converge
more rapidly when very near a minimum. This means that Fletcher-Reeves
Program B5-1 should be very satisfactory on small machines employed for
engineering applications requiring only moderate accuracy.

5.5. Network Objective Functions

The numerous test problems constructed by mathematicians, such as the
preceding Rosenbrock example, are enlightening and provide some measure
of effectiveness for various optimization algorithms. But what kind of objec-
tive functions are appropriate for automatic adjustment of design variables in
electrical networks? The following methods are easy to implement and have
an interesting resemblance to weighted-sample integration techniques (Section
2.3). The optimization process can also be viewed as a curve-fitting process.
However, as mentioned in Section 2.5, noalinear programming is often inef-
fective when compared to methods that are specifically formulated for certain
problems.

On the other hand, many network design requirements cannot be solved by
existing closed-form methods, as evident by the brief exposure to network
synthesis in Chapter Three. Also, the designer may not be aware of more
appropriate methods or may not have the time or inclination to implement
them. Then optimization of networks is worth trying, especially if there is an
approximate design basis to serve as a starting point for both insight and
values.

The following sections describe several important kinds of network objec-
tive functions and their gradients. An example using Fletcher—Reeves opti-
mizer Program B5-1 is given.

5.5.1. Integral Error Functions. Most cases of optimization in the frequency
or time domains amount to curve fitting, as seen in Figure 5.1. The error can
be defined as the square of the area between a desired function (the rectangle)
and the approximation function. This is expressed as

. Wz Wz
minE= [ ¢¥(x,0) do= fw | (R-G) dw, (5.86)

Wi

where the first integrand emphasizes its dependence on both the variables (x)
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and frequency. The second integrand might represent the difference between a
response function (R) and the goal function (G).

Since integration on digital computers is discrete anyhow, the measure of
goodness of fit can be a process of frequency sampling. The Euclidean norm
(inner product) mentioned in (5.82) applies here as well:

IEl=(S+e3+ -+, (5.87)

This might correspond to sampling at the ith frequency, where ¢; is the
difference between the response and the goal. The next section combines these
concepts in a form convenient for optimizing network response functions
sampled at several frequencies or times.

5.5.2. Discrete Objective Functions. A typical discrete objective function for
network response is shown in Figure 5.25, as described mathematically by

M
E(x, @)= 2, W(R,—G)", (5.88)

1=1
where P is an even integer (the Prh difference), R, is the response, G is the
goal, and W, is the weight factor at the itk frequency. None of these quantities
are complex. For example, if a network is to be adjusted so that an impedance
approximates some given impedance values at various frequencies, then an
approximate response might be SWR, according to {4.59) and (4.54). Compare
(5.88), with P=2 and W;=1, to (5.87). Also, (5.88) may be generalized to
account for more than one kind of response, R;,, by adding a second, nested
summation on k. Two responses might then be SWR and voltage, where the
weights W;, must equalize the scales for the two different kinds of responses.
In practice, only very few kinds of responses are successfully considered
simultaneously, and there is a good chance for a standoff (over consiraint), so

that optimization is ineffective.

A “satisfied-when-exceeded” feature can be included in a program for
(5.88), so that W,=0 is employed whenever R;>G;. This feature is useful

Least Pth:
min ¥ W R, — G, )"

Weight \ Goal

Response

-
w, (=5 wy w

Figure 5.25. Least-Prh error function with weighted frequency samples.
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Floating Pth:

. R
min| Xy .y +)€.tR‘, -Gt ——

W, = 1illustrated

wy [2 wy w

Figure 5.26. Least-Pth error function weighted relative to an “extra” floating variable providing
slack.

when amplitudes of the response exceed a certain level in filter stopbands; this
might be the case for Figure 5.1 if frequency samples 6-9 were required to be
equal to or greater than some positive number instead of the unlikely null
values illustrated. This approach does not cause discontinuous function behav-
ior, so that the derivatives are still those of a smooth function.

It is also possible to “float” the goal values in an objective function, as
illustrated in Figure 5.26. The floating goal requirement is encountered in time
delay equalization, where a constant delay is desirable without concern for its
absolute value. The function shown in Figure 5.26 is not as well behaved as
(5.88); so the user can expect to have some difficulty sélecting suitable
weights.

Figure 5.27 illustrates the minimax case similar to the curve-fitting result in
Section 2.4, The obijective function is the maximum difference or residual
among all samples. It is easy to program the computer to find what this is, but
this approach causes large, discontinuous changes in the function and is thus
unsuitable for gradient optimization. Suppose that each sampled difference in
Figure 5.25 is greater than unity, Then, as P is made larger and larger, the
main contribution to the total error will be the largest difference sample.
Temes and Zai (1969) have shown that the minimax (equal differences) case

Minimax:

min ‘ A W, (R, - G

R Max
T . i -
| I | s
w w; Wy
w

Figure 5.27. A minimax objective function obtained by a least-Pt# error function when P—co,
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occurs when P—oo, for suitable functions. It is interesting to think of this
process in terms of 1/P—0, because the Richardson extrapolation to zero
considered in Section 2.3.2 for Romberg integration is also applicable here.
Thus, the minimax conditions can be predicted without actually making P all
that large. The proper extrapolation variable and other important parameters
will not be treated here; satisfactory minimax results often can be obtained by
simply setting P=2, 10, and 30 in a sequence of minimizations. This point will
be expiored in the network optimization example in Section 5.5.4.

5.5.3. Objective Function Gradient. When finite differencing is used to ob-
tain partial derivatives, then the entire objective function—as in {5.88)—
should be employed in the difference functions. However, if partial derivatives
of the response function(s) R;, are available analytically or, more likely, by
application of Tellegen’s theorem, then (5.88) should be differentiated so that
the partial derivatives of the response function may be employed. Differenti-
ation of (5.88) with respect to x; produces

M
BE -1 9R;
=5 =P W(R-G)" ‘-EE : (5.89)

i i=1

Again, note that response R; is a real quantity; e.g., if it is SWR and
derivatives of Z,, are available, then identity (5) in Table 4.5 will be required
to express the derivative of R, needed in (5.89).

By the Tellegen method, partial derivatives of complex quantities are also
complex; thus 2N registers and additional computer coding will be required to
exploit this approach. Of course, the minimization time will be much less than
when using finite differences, because there will be no wasted calculations,
and the exact partial derivatives will speed convergence.

5.5.4. L-Section Optimization Example, The concepts in Chapter Five are
now brought together for a practical network optimization problem, which
will illustrate almost all fundamental techniques, The lowpass L section shown
in Figure 4.18b will be optimized to maich a frequency-dependent load
impedance to a resistive source impedance over a band of frequencies. Design
methods for this impedance matching problem will be considered in Chapter
Six.

Appendix-B Program B5-2 is composed of Fletcher-Reeves optimizer Pro-
gram B5-1 lines 150-940; lines numbered less than 150 input data, and lines
numbered greater than 940 form an error function and its partial derivatives
(gradient vector). The general process is flowcharted in Figure 5.28a. Also, the
function and gradient computation are shown in Figure 5.28b, and the
sampled-error-function formation is shown in Figure 5.28¢c.

A brief discussion of Program B5-2 code should reveal the simple details.
The L and C values (in henrys and farads) are input into X(1) and X(2) by
lines 100 and 110, respectively. Line 120.inputs the value of P, which should
initially be 2, After minimization, the program is sent to this line (by line 999)
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(a) 10 START Main program

laput M sample frequencies
and related data: goals,
weights, and frequency-
dependent data (Z, ;, etc.).

Input M starting-variable values.
Optimize variables.

STOP

1000 p Fix, w}, VF
| 2] (by finite differences}

| Caiculate and save F{x).

i

f——————foC=TtN
| } Calculate F? = Fix + Ax_).
F! - Fx)
oF _ o _ Te
| I Calculate ax, =g, = ax, .

1

Frequencies loop
‘ c!—-----——-———ForU=‘It<:;l’\c'|:

i |

{ Calculate impedance 2, (o, ).

: Calculate its SWR \|~ith respect to 1 ohm,
| E=E+(SWRI"; IP is an even integer.
l"— ——————— Next U

RETURN

Figure 5.28. Typical network optimization. (g) Overall; (b} function and gradient; (¢) sampled-
error function.

so that larger values of P may then be specified. The optimizer looks to
subroutine 1000 for its objective function (F or F9). Thus Program BS5-2
begins the calculation flowcharted in Figure 5.28b at line 1000. Line 1005 is
an SWR print control feature utilized in line 2165. More important, the
unperturbed function value is obtained by the GOSUB2100 at line 1010, and
perturbed values are obtained and used in the FOR-NEXT loop 1040-1090.
The flowchart in Figure 5.28c shows the sum of the Ptk errors obtained by
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Table 5.5. Some Lowpass L-Section Results for Z, =0.25+j0

SWR at Radian Frequency

P L C 0.8 1o 1.2
2 i i 3.1733 4.2656 7.0016
1.6471 04117 1.8626 1.1545 1.5670
10 1.6710 0.4192 1.8122 1.1040 1.6686
30 1.6903 0.4226 1.7817 1.0739 1.7338

subroutine 2100, which ends at line 2190. Line 2170 corresponds to the ith
term in (5.88), where the response R; is the standing-wave ratio (SW), weight
W, is fixed at unity, and goal G; is fixed at zero.

The standing-wave ratio SW is computed at each sample frequency by the
GOSUB3000 in line 2160. Subroutine 3000 calculates the input impedance of
the network in Figure 4.18b according to the easily obtained expression

[Re]+j[el+X ]
[1-wC(eL+X) ] +j[«CR ]

The SWR calculation is that defined by (4.59) and (4.57) when R ;=1 is
assumed. The four real and imaginary parts of (5.90) are assembled and
employed in lines 3010-3070. Note that this lowpass-network SWR function
assumes a unit source and is frequency normalized, so that units of henrys,
farads, and radians are appropriate. Also, note that network analysis Program
B4-1 could have been used for more general networks, especiaily since the
likely variables for optimization appear in the X(-) array in both B4-1 and
B5-2.

Table 5.5 shows some resulis obtained by starting L-section optimizer B5-2
at L=C=1 for P=2 and continuing, after sequential minimizations, with
P=10 and P=30. The load impedance was specified as 0.25+j0 ohms at each
of three sample frequencies, but arbitrary impedances at any number of
frequencies could have been employed. The SWR values shown were printed
by Program BS5-2, line 2165, when the variables were unperturbed (flag
variable C=0 set by line 1005). Note the tendency for equal SWR deviations
at the band edges for increasing values of P. According to (4.59), SWR can be
no less than unity, so that the squared error cannot be less than 3; it started at
77.29 and decreased to 7.26 in ITN=7 iterations (lincar searches) using
IFN =26 function evaluations (not counting the additional 52 perturbed
evaluations). Also, each of the 78 error function evaluations required network
analyses at three frequencies. It is easy to see why more efficient network
response and sensitivity calculations are essential when optimizing more than
just a few variables.

Z,= (5.90)

3.5.5. Summary of Network QObjective Functions and Optimization. The con-
cept of the area between desired and approximating functions over a range
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has been viewed as a measure of curve-fitting acceptability. Then the concept
of numerical integration as a weighted sampling of a difference function has
been applied to the formulation of a weighted, discrete error function over the
sample space, usually frequency or time. Several kinds of approximating
response functions may be treated in a common summation of sampled errors
if the weighting factors of each type function are selected to equalize error
contributions to a common scale.

Several variations of this method were mentioned. A “satisfied-when-
exceeded” rule applied to each sampled response ignores the contribution to
the error function when the response exceeds its goal. This technique is
especially useful in obtaining minimum stopband selectivity at the same time
that passband requirements are being fulfilled. The method does not upset the
continuous function requirement, which must be maintained for use with
gradient optimizers. A bias or “float” to a goal was described; it is imple-
mented as an added variable that is minimized along with the error function.
The third kind of error function is the minimax; it looks for the worst sampled
difference and minimizes it. However, the worst difference can jump from
sample to sample during adjustment of variables, causing gross discontinuities
in the objective function. This unacceptable behavior may be avoided by
using the original, weighted, least-Pth objective function in a sequence of
minimizations, with P=2 and greater even-integer values.

When derivatives of each sampled response are directly available, it is
useful to differentiate the weighted-difference summation analytically and
employ the sampled-response derivatives directly. Otherwise, finite differences
may be obtained using the weighted-difference summatjon directly for per-
turbed and the unperturbed sets of variables. It was emphasized that the error
function and its components are real functions. Any complex function and its
derivatives (e.g., input impedance) must be transformed by appropriate identi-
ties {such as those in Table 4.5).

Finally, a complete network optimization example was added to Fletcher—
Reeves optimizer Program B5-1. It can serve as a model for the general
technique, and flowcharts of major functions were furnished for this purpose.
The optimizer input section was modified to solicit values of sample frequen-
cies and corresponding frequency-dependent load impedances. The objective
subroutine 1000 was written for a lowpass, L-section network normalized to |
ohm and 1 radian; the two variables were L and C {(in henrys and farads,
respectively). A straightforward expression for input impedance was written
for this particular network; it was noted that incorporating ladder analysis
Program B4-1 for this purpose is not difficult. The input SWR was raised to
the Pt power and summed at each frequency to constitute an evenly
weighted error function with uniform goals of zero. Since SWR > 1, the
minimum possible objective function value is equal to the number of the
samples. It would also be easy to have frequency-dependent source imped-
ances. Then the important case of an interstage network connecting two
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transistors could be optimized, even accounting for gain slope versus fre-
quency.

Table 5.5 summarized some results that showed a 10:1 reduction in
squared error as well as the tendency toward minimax behavior for P= 10 and
P =30 minimizations. Tt is suggested that the stopping criterion in line 160
(0.00001) is probably smaller than need be. Engineering design usually does
not require this kind of accuracy, and the Fletcher—Reeves algorithm is known
to converge slowly near a minimum. Users might consider a value of E=0.01
or use of a 0.1% relative change-stopping criterion instead of the absolute
change criterion presently incorporated.

A common rule of thumb is that the number of samples should be at least
twice the number of variables. If there are too few samples, the function may
oscillate wildly between frequency samples while giving the illusion of a very
good fit of sampled response to goals. Which samples to take, how they are
weighted, which multiple response types are not conflicting, and many other
aspects of network optimization are more a matter of experience and insight
than science. This is also true of questions concerning how close to a
minimum must one start the variables and whether the minimum is global as
opposed to inferior local minima, which trap the search prematurely. In the
latter case, the usual advice is to try starting at a variety of points in the
variable space. As for starting reasonably near a solution, that is what the rest
of this book is all about. The main virtue of an optimizer is its ability to treat
significant second-order effects that are too difficult or inconvenient to treat
otherwise.

5.6. Constraints
The subject of constraints deals with the explicit or implicit relationships

among optimization variables (x). The most elementary constraints are upper
and/or lower bounds and linear dependence, such as

x; 20, (5.91)

k <x<k,, (5.92)
and

X;+x=ky. (5.93)

An implicit constraint is one that cannot be stated explicitly, e.g., the require-
ment that a calculated attenuation function have some specified value at a
stopband frequency. However, this exampie would correspond 10 (5.93) in that
the constraint is always active or “binding” and thus removes at least one
degree of freedom from the problem; this is typical of equality constraints.
Inequality constraints may not be binding in various subsets of the variable
space; this could be the case for the “satisfied-when-exceeded” performance
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constraint or those in (5.91) and (5.92). For both equality and inequality
constraints, points in the variable space where constraints are violated are said
to constitute an infeasible region.

The constrained optimization problem can be stated as follows:

minE(x) such that ¢(x)>0 and h(x)=0, (5.54)

where E 1s a function of both the variables (x) and the sample parameter (w).
Each component of vector ¢ constitutes one inequality constraint, such as
(5.91). Each component of vector h constitutes one equality constraint, such as

h,=x4x,-k,. (5.95)

An example of inequality constraints is shown in Figure 5.29. Note that the
unconstrained minimum s infinitely far out in the first quadrant, but the
feasible region causes this problem to have the identified optimum. If an
equality constraint were added, it might appear as a line locus in the feasible
region.

On small computers, bounds on variables are best incorporated by nonlin-
ear transformation of the variables. For example, letting the optimizer adjust x
in v=x> while computing the function with variable v will ensure a v that is
always positive. For other constraints, there are penalty functions that increase

—
——

D
////

Figure 5.29. An optimization problem with two inequality constrainis. Minimize —x;x, such
that —x;—x3+ 150 and %, +%,> 0. {[From Fiacco and McCormick, 1968.)
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the objective function when constraints are violated, i.¢.,, when the x vector is
in an infeasible region. The next sections will describe these techniques and
provide an evolving example of most of the concepts. A few network applica-
tions for constrained optimization will be suggested.

5.6.1. Simple Constraints. The easiest constraint to maintain is the equality
constraint x;=k. Just sel the partial derivative with respect to this variable
equal to zero. The reader may wish to try this by rewriting line 1050 in
Program B5-1, the Rosenbrock function: 1050 G(2)=0. When run, the start-
ing value of X(2) will never change because the optimizer sees no function
decrease in coordinate direction X(2). There are many times when such
constraints are temporarily useful, such as when a variable tends to go
through zero to negative values. The variable can be held at some value by
equating the derivative to zero.

An objective function used as an example throughout the rest of the
constraints discussion is

Q(x)=4x,+x2+l+L, (5.96)
X X%

where r is some fixed, real number, e.g., r=1. An objective subroutine to
implement (5.96) in the Fletcher-Reeves optimizer (Program B3-1) is shown in
Table 5.6, Note that the derivatives have been written in lines 1040 and 1050
using ** to indicate exponentiation. The function Q(x) in (5.96) is shown in
Figure 5.30. The reader should run the optimizer with this function, starting
from several points, such as x=(1,2)", (0.25,0.7)", and (0.25, 1.5)", Note that
in the first and second cases the program halted with an overflow error.
Asking the compuier for the values of x after this event reveals that the
optimizer search has wandered into the second and third quadrants, respec-
tively, where the function descends forever. If linear searches from the starting
point never leave quadrant 1, then the minimum at x=(0.5,1)7 is found
successfully,

Clearly, it is desirable that the variables be bounded positive; this is
sometimes necessary in network optimization also. A means for maintaining

Table 5.6. Objective Subroutine for (5.96) With r=1

1000 REM BARRIER FUNCTION EXAMPLE
1005 R=1

1010 Q=4+« X{1)+ X{Z)+ R/X(1)+ R /X(2)
1020 IF Y%=0 THEN F=Q

1030 IF Y%=1 THEN F9=(

1040 G(1)=4—R/X(1}%+2

1050 G(2)=1—-R/X(2)=2

1060 RETURN




160 Gradient Optimization

——
v

\ Trajectary of
minima: 2x; =X,
asr—+Q

x 1] 2788 a=9.25

Feasible
region:
11— Q=5 xy =0
| x; =0

0 I I |
0 0.5 1.0 1.0 20
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Figure 5.30. Level curves of Q(x) in Equation (5.96) when r=1.

variables positive is in the transformations

X =vx; (5.97)

for all N variables. This is performed inside the optimizer. The user inputs
(positive) values of x as before; the optimizer works with values of the square
root of x; and the objective function subroutine, also being outside the
optimizer, converts back to x again before making its calculations. So even
though the optimizer may make irs variables negative, there will be no
decrease in the objective function subroutine, and the optimizer will therefore
withdraw its variables to the first quadrant again. This is implemented for
(5.96) by using the code in Table 5.7 instead of that in Table 5.6. Lines
1006-1007 transform the internal variables x to the outside variables v:

v=x’ (5.98)

The inverse operation is accomplished in line 135. Since the derivative of
{5.98) is

N —2x, (5.99)

the chain rule vields

—5;-—-5&——5‘721( (5.100)
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Table 5.7. Objective Subroutine for (5.96) With Squared-Variable
Transformations

135 X(D)=SQR{X(I))
295 PRINT K; X(K)xX(K); G(K)/(2+X(K))
935 PRINT K; X(K)#X(K); G(K)/(2+X(K))
1000 REM BARRIER EXAMPLE (5.96) WITH SQUARED-
VARIABLE TRANSFORMATION
1005 R=1
1006 V1=X(1)*+2
1007 V2=X(2)#+2
1010 Q=&+ VI+V2+R/VI+R/V2
1020 IF Y%=0 THEN F=Q
1030 IF Y%= { THEN F9=Q
1040 G(1)=4—-R/Vi*s2
1050 G(2)=1—R/V2*=2
1052 G(1)=G(1)*2+X(1)
1054 G(2) =G{2}+2+X(2)
1060 RETURN

for each x and v component. This is employed in lines 1052-1054 to scale the
gradients for the optimizer's variable space, and in lines 295 and 935 to scale
the gradients to the outside world’s variable space. The program should now
be run for the three previous cases to note that the positive-variable con-
straints yield the correct optimum (Figure 5.30) from all starting points in the
first quadrant.

A number of bounding constraint transformations are shown in Table 5.8;
the first one is that employed above in (5.98). An interesting application of the
upper and fower bounds shown in Table 5.8 was suggested by Manaktala
(1972) and called “network pessimization.” Suppose that a certain lowpass
network was constructed with elements having + /— tolerances. At each

Table 5.8. Some Transformations to Impose Simple Constraints

on Variables

Constraint Transformation
vz0 v=x?
v>0 v=g*
V2 Vain V=Vain + x?
V2> Vnin V=V C"
~lgvgl v=sin X
O<vel v=sin®x
O<v<l v=e"/(1+e")
Vemin SVE Yinax V=Vnin + (Vmax - Vmin)sinz X, or

V= %(vmax + Vmin) + %(vmnx - Vmin)Sin X
Viin < ¥ < Vinax V=Vaint (Vmax - Vmin)ex/(l + ex)
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Figure 531. Worst-case variations for pessimization of two lowpass network designs. Lowpass
N =35 networks: 4, zeros in left- and right-half planes; &, zeros only in left-half plane. [Reprinted
with permission from Manaktala, 1972.)

frequency, there must be some adverse combination of tolerances that would
produce worst-case selectivity, both maximum and mintmum. This is shown in
Figure 5.31. Rather than employing the usual time-consuming Monte-Carlo
method, it was suggested that a constrained optimizer program couid find the
minimum and maximum selectivity at each frequency subject to the bounding
element tolerance ranges—truly a pessimization problem. The performance of
any network would then be contained inside the envelope shown in Figure
5.31.

3.6.2. Barrier Functions for Inequality Constraints. The complete con-
strained optimization problem was defined by (5.94). This section considers
the vector ¢ of inequality constraints that are generally nonlinear. It is
remarked in passing that a subset would consist of linear constraints of the
form

Ax—b>0. (5.101)

These boundaries are lines in 2-variable space, otherwise hyperplanes. Minimi-
zation with these constraints is like descending on the surface of Figure 5.3,
except that it has been placed in a restricting glass box; the descent should
conform to these glass walls, or hyperplanes, when encountered. The most
common means for doing this is to project linear search directions on such
constraining surfaces when encountered. This complicates linear search algo-
rithms and is beyond the scope of the present {reatment; the interested reader
is referred to Rosen’s projection method described by Hadley (1964, pp.
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315-325). For small computers, systems of constraints defined by (5.101) may
be treated by the following barrier technique.
A barrier function for generally nonlinear constraints in vector ¢ is:
M
: 1
min x)=E(x)+r ; r—0. 5.102
in Q) =E()+r 3 s (5.102)
The nature of a barrier function is seen by considering the following objective
function:

min E(x)=4x, +x,; X is positive. (5.103)

This function is shown in Figure 5.32. Clearly, the constrained oplimum is at
the origin, as indicated. The barrier function corresponding to (5.102} has
already been written; it is (5.96), for which figure 5,30 applies. Note that the
value r=1 produced a minimum at x=(0.5, 1)". The barrier is created by the
infinite contours of 1/x, and 1/x, or, in general, r/c, for the itk constraint
approaching zero, the edge of its feasible region.

The barrier function is employed in a sequence of unconstrained minimiza-
tions, each for a smaller value of parameter r in (5.102). (It can be shown
analytically that the limit at r=0 exists.} An expression for these minima can
be written for barrier function (5.96) by setting its partial derivatives equal to
zero:

a&_—— S S
3 1 % 0, (5.104)
aQ =1_1T
3 s % 0. (5.105)

Any particular minimum occurs at x, = yr /2 and x,=+r . Eliminating r shows

X2

\ Feasible region:
region;
% 0
%X, Z0

AR

Eixy=0 1+ 2 3 4 5 5 7 B
Constant-cost contaurs

Figure 532. Level curves of function E(x)=4x, +x,.
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Table 5.9. Additions to Table 5.7 to Implement SUMT

Delete line 1005 and add the following:

145 R=10

146 FOR Ji=1TO 20

147 R=R/10

148 PRINT sxtsdsenrrnhsx”

149 PRINT” %= R=":R,” cxx”
998 NEXT 11

that the trajectory of the sequence of minima in this case is simply x,=2x,, as
shown in Figure 5.30. In general, the trajectory is an analytic function of r,
Q(r). It is well behaved and its derivatives exist.

Fiacco and McCormick (1968} call this process the Sequential Uncon-
strained Mimimization Technique (SUMT). It is easy to demonstrate this
process for the example already programmed in this section. Table 5.9 lists the
one deletion and several additions to implement the sequence of uncon-
strained minimizations. When the program is run, an unconstrained minimiza-
tion with r= [ occurs first, then r is reduced by a factor of 10, and the process
1s repeated. The successive optima are on the trajectory described above and
depicted in Figure 5.30. The exact solution will be obtained in the limit as
r—{0. There is no need to arrive there computationaily. It is generally true that
a Richardson extrapolation to the limit in the parameter yr (as seen analyti-
cally) is valid on the trajectory function Q(r). (Recall the Richardson extrapo-
lation concept introduced in Section 2.3.2 in connection with Romberg
integration.) The reduction factor for r is not a critical parameter; values from
4 to 25 usually result in about the same total number of function evaluations
in progressing along the trajectory of successive minima.

5.6.3. Penalty Functions for Eguality Constraints. The vector h set of equal-
ity constraint functions in (5.94) can be enforced by compound functions of
the form -

minQ(x)=E(x) + L §Pj h2(x); 150, (5.106)
X Vr K=t

which add a penalty to the total objective function when each and every h,
constraint is not zero, Comparable to the SUMT method, there is a trajectory
function Q{r), where r is a sequence of decreasing values. As seen in (5.106),
smaller values of r add a larger penalty to unsatisfied constraints h,. In the
limit as r—0, the constraints must all be satisfied; ie., the unconstrained
optimizer has been forced to find the region of x space that is feasible, if it
exists. The starting values for variables (x) usually will be unfeasible, which is
the opposite of the barrier (inequality) constraint function.
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In fact, one application of penalty functions is to acquire feasibility for
inequality constraints. To do so for inequality constraint ¢, use the penalty
constraint function

hy(x)y={min[0, cx) ]}~ (5.107)
A little thought will show that this is exactly equivalent to the “satisfied-when-
exceeded” technigue discussed in Section 5.5.2. Tt is seen that the partial
derivatives of h, in (5.107) exist at the boundary of feasibility.

Penalty functions are usually better behaved in unconstrained optimization
than barrier functions. This is usually due to the mechanics of the linear
search process, where the infinite barrier may be overstepped by the necessar-
ily finite exploratory moves. A review of the example problem and its
treatment by transformation of variables in Section 5.6.1 supports this conclu-
sion.

5.6.4. Mixed Compound Function for All Constraints. Fiacco and McCor-
mick (1968) derived the necessary conditions for defining a combined barrier
and penalty function:

min F(x) = E(x)+rz c(x) E hi(x), (5.108)
j=1 ™
with derivatives
M e, /ox; P dh
dF _3E O 2 k
% ax, rzl 20 + - k§=]l hk(x)—a-;j-. (5.109)

One practical consideration in (5.108) is the choice of the starting value for r.
If it is too small, then the ¢, inequality constraint barriers will be too far away
and steep, so that the h, penalty functions will tend to dominate the obiective
E(x). Difficulties of the opposite nature exist if the initial r is too large. There
are fairly sophisticated means for selecting the initial r value, but one way that
at least leaves the objective E(x) somewhat in control has been satisfactory.
The value of E(x) and of each summation in (5.108) is obtained for the
contemplated starting point in variable (x) space. Then the first r value is
chosen so that the absolute value of barrier and penalty contributions is just
10% of the E(x) contribution to F(x, r). This procedure requires the solution of
a real quadralic equation.

Fiacco and McCormick (1968) also show why and how the Richardson
extrapolation to the limit operates. Using this exirapolation for all variables
often places the solution inside unfeasible regions. In short, there are some
programming complexities to be overcome in applying the Richardson e¢xtrap-
olation to barrier, penaity, and mixed functions. The good news is that
personal computer users operate in the loop with program execution. The
complicated program features required in a timeshare environment to avoid
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receiving big bills for unforeseen runaway programs are hardly necessary with
personal compuier applications,

5.6.5. Swmmary of Constraints. Unconsirained optimization will often pro-
duce negative variable values that have no physical meaning. Sometime
during function minimization, variables may become negative, but return to
positive values again at convergence. This is one reason why a trial problem
run without constraints is not a bad idea. The most elementary constraints are
bounds on e¢lements; these may prevent negative variable values or contain
variables within ranges such as component tolerance intervals, The squared or
trigonometric transformations of variables are often effective. An example of
the former was programmed in this chapter. Another type of constraint is a set
of linear inequalities, [t was noted that the projection method whereby the
minimization is conducted on surfaces bounded by the related hyperplanes
(“glass walls™) requires rather complicated techniques in linear searches, and
thus was not discussed further. Constraints are simply relationships among
variables. Those mentioned so far in this paragraph can be stated expiicitly.
There are many others that cannot be so stated and are therefore implicit
constraints,

" The barrier method for inequality constraints and the penalty method for
equality constraints (including the “satisfied-when-exceeded” constraint) were
described. Then the two methods were combined in one mixed compound
function. In these cases, the trajectory parameter r was introduced. Assign-
ment of a value to r enabled an unconstrained optimization to occur. A
sequence of choices for decreasing r values leads to the constrained solution,
the process being called the Sequential Unconstrained Minimization Tech-
nique (the well-known SUMT). A lot of computer time is consumed in the
process, and failure-proof extrapolation methods for predicting the Iimit
process without closely computing the limit are not easy to program. The
interested reader is referred to Gill and Murray (1974) and Lootsma (1972, pp.
313-347).

Despite some complexities, the reader should have knowledge of these
methods, because there are many special cases where some of these concepls
can be meaningfully applied. This is especially true for personal computing,
where an educated observer remains in the driver’s seat. Machine time is
prepaid, so that programs need not be constructed with the guaranteed
performance of robois in space—or limited expense accounts on computer
timeshare services.

5.7. Some Final Comments on Optimization
The methods in this chapter were selected because they are practical engineer-

ing tools and their explanation involves important mathematical concepts.
However, the reader should be aware of an entirely separate kind of optimiza-
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tion, known as direct search. Direct search methods explore the function
surface without benefit of gradient information and have the substantial
advantage that function smoothness (continuity) is not required. There are
many kinds of systematic direct search schemes, and almost all of them are
heuristic methods, developed more on the basis of intuition and experience
than on an extensive rational basis, They are often less automatic than
gradient methods, requiring a number of parameters to be set rather arbitrar-
ily. Tt should be recognized that the “operator-in-the-loop™ nature of personal
computers makes direct search more attractive than when used on remotely
engaged computer services.

There is at least one direct search method that requires only 3N memory
locations, as does the Fletcher~Reeves algorithm. That is the pattern search
algorithm of Hooke and Jeeves (1961). A FORTRAN code that can be
modified for this purpose has been given by Kuester and Mize (1973). Briefly,
function values are computed at a starting (base) point and at a small
displacement in one variable. If this is successful (reduced elevation), then a
small displacement in the next variable is tried. If this is also successful, the
base point is moved along a vector through the second successful point;
otherwise, another variable 1s tried. The strategy is that successful moves are
worth trying again. The interested reader can find a useful explanation of the
details in Beveridge and Schechter (1970).

Sadly, a strong warning must accompany all claims for optimization; it is,
after all, only the last step in engineering design. Some of its advocates have
the tendency to use it as an excuse for neglecting the first two steps:
identifying design variables and how they interact, and creating a measure of
effectiveness. The acronym GIGO is apt: garbage in, garbage out. Optimiza-
tion does stimulate good modeling of systems. Time and again it has been
found that, once optlimization problems have been suitably structured, the
solution {or lack of one) is then apparent almost by inspection. The author
believes that optimization (nonlinear programming) is a major circuit design
tool, in the same league with the programmable calcuiator/computer on
which it depends.

Problems

5.1, Shift the origin of the central sample function in (5.8) by the substitu-
tions X;¢x,+ 10 and x,<x,+10. Simplify the resulting equation and
compare it to the Taylor series expansion {5.32) about the point p=
(10,10)".

52. Show that the root-finder steps in (3.9) and (3.10) are identical to
Newton steps in (5.38). Hinr: Let f,=u, f;=v, x,=X, and x,=y.
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5.3.
5.4,

5.5,

5.6.

3.7

5.8.

5.9.

5.10.

5.1L

5.12.

Gradient Optimization
Use Programs AS-2 and AS5-4 in Appendix A to verify Table 5.2,
Verify in two-variable space that
(Ax)" =xTAT
even when A is not symmetric.

Evaluate by (5.41) the optimal step for the central sample function (5.8)
from p=(10, 10)" in direction s=(—1, —2)". Find x'*',g'*', and show

‘that the directional derivative (5.57) at x'*! is zero.

Make a table for the central sample function (5.8) at x7=(10, 10), (5, 3),
(—1, 1), and (5,7). Verify (5.48) and (5.50) using all these data.

Write 2 Taylor series expansion about the point x=(4,4)" using First
and second partial derivatives of the function
F(x)=ln(x,x2)+\/ﬂ+3\/x_2.

Mazke a table of Ax varying by = 0.2 about this point and showing the
percent difference between true function values and those estimated by
the Taylor series.

Examine the flowchart in Appendix D for the Fletcher—Reeves linear
search scheme; expand it to describe the entire Fleicher-Reeves algo-
rithm (Program B5-1).

What revised value of b would cause the minimum of the central
sample function (5.8) to be at x=(—3, —4)T?

Define a standard function as
F(x)=c+b"x+ 1x"Ax,
where

14 2
A=
]

and
e=500, b=(-94,-67)".
Is A positive definite? Why?

For the standard function in Problem 5.10:

(@) Find F, V\F=g, V,F=g,, and the slope in the direction s=
(1, —2)7, all at the point x=(3,7)".

(b) What is the value of the metric defined by (5.50) at x=(3, )"?

For the A matrix in Problem 5.10:

(a) Confirm that the eigenvalue problem (5.25) is satisfied by A, =15,
x'=(2,D7; and by A,=10, ¥’ =(—1,2)".



5.13.

5.14,

5.15.

5.16.

5.17.

5.18.
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(b) Find the diagonal matrix A=PTAP/5, where P is a suitable
orthogonal matrix.

For the standard function in Problem 5.10:

(a) Write the matrix equation for the Taylor series in Ax about the
point p=(3,7’.

(b) Find the Ax step to the minimum F location from p; use matrix
calcnlations.

Given the two nonlinear functions
B (X . Xy) =X — X3%, — 52x, + 11x,+ 23,
Ex(Xy 2 Xy) = 51%, ~ X, X3 — 94X, + X3 + 325,

calculate by the Newton method the estimated Ax step to the minimum
F location from the coordinates x, =3 and x,=7.

For the standard function in Problem 5.10:

(a) Compute the Fletcher-Reeves linear searches to the location of
minimum F starting from x=(3,7)". Use (5.41) in all your linear
searches. Show all values of x, a, s, g, and § involved.

(b) Show numerically that your search directions are A-conjugate and
that the gradient at each turning point is orthogonal to the last
search direction.

Consider A in problem 5.10 and search directions s'=(1, —2)" and

=02, H%:

(a) Ares' and s® A-conjugate? Show work.

(b) Are s' and s’ orthogonal? Show work.

{¢) Explain the results in (a) and (b) in terms of minimizing quadratic
functions.

Given any two arbitrary functions f,(x;,x,)=0 and f,(x|,x,)=0 and
their partial derivatives, write a discrete, unweighted, least-squared-
error optimizer objective function and its gradient equations. These
should be in forms so that particular cases could be used in subroutine
1000 in optimizer Program B5-1 to find the solution of x; and x,.

Write the barrier function equation for the constrained minimization
problem in Figure 5.29.



Chapter Six

Impedance Matching

Impedance maiching is the design of a network or transducer so that a
terminating impedance is transformed exactly to a desired impedance at a
frequency, or is transformed approximately over a band of frequencies. Figure
6.1 shows the situation where load impedance Z, may be specified as some LC
subnetwork terminated by a resistance or by complex numbers associated with
arbitrary frequencies. The desired input impedance Z,, may be similarly
specified or may be contained in a neighborhood described as some maximum
standing-wave ratio (4.59). Section 9.6 will consider dissipative network trans-
formations; in this chapter only lossless, passive networks are considered.
Impedance transformation is usually desired for control of power transfer
from a finite impedance source, and is thus related to the same requirements
discussed in Chapter Three for doubly terminated filters. There is one impor-
tant difference: impedance matching usually is concerned with given terminat-
ing impedances that are complex, not simple resistances. This results i simple
restrictions for single-frequency transformations. There are complicated con-
straints when matching complex impedances over a band of frequencies.
These preblems will be considered in order of increasing generality.

Chapter Six begins with impedance matching at a single steady-state
frequency, first with two- and three-element networks composed of a combi-
nation of inductors and capacitors, and then with one or two cascaded
transmission lines. It is remarkable that these subjects are seldom treated in
modern electrical engineering curricula, even though they appear in almost all
pertinent texts and handbooks published before 1960. Practicing engineers
responsible for radio frequency circuit design invariably query prospective
employees about L, T, pi, and perhaps transmission line matching because it is
a matter of frequent concern. The treatment here includes tried and true
concepts, which will be extended to broadband matching and direct-coupled
filters (Chapter Eight) as well, especially the idea of the loaded Q of an
impedance. The Smith chart as a means of visualizing the maiching process
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Figure 6.1, The matching network problem.

will be discussed. An innovation is the use of hand-held computers to provide
data for plotting, greatly speeding the process and reducing eyestrain.

The rest of the chapter addresses impedance matching over a frequency
band, referred to as broadband matching, as opposed to the single-frequency
impedance matches, which are often useful over fairly narrow frequency
bands (or can be made so by optimization). It might be assumed that if a
fairly extensive network is designed for one central frequency in the band of
interest, then an optimizer should be able to start with these element values
and obtain the best possible match over the band. Unfortunately, this does
not work in most cases because of the large number of useless local minima in
the objective function’s surface. So theoretical methods are necessary, some
with major limitations that may be candidates for elimination by optimization
of the theoretical result. One limitation always present is the assumption of
lossless networks; dissipative effects usually will be compensated by optimiza-
tion.

The classical method for broadband impedance matching was thoroughly
described by R, M. Fano (1950). He extended Bode’s integral matching
limitation for RC load networks to load networks composed of any number of
I.C elements terminated in a resistance. The theory becomes too complicated
for more than three load reactance elements, The closed formulas by Levy
{1964) presented here enable the consideration of a single RLC load branch.
He accounts for three types of sources: resistive, a single RLC source branch,
and lossless (singly terminated) sources. The subject is invariably presented as
the lowpass case; i.e., loads are parallel RC or series RL, and the frequency
band begins at dc. Practical applications usually require pass bands above de,
which are obtained by a simple network transformation, and the loads are
RLC, as mentioned. Thus the development requires consideration of the
transformation that changes the network from lowpass to bandpass. Another
feature of classical lowpass theory is that the source resistance is dependent,
Usually, the designer must use a particular source resistance. In the case of
bandpass networks, Norton transformations enable the replacement of all-L
or all-C pairs (L sections) by three-element sections of like kind. An arbitrary
impedance transformation within a limited range is possible, and there are no
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frequency effects. Norton transformations are also a part of the Fano theory
in réduction to practice.

A recent application of Fano’s integral limitation enables optimal matching
of load impedances consisting of a C paralleling a series LR or an L in series
with a parallel CR using a lowpass network configuration. The Cottee and
Joines (1979) method is described. It employs numerical integration (Section
2.3) and synthesis (Chapter Three). The results are often desirable in practice,
and the analysis helps clarify Fano’s integral limitations, This is called a
pseudobandpass technique, wherein lowpass networks are employed to match
over a pass band.

All of the broadband-matching concepts mentioned so far require that the
physical load be related to a hypothetical lumped-element terminating net-
work. This subject is called load classification and is mentioned only briefly in
this chapter. Carlin (1977) presented a new method for designing lossless
matching networks; this method utilizes directly experimental load impedance
data sampled at arbitrary frequencies. The arithmetic is well conditioned, so
that the required optimization step works well in nearly all cases. Also, the
technique is especially well suited for producing arbitrarily shaped power
transfer functions versus frequency. This has special application in microwave
amplifier network design, where it can compensate for the approximate 6
dB/octave roll-off of transistor gain above the critical frequency. These extra
considerations are treated in the optimization step, so that it is equally easy to
accommodate amplifier noise figure, stability, or other constraints that can be
formulated in impedance terms. Carlin’s method is based on a very practical
application of the Hilbert transform, which relates reactance frequency behav-
1or to resistance behavior. A separate program for this aspect is provided. The
final steps in Carlin’s methoed require fitting a rational polynomial (Section
2.5) and synthesis (Chapter Three).

As in other chapters, there are many personal computer programs fur-
nished. Both programs and concepts are useful design teols for the practicing
radio frequency engineer. The ladder network analysis procedures of Chapter
Four will be useful for verifying designs produced in this chapter. It is
assumed that the reader can write a simple program to convert reactances at a
given frequency to L and C values and vice versa.

6.1. Narrow-Band L, T, and Pi Networks

The four reactance configurations considered for the network in Figure 6.1 are
shown in Figure 6.2. There are several important conventions adopted. First,
the lossless inductors and capacitors are shown as reactances at the one design
frequency. Second, an inductor is implied if the reactance is positive, and a
capacitor is implied if the reactance is negative. Third, the basic design
relationships assume a match from simple load resistance R, to input resis-
tance R;. The two L sections in Figure 6.2 have fundamental constraints on
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Figure 6.2. Four lumpe-d-element reactance configurations.

the direction of resistance match, as indicated; i.e., a type-A L section can
only decrease the resistance level, Finally, the transfer phase is defined as the
angle by which current I, lags I, in Figure 6.1. For resistive Z, and Z,, this is
the same as the phase lag of V, with respect to V. The phase angles of type-A
and type-B L sections are dependent, assuming that the R, and R, termina-
tions are independent. However, the phase is also independent for the T and
pi sections shown in Figure 6.2 within the range indicated.

It has been remarked that the phase is not of interest in many cases;
however, i1 is a convenient parameter and represents a degree of freedom for
T and pi networks. (The phase sign is a degree of freedom for L sections.) It is
also noted that L, T, and pi sections may be designed by the H-Q2 method
deseribed in Section 6.1.3 without consideration of phase. The reader is
expected to adopt the techniques most useful for his purpose.

This topic will be developed by first considering the interface impedances
resulting from the use of a lossless network, especially the relationship between
Z, and Z, and between Z; and Z, in Figure 6.1. Then the basic case for T and
pi network matching from resistance R, and R, will be given. The L sections
will be special cases of these, in which branch X, in Figure 6.2 is removed. To
accommodate complex source and load impedances, series-to-parallel imped-
ance conversions and the opposite case will be developed. Also, the impedance
of paralleled impedances will be discussed. These conversions adapt complex
terminations to the prior analysis for resistive transformations. Finally, the
role of graphic procedures—especiaily the Smith chart—will be considered in
some detail. Programs are provided.

6.1.1. Lossless Network Interface Impedances, There is an important imped-
ance concept associated with maximum power transfer by a lossless network
of any type. Consider the power transferred from the source to the network in
Figure 6.1. According to the analysis in Section 3.2.3, maximum available
power (P,)) is transferred when Z,=Z*. For lossless networks, the maximum
available power must arrive undiminished at the load end of the network,
where the Thevenin impedance looking back into the network is Z,. At the
load port, then, there must be an equivalent Thevenin source providing the
same maximum available power; therefore, Z,=Z;. In fact, the matched,
iossless network can be cut at any interface and a conjugate match will exist;
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i.e., the pertinent generalized reflection coefficient magnitude (3.46) must be
zero at every interface, If there is a mismatch anywhere, then the pertinent
reflection coefficients at every interface must all have the same magnitude,
since the actual and available power are the same everywhere.

The most elementary application occurs when only resistances are antici-
pated at the lossless network terminals in Figure 6.1. Then Z,=R,=Z, implies
that Z,=R,=Z,. Especially, it is common 1o talk about resnstlve terminations
where the 51mple fact that Z, =R, would not necessarily imply that Z,=R,.
This small nuance arises in Section 6.1.4 when matching from a complex load
to a possibly complex source.

6.1.2. Real Source and Real Load. The reactance equations for T and pi
networks are given in Table 6.1, along with the modifications for the L
sections. T-section matching relationships will be verified; the pi-section
relationships can be verified similarly.
Consider Figure 6.3. Define
Z,=R,+jX,. (6.9)

Replacing X; in (6.9) with its T-section expression (6.5) from Table 6.1 yields

0= jsin g8 (6.19)
If I,=1+j0 in Figure 6.3, then V' =7, and
Z
L=—+1 (6:11)
X,
Table 6.1. T, Pi, and L Reactance Equations
T Pi
YRR, — R, cos B i
X, =1t PP 6y X =RR,— M E (62)
sm ,8 RzCOS ,8* ’R]Rz
VR R i
Xym - — 63) X,=R,R,n8 (6.4)
sin f§ ,'_‘—'R‘RI
vR;R; —R,cos f8 i
Xypm 2 2P 68 Xy=RR,— B (6.6)
sin '8 R|COS ﬁ—VRle
: i ={: =+ -1 E - -1 :R-—{ -
For LA: use T with X,=0; f=*cos tan i 6.7y
RZ 1il

For LB: use pt with X,—>00; 8 as above, with R, and R, exchanged. (6.8)
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Figure 6.3. Network for T-section analysis.

Then, placing (6.10) and (6.3) from Table 6.1 in (6.11) gives an expression for
the input current:

I =1/5 ¢h (6.12)

= [t s, (6.13)

where £ is the angle by which 1, lags I;.
1t is now easy to verify the input impedance:

Z,=jX, + T (6.14)
1

Using (6.10} and (6.1} from Table 6.1 in (6.14), a little algebra shows that
Z,=R,, as required. For a type-A L section, setting X,==0 in (6.5) provides

Table 6.2. Sample Problem Data for Appendix Program B6-1°

Case R] Rz ﬁ Xl X2 X3
LA 25 50 45 25 ~50 —
LA 25 50 —45 —25 50 —
LB 50 25 45 —50 25 —
LB 50 25 —45 50 —25 —

T 50 50 120 86.60 —50.74 86.60
T 50 50 ~120 —86.60 57.74 —86.60
T 50 50 90 50 —50 50
Pi 100 25 150 —17.45 25 -9.15
Pi 100 25 -150 17.45 —25 9.15
Pi 100 25 90 —50 50 —50
Pi 23 100 90 - 50 50 —50

“Values are in ochms and lagging degrees.
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the phase angle expression (6.7); the latter also displays the requirement that
R, <R;.

The relationships in Table 6.1 have been programmed in BASIC language
Program B6-1 (listed in Appendix B together with a flowchart). Table 6.2
contains sample data for program verification and illustration.

Example 6,1, Match a load impedance of 6+ j0 ohms to an input impedance
of 25+j0 chms using L sections. The solutions are shown in Figure 6.4. The
required equations appear in Table 6.1. A type-B L section is required, since
R,<R,. The phase must have a magnitude of 60.67 degrees. Choosing a
lagging phase (8= +60.67) yields the configuration in Figure 6.4a, and the
leading phase ( 8= —60.67) yields the configuration in Figure 6.4b.

+)10.68 2 —j10.88 &
Y, ]
1
r——D —
2540 0 25+0 02
T—j14.05ﬂ éﬁﬂ +j14.05 §2 éﬁﬂ
{a) th)

Figure 64. Two L sections that match 6 ohms to 25 ghms. (a) Lagging phase; (b) leading phase.

6.1.3. Series-Parallel Impedance Conversions. This section deals with the
equivalence at one frequency shown in Figure 6.5. At first glance, it may seem
awkward to avoid the impedance-admittance convention by calling the recip-
rocal conductance and negative reciprocal susceptance “parallel ohms.” How-
ever, there is a strong tendency to approach problems in familiar units, so that
a practical range of values is recognizable as opposed to blind numerical
procedures. The need to convert between forms arises when the matching
network’s series input or output branch faces a parallel impedance termination
or vice versa. Then the conversion in Figure 6.5 enables a combination of
series (of parallel) reactances in the termination and the network branch. The

O O

Figure 6.5. Two impedance forms that are equivalent at a frequency.
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concept facilitates complex matching (Section 6.1.4) based on the resistive
matching described in Section 6.1.2.

Convenient equations are derived by considering the equivalence of admit-
tance and impedance forms:

o1 R, .. =X
Y=G+jB=--= + ; 6.15
PR TR (1)
where Z =R +jX,. An important definition is
X _ Ry
Q=== 6.16
R, X ©19
Then (6.15) shows that
R,=R(1+Q?%, (6.17)

thus the name “1+ Q?” method. The conversion procedure is to solve (6.16)
for the appropriate Q and (6.17) for the appropriate R. Then the unused Q
relation from (6.16) leads to the unknown reactance X. On hand-held calcula-
tors it 1s tempting to program the conversion in (6.15) using built-in rectangu-
lar-to-polar functions. However, they execute much more slowly than the Q
relationships. Program AG6-1 in Appendix A performs these calculations on
function keys A and B using only interchange operations in the four-register
stack. The Q concept will be of major importance in this chapter and in
Chapter Eight.

Example 6.2. Suppose that the series impedance 6+j12 ohms is required in
the parallel form shown in Figure 6.5. Following the data input convention (X
before R) given with Program A6-1 listing, key A produces R =30 in the X
register and X, = + 15 (inductive as required) in the Y register. Key B changes
the form back to series again.

Another useful relationship is the inverse of (6.17):

Q=-\/%3—1 . (6.18)

An alternative to the equations in Table 6.1 is to design L, T, and pi networks
by a sequence of 1+Q? conversions. Example 6.1 could have been worked
using (6.18) to find that Q=1.7795, Then (6.16) shows that X = + 10.68 and
X,= +14.05. This type-B L section could have been extended by a type-A L
section to form a T network. In this approach, the internal parallel resistance
level replaces the transfer phase as the arbitrary parameter. An extension of
(6.18) involves the L-section branch reactance ranges necessary to match a
load impedance of bounded standing-wave ratio (SWR) to a desired source
resistance. For the load SWR §,, defined with respect to a nominal load
resistance R,, the values of the L-section branch Q are bounded by the
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Figure 6.6. Two reactances in parallel and their equivalent reactance.

/R
max . _ Pazl_
min Q= VST - (6.19)

The Q of the output branch is related to the fixed, nominal load resistance R,.
The extreme values of the two L-section branch reactances do not occur at the
same particular load impedance. Derivation of (6.19) is easier to visualize after
discussion of the Smith chart in Section 6.1.5.

Combining two reactances in series requires simple addition, Retaining the
convenience of calculation in ohms, combining two reactances in parallel
requires the relationship

extreme values

X = %2 X 6.20

XX, T+X/X;C (6.20)

This 1s shown in Figure 6.6. Another common requirement is the calculation

of one of the paralleled reactances (e.g., X, in Figure 6.6) so that the

combination with a given X, produces the given equivalent X, The relation-
ship can be obtained from (6.20) and put in that functional form as well:

(=X
I (-X)/XC

X, {6.21)
Since the functional forms of (6.20) and (6.21) are identical, programming the
functions requires only one algorithm, except for a sign change for reactance
X,. Keys C and D in Program A6-1 evaluate (6.20) and (6.21), respectively,
These simple functions are surprisingly useful in practice.

Example 6.3. Referring to Figure 6.6, suppose that X,= —30, and X,=75
ohms. Entering these into Program A6-1 and pressing key C yields X= —350
ohms. Conversely, entering first X= — 50, then X, = —30, and pressing key D
yields X,=75 ohms.

6.1.4. Complex Sources and/or Complex Loads. The simplicity of the
matching relationships discussed so far hides the muliiplicity of solutions that
may or may not exist in particular cases. The general case of matching a
complex load impedance to a source with complex generator impedance will
illustrate the subtleties often encountered.
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Z
Figure 6.7. Problem for Example 6.4 considering both kinds of L-section networks.

in

Example 6,4, Consider the matching problem illustrated in Figure 6.7, where
Z,=20—;10 ohms and Z; =6+]I2 ohms, and both types of L sections are to
be used. The parallel equivalent of the source is 25|| —j50, where the symbol |
will be used to mean in parallel with. The type-B L section will thus require
solutions from a 6-ohin resistance to a 25-ohm resistance, as obtained in
Example 6.1 (X, =+ 14.05 and X,= ¥ 10.68 ohms reactance; see Figure 6.2).
To minimize confusion, the reactances inside the type-B matching network
will be designated X, and X,,, as shown in Figure 6.8. The load was given in
series form, and its reactance can become a part of the hypothetical matching
clement X,, as shown in Figure 6.8. Then X, = —1.32 ohms by subtraction.
Use Program A6-1 to find X, : enter — 14.05, then —50, and press key D. This
evaluates (6.21) and yields X, = —19.54 ohms. As a check, convert the load
mesh, 6+j10.68 ohms, to parallel form (25.01]]j14.05). Then combine paraliel
reactances j14.05|| —j19.54, using key C, to obtain the equivalent +;50.01
ohms. Figure 6.8 shows that this reactance will be canceled by the source
reaclance, leaving a match to the 25-ohm parallel resistance in the source.
Note that the matching network actually used is composed of two capacitors;

iX, +j12
A

X,

q) 25 —jB0 iX, RY

7 .

X, +1068 —10.68

X, -1405 +14.05

X, - 132 —2268 !
X, —1954 +1097 |
Xip 50 50

R, 25 25

inp
Figure 6.8. Solutions for a type-B L-section in Example 6.4.
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Figure 6.9. Solutions for a type-A L-section in Example 6.4.

given a particular frequency, their reactances could be changed to farads. The
second solution column in Figure 6.8 is obtained by the same procedure.

The type-A L-section solutions are obtained by the analysis recorded in
Figure 6.9. The parallel form of the load is required, as obtained in Example
6.2, because the L section ends with a shunt element. Key D is again used to
evaluate (6.21), to obtain X, = —23.204 ochms. The rest of this and the second
solution are obtained as previously described.

Note that a conjugate match exists at any interface in'Figures 6.8 and 6.9,
Also, there is no reason to assume that all L-section solutions must exist. The
problem in Example 6.4 required a type-A section to decrease the resistance
level, and vice versa for type B. T and pi networks may also be used, and they
have an extra degree of freedom. Note in Figure 6.7 that phase § is related to
terminal currents. Because of the series-to-parallel conversions employed,
Figures 6.8 and 6.9 show that phase angle £ does not apply to any of the four
solutions obtained. This is often the case when there are complex termina-
tions.

6.1.5. Graphic Methods. Terman (1943) presented comprehensive design
graphs for L, T, and pi networks using the phase parameter. The use of
computer programs may not be the last word in design technique; the trends
evident in graphic data contribute greatly to problem insight and are hlghly
recommended.

Probably the single most valuable tool in impedance matching is the Smith
chart. It is useful in its conventional form in this chapter; it will be applied
with much more generality in the next chapter. The Smith chart is the bilinear
map of the right-half impedance plane into the unit circle of the reflection
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plane, Normalizing impedances to resistance R,, reflection coefficient (4.57) is
rewritten as the bilinear function

_Z/R;-1
P=Z/R+1° \

The mapping is illustrated in Figure 6.10. Lines of constant resistance map
into closed circles of constant, normalized resistance in the Smith chart, and
lines of constant reactance map into circular arcs of constant, normalized
reactance. On a Smith chart with its center normalized to impedance 1+j0
ohms (or mhos) according to (6.22), any complex number has its inverse
appear symmetrically about the origin; i.e., given a point Z/R,, the point
Y X R, appears on the opposite radial at the same radius, where Y=1/Z. An
easily read surnmary of Smith chart properties has been given by Fisk (1970).

The first result of Example 6.1 is plotted in Figure 6.10. The normalized
reactance (X,/R,=10.68/25=0.43) amounts to a displacement of +0.43
along the normalized constant resistance circle (6/25=0.24). Then, since the
X, matching reactance is a shunt element, the impedance point is converted to
an admittance point by reflection about the origin, as shown in Figure 6.10.
This point is necessarily on the normalized unit circle passing through the
center of the chart {the center representing R, =25+ j0 chms). Now the Smith
chart is considered an admittance chart instead of an impedance chart. Thus
the displacement due to X, = —14.05 ohms is considered a normalized sus-
ceptance of +1/14.05x25= +1.78 mhas, which carries the transformation to
the chart center, as required. The reader should plot the second solution of

(6.22)

h ix z
Constant X
]
|
|
I
I
%—_
Ry R4 R
Canstant R

e
I T T T T T T

1.0 08 06 04 D2 0 02 04 06 08 1.0

Figure 6,10. The ordinary Smith chart (the unit reflection coefficient circle) on the left is a map
of the right-half Z plane on the right.
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Example 6.1, which involves negative reactance and susceptance travel on the
Smith chart. Negative travel is toward the bottom haif of the chart instead of
toward the top half (positive half-plane).

It is strongly recommended that the reader write a small program to
accomplish the calculation of (6.22) and its inverse, so that Smith chart
plotting is simply a matter of locating rectangular and/or polar computed -
numbers, Cases involving complex sources may be treated as in the analysis
above and in Example 6.4, However, a more general treatment will be offered
in the next chapter, where the chart center can represent a complex number.
Many engineers associate the Smith chart with transmission line solutions; this
will be shown in Section 6.2.

6.1.6. Summary of L, T, and Pi Matching. The topic of L, T, and pi
matching began with a comment on the fact that lossless matching networks
exhibit conjugate impedance matches at every interface because of conserva-
tion of power. Then, functionally similar equations were given and verified for
solving T and pi resistive matching network problems in terms of the current-
transfer-angle parameter, The two possible L-section configurations were
treated as special cases of the T and pi configurations when the output branch
was omitted. A small BASIC language program was provided to calculate
element reactance at an assumed frequency.

Series-to-parallel impedance conversions and parallel combination of reac-
tances were described in order to always work with impedances as opposed to
mixed impedance/admittance units. The former strategy has been found
superior because engineers more readily recognize practical ranges of elements
in a single unit of measure. A hand-held computer program was provided for
these simple relationships, and examples were worked. These tools are vital
parts of the complete set of solutions obtained for an example that involves
both complex load and complex source, utilizing L-section matching networks,

Finally, a brief comment was provided on the value of graphic visualiza-
tions in general and the Smith chart in particular. A much more general
treatment of the Smith chart will be furnished in the next chapter.

6.2. Lossless Uniform Transmission Lines

The matching network in these sections will consist of a lossless, uniform
transmission line, as shown in Figure 6.11. The load impedance Z, and the
desired input impedance Z, are given; the unknowns are the real transmission
line characteristic impedance Z, and electrical length 8.

An expression for the input impedance Z, will be derived from Chapter
Four equations. A related reflection equation will be derived for relationship
to the Smith chart. The lossless case will then be examined to produce
solutions for a complex source and a complex load. A more simple result will
be obtained for the case of a real source and complex load; this will result in a
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Figure 6.11. The transmission line-matching problem.

convenient graphic design aid for trend analysis. Finally, two important
techniques vor matching real loads to real sources will be discussed. The
inverter (90-degree ling) will be a main feature in Chapter Eight.

6.2.1. Input Impedance and Reflection Coefficient. The input impedance of
any two-port network was given in terms of its ABCD (chain} parameters in
bilinear Equation (4.18). The ABCD parameters for uniform, dissipative
transmission lines were given in (4.13)-(4.15). It is quite casy to show that
these lead to the following expression for Z, in Figure 6,11:

Zy(Zy+ Zytanh yf)
'" (Zy+Z,tanhyp) '

(6.23)

where vyl =NP+j#; i.e, [ is the transmission line length and NP is the loss in
nepers for this length.

It is useful to retain the dissipative factor in order to show the general
applicability of the Smith chart as a transmission line model. The reflection
coefficient in (6.22) can be normalized to Z, instead of R and then solved for
Z,/Z,:

Z,/Zy—1 Z, _1+4p
=5 —7 O 5 =-——.
Z,/Zy+ 1 Zy, 1-p

A similar expression relates Z,/Z, and p,. The expressions for Z,/Z,, Z,/Z,,
and the identity

(6.24)

et —e—

tanh '}’E = W (6.25)

can be substituted into (6.23) to identify the reflection relationship
P =pze_2YE=P26_2NPe_j20- (6.26)

The Smith chart in Figure 6.10 was described as the reflection plane.
Certainly, load impedance Z, corresponds to a point p, on the Smith chart. In
polar form, the p, angle traditionally is measured counterclockwise from the
real p axis in Figure 6.10. When Z, terminates a {ransmission line of length ¢
as in Figure 6.11, the input reflection coefficient corresponding to impedance
Z, is computed by (6.26). It shows that the angular length of the line is
measured from the p, radial in a clockwise direction with twice the angular
units on the chart plane. For dissipative (lossy) transmission lines, the Smith
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chart locus from p, to p, is plotted with a radius that decays with the angle by
the —2NP exponential term in (6.26); i.e., it spirals inward.

Example 6.5. Consider the lossless (NP =0) transmission line in Figure 6.11,
terminated by Z, =40+ j30 ohms. Suppose that the characteristic impedance is
50 ohms. By (6.24), p,=10.3333 /90°; this is plotted in Figure 6.12, By (6.26),
a 45-degree line rotates p, clockwise by 90 chart degrees to locate input p,; a
90-degree line rotates p, clockwise by 180 chart degrees to locate p,,. By
(6.24), p,,=0.3333 /0° corresponds to Z,=100+j0 ohms; similarly, p,,=
0.3333 /—90° corresponds to Z,;=40-—j30 ohms. If dissipation loss NP had
not been zero, the radius of 0.3333 would have decreased with rotation,

Further considerations will involve only lossless transmission lines; so it is
useful to equate yf=j# in (6.23). This reduces to the input impedance
expression for a lossless transmission line:

Z,+jyZ,
Z=25—=, 6.27
1 0 ZD +Jyzz ( )
where definition (4.22) 1s repeated:
y=tan#. (6.28)

=
(T O O O T (T T A O A

10 08 06 04 02 0 0204 06 08 10

Figure 6.12, Lossless transmission line rotation on a Smith chart for Example 6.3.
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This has been programmed efficiently in Program A6-2; given a value of
Z,=R,+jX,, the sequence X,, R,, # degrees, and the real number Z; are
entered in the stack. Then pressing key A evaluates the input impedance
Z,=R,+jX,, where R isin the X register and X, is in the Y register. The two
cases in Example 6.5 are easily confirmed by this program.

6.2.2. Complex Sources and Complex Leads. Jasik (1961} and Milligan
(1976) have given expressions for finding the Z; and the length of a transmis-
sion line that transform complex Z, to complex input Z, impedances. Day
(1975) has described a Smith chart method, which will not be considered here.
Moving the denominator of (6.27) to the left side and equating real and
imaginary parts, respectively, yields the desired expressions. The real part 1s

R\ Z,—RyX, =X, yR;=ZR,. (6.29)

The imaginary part is
YRRy =X, X, — Z)=Zy(X,— X)). (6.30)

Equation (6.29) yields
y=2q9, (6.31)

where
R,—-R,

TCRX XK,
From (6.31) and (6.28), the electrical length of the required transmission line is
#=tan~'(Z). (6.33)

Substitution of (6.31) for y in (6.30) produces an expression for Z;; further
elimination of q, using (6.32) and some algebra, yields the characteristic
impedance of the required transmission line:

/2
R IZzIZ—Rz(ZJZ)'
A e e 10 6.34

0 ( R,~R, (6-34)

(6.32)

when R,# R, and the square root exits.

These relationships have been included in Program A6-2 on key B. The
desired X,, R,, X, and R, sequence is entered in the stack. Pressing key B
provides Z, in register X and # degrees in register Y if a solution exists.
Otherwise, an error indication is displayed when the HP-67/97 attempts to
compute the square root of a negative number.

Example 6.6, Specifying Z,=10+j20 and Z,=30-j40 ohms requires a
matching line with Z,=22.36 ohms and # =65.91 degrees; this can be checked
using the input impedance calculation on key A. If Z, is changed to 10+j30
with the same Z,, no match is possible, However, Z, can first be rotated by 45
degrees on a 50-ohm line; key A shows the resulting impedance to be
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100+j150. Using this as a new Z, load will produce the required Z, (using
Z,=101.77 ohms and #=94.01 degrees). Thus two cascaded lines can match
10+4j30 to 30—j40 ohms.

6.2.3. Real Sources and Complex Loads. The case in Figure 6.11, when Z,is
real and Z, remains complex, reduces to a Smith chart design aid that is useful
for visualizing ranges of solutions. A Smith chart such as in Figure 6.12 is
considered normalized to the desired input resistance R, (X, =0 is assumed).
Load impedance Z, is similarly normalized to R,:

Z, R, X, :
—ﬁ—l——ﬁ—l+]i~:——r+3x. (635}

Then (6.31) reduces to

(6.36)

f=tan"! -——-—(I_I)ZJR'
x *

Figure 6.13. Smith chart for tansmission fine matching of complex loads normalized to a
destred real input impedance. [From Jasik, 1961.]
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and (6.34) can be written as

2 3 .
(T{Z—‘l’) =r— ]"_r. (6.37)

It is useful to plot loci of constant # and constant Z,/R, from (6.36) and
(6.37) on the normalized Z, plane, i.e., on an r+jx Smith chart grid. Jasik
(1961) has done so, as shown in Figure 6.13. This Smith chart is oriented
differently from that in Figure 6.12 (90 degrees clockwise), so that the negative
half-plane is on the left. Also, the chart perimeter scale for rotation from the
load toward the generator is in £/A—the fraction of a wavelength (360
degrees)}—and the electrical length of the transmission line, (6.39), is similarly
labeled. Feasible solutions must be within either of the two circular areas.

Example 6.7. Suppose that an impedance of 15—j35 ohms must be matched
to 50+j0 chms. Normalizing Z, and the Smith chart to R, =50 ohms gives
r+jx=0.3—j0.7; this is plotted on the left side of Figure 6.13 at the intersec-
tion of the two circular coordinates. The corresponding wavelength scale reads
0.398. Using a compass, this point is rotated clockwise until it is within either
circular area. Suppose that the initial point is rotated at that radius to the
point corresponding to a wavelength scale reading of 0.474; this is the point
also corresponding to Z,/R,=04 and £/A=0325 as shown. Thus, the 50-
ohm line rotation must be (0.474-0.398) X 360=27.36 degrees, Then the chart
indicates that impedance (0.2—j0.16) can be matched by a 0.4 X 50=20-ohm
transmission line that is (.325X360=117 degrees long. This network is shown
in Figure 6.14; there is an infinite number of other feasible solutions.

——G) 202 117° H 50 £ 27.36°

— .
5040 0 1535 2

Figure 6.14, One transmission line network that solves Example 6.7.

6.2.4. Real-to-Real Transmission Line Matches. There are two transmission
line-matching cases that deserve special mention. The most important is a
lossless, 90-degree line called an impedance inverter, As 8—90 degrees, (6.28)
shows that y—=>ec. Also, (6.27) then shows that the input impedance of a
90-degree line is

Z,=22, (6.38)

A 90-degree line is equivalent to 0.25 wavelengths, or half a Smith chart
rotation, as shown in Figure 6.13. Although (6.38) is true whether or not Z, is
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6° 8°
> Z -
R, +j0 :—>Z' 4 R,
f

Figure 6.15. Two lossless cascaded transmission lines that match load R, to generator R ; they
have the same length and Z, values of R, and R, as shown.

real, Figure 6.12 shows that Z, =0.5 when Z,=2 and Z,=1. One easy means
for matching two resistances is to use a 90-degree line having a characteristic
impedance that is their geometric mean. Inverters have a much more impor-
tant role in direct-coupled filter design, as explained in Chapter Eight.

A useful real-to-real transmission line—matching network that is less than
60 degrees long was described by Bramham (1961) and considered in Problem
4.7. It is shown in Figure 6.15. As discussed in Section 6.1.1, conjugate
impedances exist at any interface in lossless networks, specifically as shown by
Z and Z* in Figure 6.15. The solution for the common line lengths, obtained
by another method in Problem 4.7, can be addressed by this principle. Equate
the impedance looking left from the middle of Figure 6.15 to the conjugate of
the impedance looking to the right:

Ry(R;+jyR;) _ Ri(R,-jyRy)

- = - 6.39
R, +JyR, R,—jyR, ( )
The result of cross-multiplying is
—2_R*—1
= , 6.40
Y TR (6.40)
where R=R,/R,. Long division of the right-hand side yields the final design
relation:
_ 0 l - |/2
f=tan [(R+l+ R) J (6.41)
Because of symmetry in (6.41),
R2 *1
R= (R_|) . (6.42)

Key D in Program A6-2 evaluates (6.4]1) given a value of R. For small R,
analysis shows that the SWR slope versus frequency is only about 15% greater
than for the longer 90-degree matching line (inverter). It is easy to use (6.41)
to show that # < 30 degrees, and this occurs for R—1 (see Przedpelski, 1980).

Example 6.8. Suppose that a 50-chm coaxial cable must be matched to a
75-ohm coaxial cable; i.e.,, a 50- to 75-ohm resistive match is required over
some narrow band of frequencies. According to Figure 6.15, the input line

o -
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segment should have Z;=50 ohms and the output sggment should have
Z,=75 ohms. Evaluation of (6.41) using Program A6-2, key D shows that
each line should be 29.33 degrees long at the specified frequency.

6.2.5. Summary of Transmission Line Matching. The dissipative transmis-
sion line ABCD parameters presented in Chapter Four were employed to
show how a clockwise spiral locus on a Smith chart models the input
impedance or reflection coefficient of a terminated transmission line as a
function of line length. Also, the same function was obtained for lossless lines.

Transformations of load to input impedance when at least one is complex
are not always possible with a single line segment. Exampies for both complex
and real source impedances show that it is possible to rotate a given complex
impedance until it can be transformed to the specified resistance by a second
transmission line segment. The process was graphically illustrated for real-
source situations.

Finally, the 90-degree line transformer (inverter) was mentioned with
respect to its Smith chart behavior and importance in direct-coupled filters
{Chapter Eight). Then a simple two-segment transmission line—matching net-
work was described that is less than 60 degrees long and matches resistances
over narrow frequency bands. Its derivation emphasized the fact that
matched, doubly terminated lossless networks of any kind exhibit conjugate
impedance matches at any interface. Computer Program A6-1 was provided
to evaluate these important lossless transmission line relationships,

6.3. Fano’s Broadband-Matching Limitations

Fano (1950) described a complete theory for the design of optimal {owpass
matching networks when the load impedance could be specified as that of
some LC subnetwork terminated by a resistance (see Z, in Figure 6.1).
Previously, Bode had given the gain-bandwidth-maiching restriction for load
impedances consisting of a series LR or parallel CR. The next three topics
presented here will involve the most practical of these load networks. They are
shown in Figure 6.16 in lowpass form.

Y Y
—_— —
Zy 2z, |
% 1 rC, %1

(a) (b}

ik

Figure 6.16. Lowpass load impedance forms having two reactances. (a) Series resistance; (b)
parailel resistance.
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Although Fano’s theory is usually presented in lowpass form, with a
passband from dc to some edge frequency (e.g., 1 radian) as a matter of
convenience, most practical applications relate to a given pass band between
specified frequencies well above d¢. Sections 6.5 and 6.6 will include more
details of mappings of the lowpass frequency range to an arbitrary bandpass
frequency domain. However, it is useful to display the most common band-
pass load networks that may be derived directly from the lowpass prototypes
shown in Figure 6.16. (The matching network changes in exactly the same
way).

Comparison of Figures 6.16 and 6.17 shows that shunt capacitors are
replaced by shunt resonators (tanks) and series inductors are replaced by
series resonators. For a passband from w, to w, and a geometric band-center
frequency wp=yww, , the passband fractional width w=(w,~w;}/w, mainly
determines the bandpass-load element values. For example, C{=C, /w and L
resonates C} at band-center frequency w,. In most cases, the bandpass-load
network model is found and iranslated to its comparable lowpass form for
matching network design. Further reference to one- or two-reactance loads
will always relate to the lowpass prototype networks in Figure 6.16.

Suppose that the physical problem is matching a short whip antenna to
50+3;0 ohms over a freguency band. Resonating the {capacitive) antenna at
band-center frequency by adding a series inductance often makes the resulting
frequency behavior correspond approximately to a series resonator, ie., the
load network in Figure 6.174 without the C5-L} resonator. If the physical load
impedance to be matched is the input to a more sophisticated antenna, the
network model probably wiil be substantially more complicated.

The initial task of deciding which resistively terminated LC network
corresponds to the physical load is called load classification. The load data
may determine the rational polynomial associated with Figures 6.16 or 6,17
using the method in Section 2.5, Or, an optimizer might be used to repeatedly
analyze a network configuration in order to adjust element values to match
the known frequency behavior of the load, There have been many sophisti-

L c L c,

— '[c‘ L 1 —_— i’ L %1
22 ‘[ 2 2 ? Zz Al gl >

(a) {6)

Figwe 6.17. Bandpass load impedance forms having two resonators. (a) Series resistance; (&)
parallel resistance. ‘
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(ol Log!

F

: 2]
Figure 6.18. Matching networks with load elements gy, g,, and perhaps g, for (a) odd n and ()
even n,

cated schemes for load classification. However, it is possible to develop a
useful intuition for load models by accumulating experience in Smith chart
impedance sketching. Load classification will not be discussed further; for
Fano’s method, it is assumed that the problem begins with one of the four
load networks in Figures 6.16 and 6.17. Carlin’s method (Section 6.7) is a
means for largely avoiding the load classification problem,

The prototype lowpass matching network will have elements numbered
from the load resistance back toward the source, as shown in Figure 6.18.
Results for the load configuration in Figure 6.16a will be the same, except that
L., C, and L,, C, are interchanged, respectively.

This section will present and discuss Fano's gain-bandwith integral limita-
tions for the loads in Figure 6.16. First the ultimate limitation for the case of
an infinite matching network terminated by a single-reaciance load will be
described, then a Chebyshev approximation of finite degree will be developed.
The single degree of freedom will be identified and used to express an optimal
matching relationship. Finally, the Newton-Raphson solution of the transcen-
dental function related to a single-reactance load will be solved, and the
optimal matching network performance will be summarized graphically as
computed by an included BASIC program.

6.3.1. Fane’s Gain-Bandwidth-Integral Limitations. It has been mentioned in
several places that the impedances looking left and right at any interface in
lossless, matched, doubly terminated networks are conjugate. For mismatched
networks with resistive terminations at each end, any interface presents an
equivalent Thevenin generator looking toward the source and its equivalent
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load impedance looking toward the load. This circumstance exactly fits the
discussion of power transfer from a complex source to a complex load in
Section 3.2.3. In Figure 6.18, the reflection coefficient p, is defined with
respect {o resistance gy, and p is defined with respect to g, ,. For lossless
networks, the power available at the source is also available at the load. From
Section 3.2.3,

lel = |pol, , (6:43)

where
_ ZiiBnis
Z'm+ Ena1

Clearly, a good impedance match occurs when Z; is nearly equal to the
generator resistance g, ; this is precisely stated as the minimum [p|. Over a
frequency band, a good impedance match would be obtained by minimizing
the maximum {p|. This is shown in Figure 6.19.

Fano (1950) stated the theoretical limitation for load networks represent-
able as resistively terminated LC networks, such as in Figure 6.16. Their
lowpass form is

(84, in ohms). (6.44)

o, ] 7
In—dw=— 6.45
fO |P] g ( )

for single-reactance loads, and

2 1)
ln—d - = 6.46
f, e g des (gz 3 (646)

for two-reactance loads. Note that the integrand is essentially the return loss
in (4.58). The interpretation for the gain-bandwidth limitation described by
(6.45) is illustrated in Figure 6.19 for the bandpass case: the reflection
magnitude may be low (good match) over a narrow band or higher (poor
match) over a wider band. Fano noted that in no event should the reflection
magnitude in the band be zero, as is commonly the case with filters. Making
1/]p|] very large at any point in the pass band necessanly reduces the
bandwidth because of the inefficient use of the areas in the integrals above,

Case 1:
Narrow
band

Case 2:

band

Reflection coefficient
magnitude, 'p|

!

i

I

1
0 BN W, Wy Wy Wy
Radian frequency, w

Figure 6.19. Constant gain-bandwidth tradeoffs for a good match over a narrow bandwidth
(case 1) and a poor match over a wide bandwidth (case 2). {From Matthaei et al., 1964.]
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Figure 6.20. An ideal reflection function for optimal match over a frequency band.

Ideally, the bandpass reflection coefficient function p should be in the form
of the rectangular box illustrated in Figure 6.20. The box function can be
fitted exactly using a polynomial of infinite degree, corresponding io a
network having an infinite number of elements. For this upper limit, it is
useful to evaluate (6.45) as applicable to a single-reactance load. For a
constant reflection value of |p,,.} from @ 10 w, and unity {complete reflec-
tion) elsewhere, the result for matching networks of great complexity is

1 T
wy— o in—— €= 6.47
(@it T RC (64)
The least possible |p,,,] is thus

mi|p, . |=€"%, (6.48)
where the decrement 8 is the main matching parameter:

5 4 L _ Qew 1
w, —w; weg R QL wQ,

(6.49)

This definition is suitable for both bandpass and lowpass cases. For bandpass

networks, wy= yw,u, , the geometric mean frequency. It is convenient to label

the first fraction in (6.49) the “Q” of the bandwidth. For lowpass networks,

wo=w, (the upper band edge) and w, =0, so that Qpw = 1. In both bandpass

and lowpass cases, the second fraction in (6.49) is clearly a parallel Q, as

previously defined by (6.16). A common alternate parameter for Qg is the
fractional bandwidth w:

Wy Wy

=2 71 6,50

W=t (650)

It is convenient to express the least possible standing-wave ratio (SWR) in
these terms using (4.59):

. _ e+
min SWRmax_- ;‘;’_——T . (65 l)
Program A6-3 in Appendix A calculates (6.51) using (6.48); this is available
-on key A,
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Example 6.9. What is the least possible input standing-wave ratio over a 50%
bandwidth for a matching network terminated by a load with Q, =3? Enter 3
and then 50 into the HP-67 stack in Program A6-3; key A evaluates {(6.48) and
(6.51) to vield min§,,=1.28: L.
6.3.2. A Chebyshev Approximation of the Ideal Response. The fact that there
is a finite amount of reflection over a band, as illustrated in Figure 6.20, is
equivalent to a certain amount of transducer loss, as described by (3.49) in
Section 3.2.3. The standard lowpass approximation to box-shaped losses of
this sort is illustrated in Figure 6.21. Compare this to the bandpass shapes in
Figures 6.19. The function that corresponds to Figure 6.21 (passband edge at 1
radian) is

H(w))*=1+K*+ £*T(w), (6.52)
where T,(w) is the Chebyshev function of the first kind described in Section
2.4.1. This is similar to the Chebyshev responses synthesized according to
Problems 3.16 and 3.17 (Chapter Three), except for the “flat-loss™ term K>

Because of the gain-bandwidth integral limitation, the main interest is in
the related reflection coefficient. Equations (3.49) and (6.52) yield

. (K/ e)* + Ti(w)
lel= (1+K /e + T2 (w)

(6:53)

It is a reasonably straightforward process to obtain an expression for the
s-plane poles and zeros of (6.53), considering its squared-magnitude form,
p(s)p( —s), according to (3.50) (see the similar derivation in Guillemin, 1957,
pp. 596-598). The s-plane poles of {(6.53) are

sinh[iaij (m+~)], n is even;
5=

T
n (6.54)
sinh[ia:tj%m], nis odd,

TH(w) 12

1+K? +¢?

1+K?

Y

Figure 6.21. A Chebyshev approximation to a lowpass transducer function with flat loss.
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where m is an integer. A useful identity is (4.16), which reduces the computa-
tions to an evaluation of real sine and cosine functions. The process of
expressing the roots results in the defining equations for two important
positive parameters, a and b:

. 1+ K?
smhz(na)= T , (6.55)

sinh?(nb) = (%)2 (6.56)

The zeros of the reflection coefficient in (6.53) are given by (6.54), with b
substituted for a. With (6.55) and (6.56) substituted into {6.53), useful expres-
sions are obtained for |p|,,, 8nd |p|min. corresponding to T%(w) values 1 and 0,
respectively:

_ coshnb 6
‘plmax COSh na ’ ( 57)
__ sinhnb
1Plmin = sinhna ’ (6.58)

The poles and zeros of p(s} are available from (6.54); these are significant
because p(s)=e(s)/f(s) and p(s)=1 according to (3.52)-(3.55) in Section 3.2.4.
Choosing —a in (6.54) locates the required left-half-plane poles for e(s). Fano
showed that choosing only left-half-plane zeros for p by using —b in (6.54) in
place of *a maximizes the broadband match for ladder networks.

It is now clearly possible to synthesize the network; this could be started
from either end. Usually, synthesis is not necessary. However, there is a
crucial relationship involving loads with a single reactance (g, in Figure 6.18).
This relationship turns out to be

26,51’11% =sinha—sinhb, (6.59)
where the connection to g, is through the decrement (6.49),

So far there is one degree of freedom remaining: given the bandwidth and
load Q, (6.59) relates parameters a and b; one of them can be chosen
arbitrarily. Then the flat loss and ripple in Figure 6.21 are determined by
(6.55) and (6.56). Other orders of parameter selection for using the available
degree of freedom are possible.

6.3.3. Optimally Matching a Single-Reacrance Load. The objective is to use
the one degree of freedom that is available for single-reactance lowpass loads
(RC or RL) to mintmize the maximum reflection coefficient (6.57) over the
band. The constraint is the relationship in (6.59), and the variables are
parameters a and b. The number of elements (n) in the networks of Figure
6.18 includes the load reactance g,. Following Levy (1964), this minimization
is determined analytically by employing a Lagrange multiplier, as described in
many calculus textbooks.
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The functional multiplier A is defined as
b=Aa, (6.60)
and this is substituted in the |p|,., expression (6.57). Differentiating the

resulting expression with respect to parameter a and sethng this to zero, as
necessary for a minimum, yields

_ tanhna
tanhnb (6.61)
Similar substitution of (6.60) into (6.59), followed by differentiation, yields
_cosha : '
" coshb’ (6.62)

Now A may be eliminated from (6.60) and (6.61) to produce the necessary
condition for minimum |p|_,,:

cosha coshb ’

which is still subject to the constraint in (6.59). Note that the integral
limitation in (6.45) was not used directly in this case; however, it does indicate
that the minimum must exist. :

Simultaneous solution of (6.59) and (6.63) produces the values of parame-
ters a and b; thus the ripple parameter ¢ and flat-loss parameter K are
obtained according to (6.55) and (6.56). The selectivity expression (6.52) is
then known, and all matching network elements may be found, as shown in
Section 6.4.1. The two equations to be solved are transcendental and thus
nonlinear. Newton’s method from Section 5.1.5 will be applied.

Equations {6.59) and (6.63), respectively, define the functions

tanhna _ tanhnb (6.63)

f (2,b)=sinha—sinhb—28 sin% (6.64)
and
f,(a,by=h(a)—h(h), (6.65)
where the defined function h with dummy variable x is
= lanh nx
h(x) oshx - {6.66)

Solutions are obtained by determining the values of a and b that make
f,=0=f,. The Jacobian matrix requires expressions for the partial derivatives
of f, and f, with respect to a and b. It is helpful to employ the derivative
expression for (6.66):

n — (sinh nx)(cosh nx){sinh x) /(cosh x)

(cosh? nx)(cosh x)

b (x)= (6.67)

Estimated changes in variables a and b to approach a solution are obtained
according to (5.37) and (5.38).
Starting values of a and b for the Newton-Raphson method are especially
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important in obtaining Fano’s optimal solution. Good estimates are
. - -0, =W
a=sinh ‘[6(1.76 06 4 1)sm2—n] (6.68)

and
b=sinh"[8(l.78 o6 ])sin:,z-"-;-l-] (6.69)

for b greater than zero. These were obtained by the author by studying the
optimal-solution graphs of Green (1954, pp. 66—69). They will always satisfy
the constraints in (6.59) or {6.65). The estimate of the solution for f, in (6.65) is
usually close enough for engineering work without iterative refinement. This is
an important observation when using programmable hand-held calculators.

Program B6-2 in Appendix B implements the Newton—Raphson iterative
procedure just described. It is a small BASIC program, and usually converges
reliably. For very large values of Q and/or bandwidth, a damping factor of
0.5 in both variable steps (lines 480 and 490) may be necessary to obtain
convergence.

Example 6.10. Example 6.9 considered an infinite matching network. Pro-
gram B6-2 may be used to obtain optimal matching solutions for finite
lowpass matching networks. What range of SWR occurs over a 50% passband
for Q, =3 and degree n=3, 5, 8, and 50? Running Program B6-2 produces the
performance data in Table 6.3, as illustrated in Figure 6.22.

Table 6.3. SWR Ripple Over a 50% Passband for Networks of
Varying Degrees Terminated by Q, =3

Qv %BW* n Min SWR Max SWR
3 50 3 1.3833 1.5486
3 50 5 1.3343 1.4006
3 50 8 1.3095 1.3385
3 50 50 1.2828 1.2840
“BW =bandwidth.

SWR ——=

Figure 6.22. Lowpass response showing pass-
band SWR ripple.
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Figure 6.23. SWR /reflection limitations versus decrement of a lowpass or bandpass matching
network of degree n.

A graph that plots SWR (and equivalent reflection magnitude) versus
decrement (6.49) for various network degrees (n) is a useful design tool. This is
easily obtained from Programs B6-2 and A6-3 (see Figure 6.23). Recall that an
n=1 network is the load itself (Figure 6.18); n=2 represents a single matching
element in a lowpass network, and clearly this is the greatest single improve-
ment possible. The data in Example 6.10 and Figure 6.23 show the rapidly
diminishing return for increasing the total network degree to greater than n=5
or 8.

6.3.4. Summary of Fano'’s Broadband-Marching Limitations. Fano (1950)
published a complete analysis of ideal, lumped-element matching networks
that were terminated by load subnetworks of similar structure and ended in a
resistance. The usual theoretical extensions of his results have been for
lowpass networks, but the common application has been for bandpass cases.
There is a simple correspondence between lowpass and bandpass networks
that is useful to have in mind during development of the subject; it was
introduced here, but its details will be described in Section 6.5. Fano's
approach does not deal with the task of load classification, the process of
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identifying which lowpass LC network terminated by a resistor corresponds to
the physical load being matched. It was suggested that the methods described
in Section 2.5 and Chapter Five were applicable; here, it is assumed that the
Fano load network is known. For practical applications, his lowpass network
structures are terminated by no more than a series L, followed by a parallel
RC or a paraliel C, followed by a series RL, i.e, one- or two-reactance
lowpass loads. i

Fano's bandwidth limitations apply to lossless, doubly terminated net-
works; i.e., they have resistors on both ends, Then the magnitude of the
generalized reflection coefficient in Section 3.2.3 must be constant at a
particular frequency at all network interfaces, especially at their input and
output ports. Certainly, a small input reflection coefficient magnitude corre-
sponds to a good input impedance match, Fano showed that the integral over
all real frequencies of the return loss is equal to simple functions of the load
components, The ideal reflection coefficient behavior would be some small
constant value over the frequency band of interest, and unity (complete
reflection) at all other frequencies. Then the integration of this constant
provides a simple estimate of the best-possible matching using an infinitely
complicated matching network (given the one- or two-reactance-load net-
work). The classical load parameter was defined as the load decrement; it is
the ratio Qgw/Qp, where Qpy is the geometric-mean bandpass frequency
divided by the bandwidth, and @, is the series X/R or parallel R/X at the
band mean frequency. For the lowpass case, the decrement is equal to 1/Q,,
computed at the band-edge frequency.

An equal-ripple approximation to the ideal “box” shape for the reflection
frequency function is obtainable as a Chebyshev function; it was defined as a
transducer function and converted into a reflection function according to
Section 3.2.3. The expression for the s-plane poles and zeros of the rational
reflection function was given in terms of the two defined parameters a and b.
The maximum and minimum values of the reflection magnitude were derived
from the equal-ripple Chebyshev function. Because the poles and zeros of the
reflection coefficient were available, it was noted that matching network
synthesis was possible. However, for the present application, this was men-
tioned only to justify the first stage of such a synthesis, which could produce
an algebraic expression for the first load reactance. This expression is a
constraint on the reflection relationship, which still leaves one degree of
freedom in the matching analysis.

One application for the single degree of freedom of single-reactance loads is
to minimize the maximum passband reflection coefficient magpitude while
satisfying the load reactance constraint. One function was obtained by using a
Lagrange multiplier to minimize analytically the maximum reflection magni-
tude; the constraint was a second function. Then Newton’s method was
applied to solve the two nonlinear functions for the values of parameters a
and b. Expressions for their starting values were given; these are sufficiently
close to a solution so that the Newton iteration may be dispensed with when
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only hand-held computers are available. BASIC language Program B6-2 was
provided to determine optimal matching performance. A comprehensive
graph of SWR /reflection versus load decrement for varying network degrees
was obtained. It is clear that the number of lowpass network components,
inciuding the single-reactance load, should not exceed about eight, because of
rapidly diminishing returns. There are other ways to use the single degree of
freedom available for single-reactance loads. These will be exploited in Sec-
tions 6.4.2, 6.4.3, and 6.6.

6.4. Network Elements for Three Source Conditions

The network LC-element values wiil be determined in this section by recursive
formulas. Three types of sources will be considered (see Figure 6.18). First, the
resistive source consisting of g, , will be considered, as originally assumed;
the first matching network element is then g,. Second, a single-Teactance
source, consisting of both g ., and g, will be specified so that the first
matching network element will be g, _,. Finally, an ideal current source will
be considered. In all of these cases, the load wili have a single reactance,
namely g, in Figure 6.18.

The poles and zeros of the reflection coefficient have been given as
functions of design parameters a and b (see (6.54)). It was noted that the
synthesis of the network element values by the methods described in Chapter
Three is straightforward but tedious. However, Green (1954) carried out
detailed calculations for cases of low degree and guessed an expression for
element values of networks of any degree. It has since been discovered that
Takahasi published a complete derivation and proof of general results in
Japanese in 1951; the interested reader is referred to Weinberg and Slepian
(1960). The closed formulas for element values are easily evaluated once the
singte degree of freedom is assigned; i.e., parameters a and b are chosen.

6.4.1. Resistive Source Optimally Matched to a Single-Reactance Load, A
resistive source optimally matched to a single-reactance load is illustrated in
Figure 6.18, where the source real part is g, ; the matching network includes
g, through g,, and the load consists of g, and gy=1. For the lowpass network
in Figure 6.18 with a passband edge at 1 radian, (6.49) and (6.59) yield

_ sin @
. gi=2 sinha—sinhb’ (6.70)
where angle # is
6= (6.71)

Parameters a and b are found approximately, from (6.68) and (6.69), or
exactly, by the Newton-Raphson iterative procedure in Section 6.3.3.
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Green’s recursive element formula is
4sinf(2r—1)8]sin[ (2r+1)8) /g,

= ‘ _ . (6.72)
sinh®a +sinh”b+sin“(2rd )—2sinha-sinh b- cos(2r#)

Brsi

for r=1,2,...,n— 1. The source series resistance or shunt conductance shown
in Figure 6.18 is
_2 sinf
o1 = g Sinha+snhb (6.73)

Note that the source resistance or conductance is dependent. This must be
accepted in lowpass networks, but Section 6.5 will show how to provide for
fairly arbitrary source resistance levels in corresponding bandpass networks.

Program B6-3 in Appendix B contains Newton’s method (Program B6-2)
without the print statemenis; it also performs the prototype clement calcula-
tions in (6.70)-(6.73).

Example 6,11, Find the prototype element values for an n=3 network that
optimally matches a load impedance with Q; =3 over a 50% bandwidth. The
SWR ripple is shown in Table 6.3. Also, as a result of the Newton—Raphson
iterative solution, a=0.8730 and b=0.3163. Program B6-3 continues to com-
pute g, =1.5, g,=0.8817, g,=1.0561, and g,=0.7229. According to Figure
6.18, when n is odd, the g, value is the necessary source resistance. Also,
note that g, is simply the inverse load decrement according to (6.49).

6.4.2. Complex Source and Complex Load. For a complex source and
complex load, the given load decrement is 8,=1/g;. From (6.59),
_ sinha—sinhb

% 2sind (6:74)
where # is given by (6.71). The source is now assumed to have a single
reactance as well as a resistance. This is another way to assign the single
degree of freedom identified in Section 6.3.2. Figure 6.18 shows that the
source decrement is

1
é,= . 6.75
" gngn+l ( )

However, using (6.73), the source decrement can also be expressed as

_ sinha+sinhb
81.1 - -.l—zsi.rﬁ_— . ) (6.76)

Given the source and load decrements, simultaneous solution of (6.74) and
{(6.76) for a and b is possible:

sintha=(8, + &,)sind, 6.77)
sithb= (8, —8)sin8. (6.78)
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Since sinh is an odd function and parameter b must be positive, (6.78) requires
that § > 8,. The prototype g, recursion (6.72) was presented as starting at the
go=1-ohm end of the network; for this complex source/load case, the 1-ohm
end must be the lower decrement end, whether it is the load or the source.

The design procedure is to solve (6.77) and (6.78) and use these values in
(6.70)—(6.72) to obtain the element values; start with g, equal to the reciprocal
of the lesser decrement. The ending real element is again dependent and given
by (6.73) or by rewriting (6.75):

—— ?ng , (6.79)
using the greater decrement for §,. The central (n —2) elements in Figure 6.18
constitute the matching network. The prototype elements are numbered as
shown in Figure 6.18 if the load decrement is less than the source decrement;
i.e., the 1-ohm end belongs to the lower decrement. If the source decrement is
less than the load decrement, then the source is normalized to 1 ochm and the
g. values from (6.72}) are generated from the source end to the load end.

Example 6,12. Suppose that both source and load terminations included
shunt capacitors with decrements of 1.35 and 1.25, respectively. Find the
lowest-order matching network and its range of passband SWR. Figure 6.18
shows that only odd-degree networks can have shunt capacitors at both ends.
Choosing n=3, (6.77) and (6.78) yield sinh a=1.300 and sinh b= 0.050. Since
load reactance g, is a reciprocal decrement, g, =0.8. Using (6.72), g, =1.0514
and g,=0.7585. By (6.79), the source resistance is g,=0.9766 ohms. The SWR
ranges from 1.0240 to 1.1726 according to (6.57), (6.58), and (4.59).

The networks discussed in this section incorporate single-reactance sources
and loads exactly. However, they may not have the least possible SWR .
when both given decrements are less than the source decrement oblained by
the optimal network in the preceding section. When this is the case, the
“optimal™ g, reactance or susceptance may be increased (as part of the
matching network) and thereby decrease the decrement to the higher of the
given values (see (6.75)). Therefore, given two values for source and load
decrement, the lesser of the two should be used first in Program B6-3. The
resulting source decrement should then be computed by (6.75); if it is greater
than the given decrements, the “optimal” network should be used, with g,
increased as described.

Example 6.13. The lesser of the two decrements in Example 6.12 was 1.25,
which is equivalent to load decrement g,=0.8. Using Program B6-3 (with
n=3, Q_=0.8, and BW=100%, according to (6.49)), obtain g, =08, g,=
0.9484, g,=0.6424, and g,=0.9211. By (6.75), §,=1.6900, which is greater
than the 1.35 decrement given. In fact, (6.75) shows that a 1.35 decrement
corresponds to a g; value of 0.8042 for g,=0.9211. Therefore, the best solution

(- S N
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Figure 6.24. A network solution for Example 6.13 where decrement padding is applicable.

is not that in Example 6.12. If g; is padded by adding a matching network
shunt capacitor equal to 0.8042-0.6424=0.1618 farads, then the SWR ripple
(from Program B6-3) will be between 1.0856 and 1.1535, which is better than
the solution in Example 6.12. This network is shown in Figure 6.24.

6.4.3. Reactive Source and Complex Load, Referring to Figure 6.18a, source
resistance g, , ,—> oo implies an ideal current source excitation by conversion to
the Norton form. Conversely, it may be concluded from Figure 6.18b that
source conductance g, ,—0 implies an ideal voltage source excitation by
conversion to the Thevenin form. However, g,, , in Figure 6.18 is dependent,
and g, is independent. Therefore, it is convenient to reverse the ends of the
network so that g, is adjacent to the scurce. Consider the resullant ideal
current source shown in Figure 6.25. The infinite source impedance in parallel
with g, causes decrement §, to approach zero, corresponding with infinite Q.
By (6.74), parameters a and b must be equal. The power available from the
source is infinite. However, application of (6.52), (6.55), and (6.56) yiclds

P
P:: =¢oth?na. (6.80)

Recursion (6.72) still applies, conveniently converted to the equivalent form
4sin[ 2r—1)8]sin[ 2r+ 1)8] /g,
2(sinh®a)(1 —cos 2r8 ) + sin” 2rf

(6.81)
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Figure 6.25. A lowpass network for a reactive current source.
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which may be processed using decreasing subscripts: r=n—1,...,1. The g
starting value comes from (6.73), with g, =1, and (6.76):
sind
= : 6.
Bn™ Sinha (6.82)

The design procedure requires that parameter a be determined from either
power variation (6.80) or load reactance (6.82). Then (6.81) determines all
element values, including the dependent g,. Often, g, is also specified; the
problem has no solution if the calculated g, is not at least as large. By the
duality principle, this method may be extended to the zero-impedance (ideal
voltage) source or load problem.

Example 6.14. Consider the singly terminated network in Figure 6.25 for
n=5. Suppose that g,=0.8 and g;=1/8,=0.59. By (6.82), sinha=0.5238.
Then (6.81) yields g,=1.2668, g,=1.5743, g,=1.6014, and g,=1.3868. The
computed g, is greater than the given g, by 0.5868 farads. This shunt padding
clement is placed at the matching network’s input in a manner similar to the
arrangement in Figure 6.24. The power variation will be 1.03: 1, or 0.11 dB,
according to (6.80).

6.4.4. Summary of Broadband Matching Under Three Source Conditions,
The topic of load impedances consisting of one resistor and one reactance has
been considered. The sources considered had just one resistor, or an addi-
tional reactance, or a reactance and no resistance. The source condition
determined the relationship of parameters a and b. They were found by
Fano’s transcendental optimal equation, from specified termination decre-
ments, or by equating them so that one decrement was zero. Lowpass
prototype element values were obtained for each case by a well-known
recursive relationship that avoids network synthesis. This is sometimes called
“direct design,” since closed forms determine element values.

Program B6-2, which iterated Fano’s transcendental solution, was extended
by adding the prototype element recursive equation. The dependent source
resistance was also calculated. Programs for sources incorporating a single
reactance would be quite similar; any one of these would fit in a conventional,
hand-held, programmable calculator. The only complexity arises from the
order in which prototype elements must be calculated. The resistive source
case works from load to source; the load reactance is g,. The single-reactance-
source case works from the end with the lesser decrement associated with g,
The singly terminated (ideal or lossless source} case works from load to
source, but the prototype element g is always the load reactance, so that the
elements are computed in the order of descending subscripts; the source
reactance is dependent. The last two cases involve the possibility that the
source reactance may need to be increased to obtain the best solution. This is
accomplished by increasing the g, value (by making part of g, the input
clement in the matching network).
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All three source conditions occur at least as commonly in the bandpass
situation, These lowpass results will be extended to bandpass situations in the
following section.

6.5. Bandpass Netwerk Transformations

There are standard means for directly transforming lowpass networks to
bandpass networks by simple operations performed element by element, as
indicated in the introduction to Section 6.3. This will be formalized here. For
standardization and numerical conditioning, many network designs are intro-
duced with at least a 1-ohm termination and band-edge or band-center
frequency of 1 radian or, occasionally, 1 hertz. Therefore, both impedance
level and frequency scaling are commonly required. These will be provided in
a simple, hand-held calculator program.

Finally, the resulting bandpass networks obtamcd from lowpass prototypes
require different source and load resistance levels. This is especially true when
broadband-matching techniques have left the design with a dependent low-
pass generator resistance that is invariably not suitable. There is 2 method for
replacing L sections of inductors or of capacitors in bandpass network
structures with pi or T networks of the same component type. These Norton
transformations introduce an arbitrary impedance-level change within limits,
and are frequency independent. This is the means to change bandpass source
and load impedance levels as well as to affect useful changes in impedance
level and geometry within the network itself. These techniques will be de-
scribed and two programs for HP-67 /97 hand-held calculators will be pro-
vided.

6.5.1. Lowpass-to-Bandpass Transformations. A lowpass prototype response
and a related bandpass response are shown in Figure 6.26. The responses may
have flat loss in the passband, similar to Figures 6.20 and 6.21. The most
common transformation for lumped-element networks empioys the mapping

w o
—QBW(;; - -;), (6.83)
where the inverse fractional bandwidth is '
o 6.84
Quw= 5 (6.84)
and the band’s geometric-center frequency is
Wy = VoW, . (6.85)

Instead of Qgw. two forms of the fractional bandwidth are often useful:

w=r 120 (6.86)
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Figure 6.26. A lowpass prototype response (2) and a corresponding bandpass response (5).

The inverse relationship is also required:

w 2
Z=5 ey )

A standard lowpass filter prototype is shown in Figure 6.27. The g; values
are identified with their corresponding L’ and C’ values. The primes show the
relationship to the normalized lowpass frequency scale «’, shown in Figure
6.26. The frequency transformation in (6.83) describes the network in Figure
6.28 with behavior in the w frequency variable. The conversion of the lowpass
network with l-radian band edge to the bandpass network is quite easy, All
bandpass shunt-branch mhos are obtained using

wCi= —— =2, (6.88)

(6.89)

B
Gn+1 =
On+1

Figure 6.27. A lowpass prototype filter.
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Figure 6.28. A synchronously tuned bandpass filter.

The bandpass filter is called synchronous because all resonators are tuned
(resonant) at the same frequency, namely w, according to (6.85).

Example 6.15. Consider the problem of finding the n=3 normalized band-
pass matching network in Figure 6.29, where a load consisting of a 20-ohm
resistor in parallel with an 11-pF capacitor is to be matched to 50 ohms over a
band from 575 to 1000 MHz. The solution is obtained by finding the optimal
Fano lowpass network and then transforming this to the corresponding
bandpass network. From (6.85), the band geometric-mean frequency is 758.29
MHz; at this frequency, (6.16) yields the load Q, =1.0482. By (6.86), BW
= 100w =156.05%. These values for n, Q;, and BW are entered in Program
B6-3. The results are shown in the normalized lowpass network in Figure 6.30.
The lowpass prototype passband-edge frequency is 1 radian, as shown in
Figure 6.26. This will be the geometric-mean frequency of the normalized
bandpass network. Equations (6.88) and (6.89) enable the susceptance and

50 0

A
+ Bandpass J_

matching

11 pF
network T P
L__

Figure 6.29. A single-reactance-load matching problem.
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—AA- Y —
G2
GU 9z -l>05046 9y ‘|.0.5875 g 1

Figure 6.30. Fano optimal lowpass network for Example 6.15.
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Figure 6.31. Normalized bandpass network for Example 6.15.

reactance of each bandpass network element to be found using the frac-
tional bandwidth w=0.5603. Since these chms and mhos are at =1 radian,
the values found are also the element values in farads and henrys. The
normalized bandpass network is shown in Figure 6.31. By (6.87), its passband
extends from 0.7583 to 1.3188, with a geometric-mean band center of 1
radian,

6.5.2. Frequency and Impedance Scaling. The problem posed in Figure 6.29
was not completely solved in Example 6.15 because the bandpass network
must be denormalized; i.e., the passband must be centered at 758.29 MHz,
and the source resistance must be 50 ohms. These are simple matters of
frequency and impedance scaling.

Frequency scaling is based on maintaining the prototype reactances and
susceptances of inductances and capacitances, respectively, at some new
frequency. Recalling that X; =wl and Bi=wC, frequency scaling to a higher
frequency requires the inverse scaling of both L and C values.

Impedance scaling is based on changing the resistance and reactance values
throughout the neiwork. Resistances are increased by the desired impedance
scaling factor. Recalling that X; =«wL and X.=—1/(«C), increasing the
impedance level requires increasing the inductances and decreasing the ca-
pacitances by the same impedance-scaling factor. Program A6-3 in Appendix
A conveniently performs all the simple but crucial scaling operations that
convert a lowpass prototype network into the final bandpass network.

Example 6.16. Program A6-3 can be used to go directly from the lowpass
prototype network in Figure 6.30 (Example 6.15) to the scaled bandpass
network. As the program documentation indicates, values for passband fre-
quencies f, and f, in hertz (Figure 6.26) and the required impedance-level
factor are entered into the stack. Thus 1000E6, 575E6, and (50/0.9667)=
51.722 are entered, and key B is pressed. The passband geometric-mean-center
frequency (758.29 MHz) is obtained. The program stores this, the fractional
bandwidth w, and the resistance ratio that will get the source resistance up to
the desired 50 ohms. Now each prototype g, value is entered for the series
elements (key C) and shunt elements (key D); these evaluate (6.89) and (6.88),
respectively, Keys C and D also perform the frequency and impedance scaling
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Figure 6.32. Unnormalized bandpass network for Example 6.15.

previously described. Entering g,=0.5046 and pressing key D yields the value
of the scaled bandpass input shunt (C=3.6534 pF); pressing key E displays its
resonating shunt (L= 12058 nH). Similarly, key C is used with g, and key D
again with g;. The load resistor is 51.722 ohms. The load still is not in the
originally specified RC values, because the dependent Fano source resistance
has yet to be compensated. The resulting scaled bandpass network is shown in
Figure 6.32.

6.5.3. Norton Transformations. Example 6.16 in the previous section
showed that there is a need for introducing an ideal transformer somewhere in
the matching network to provide independence of input and output imped-
ance levels. An easy way to see how this might be accomplished is to derive
one case from the set of Norton transformations.

Consider the two networks and the expressions for their open-circuit
impedance parameters shown in Figure 6.33. The objective is to equate the
sets of z parameters and thus be able to replace the left-hand network with the
right-hand network. A case in point is seen in Figure 6.31. There are two
adjacent inductors. Incorporating an ideal transformer immediately to their
right (and impedance scaling to the right of that) would create a subsection

1 l1 L1 \n |2 2 1 |1 L, Lc |2 2
P Y ——i—C
+ + + +
v, Lz v, Vv, . Ly Vy
O —_— -0
zy; = sk, zy =5l + Ly}
Ty = Y L v
2T 7|, . =snl, In = 7 =sly =22
141, =0 Iy Iy = b
Vi
2= T =
12 I, I =0 snl,
2 =sn?{Ly + L) 2y =l + L}

Figure 6.33. Inductive Norton transformation from a type-B L section (left) to a T section
(right).
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identical to the left-hand side of Figure 6.33. It could then be replaced by its
equivalent T network.

For the T network in Figure 6.33, the z parameters may be obtained as
functions of the complex frequency s by applying the open-circuit-parameter
definitions discussed in Section 3.4.3. The same may be said for the L section
in Figure 6.33 if one recalls the rules for the ideal transformer: the current
entering the right side increases by turns the ratio n, the voltage on the right
appears decreased by n on the left, and the impedance looking in from the
right is n® times greater than that terminating the left side. These rules lead to
the L-section and transformer-combination z parameters shown in Figure
6.33. Then, equating like z parameters for the L section and the T section
leads to the following relationships:

Ly=nL,, (6.90)
| | Ly=Ly(l—-n), (6.91)
L.=n*L,+L,)—nL,. (6.92)

Also, there are upper and lower bounds on the turns ratio n, which correspond

| Table 6.4, Summary of Norton Transformations

. I:n . I: -
‘ o__l_ X, o—iX, n o ;x,—l_ X o—rtxh—[——o
X, % or X, > % to iX, or iX, iX,
z n'z z n?z n?z n?z

‘ Equations (s = series, p=parallel):
From type-A L to

‘ T Pi
(nL)
L,=L.+L,—nl, Li‘:"ﬁ:_]
Ly=nL, L,=nL,
(nLy)(nL,)
L.=(nL —1 =
‘ o=l )Xn—1) L= =L,
’ I 14D
‘ <n<{l+ L—P).

From type-B L to T and pi, use the equations above, but
1. First replace n<-1/n.
2. Multiply all answers by the given n’.
3. Reverse answer order, e.g., use L for L,.
4. (1+L/L) '<n<l.

Note: Ly=X, and L.,=X where both X values are positive numbers. For vapacitors,
input X=1/C and convert output by replacing C—1/C.

-




Barndpass Network Transformations 211

to L,=0 and L =0, respectively. Thus n must be chosen in the closed range

L\~
Hi}) <n<l, (6.93)

Note that when L, =0 (n=1), the T section degenerates into the L section. All
possible results for transformations of this type appear in Table 6.4.

Program A6-4 in Appendix A performs all of the preceding calculations for
all possible cases in only 80 steps. Compare the operations in Table 6.4 with
the L-section matching operations in Figure 6.2. The former are frequency
independent and involve only one type of reactance (L or C) at a time,
whereas the latter are mixed L and C cases valid only at a single frequency.

Example 6.17, Complete the broadband-matching problem posed in Exam-
ple 6.15 by replacing the capacitive type-B L section in Figure 6.32 by a pi of
capacitors, Use Program A6-4 by entering 1/3.6534 and 1/2.6548 into the
HP-67/97 stack and pressing key A. Then select the type-B-to-pi case by
pressing key B. The result is the allowable extreme value of n® farthest from
unity, in this case G.1771. It is determined from Figures 6.29 and 6.32 that
n?=20/51722=0.3867 is required, and it is within the allowable range.
Entering 0.3867 and pressing the R/S “continue™ key produces the first value
of reciprocal C in the X register, namely 1/C,=0.4905, or C,=2.0389. The Y
register contains 1/C,=0.2342, or C,=4.2693. Similarly, the Z register in the
stack contains 1/C.=0.3852, or C ,=2.5963. The network to the right of the
capacitive type-B L section in Figure 6.32 must be an impedance scaled down
by the factor 0.3867, as previously mentioned. Doing this completes the final
design shown in Figure 6.34. Observe that the total requirements stated in
Example 6.15 and shown in Figure 6.29 have been fulfilled.
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Figure 6.34, Final broadband design for Example 6.15 following the Norton transformation.
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6.5.4. Summary of Bandpass Network Transformations. -The standard geo-
metric frequency mapping from lowpass o bandpass response was stated, and
the easily remembered design rules for network element conversions were
stated. The main parameter is the fractional bandwidth w. The resulting
bandpass networks were created by converting all lowpass shunt C’s into
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bandpass shunt resonators and by converting all lowpass series L’s into
bandpass series resonators. The shunt C’s and series L’s were inversely scaled
by w. The resulting bandpass filter is called synchronous because all of its
resonators are tuned to the same geometric band-center frequency w,.

Frequency and impedance-leve! scaling were shown to relate to simple
reactance and susceptance concepts. To maintain the same X and B levels
for increased reference frequency, all L’s and C’s must be decreased by the
frequency change factor. To maintain the same X, and X, reactance levels for
impedance level increase, L’s must be increased and C’s must be decreased by
the impedance-level change factor. The simple but powerful hand-held calcu-
lator Program A6-3 was provided to perform lowpass-to-bandpass conver-
sions, frequency scaling, and impedance scaling—all in one quick operation.

Finally, Norton transformations were derived in one case and summarized
compactly for all cases. This enabled the introduction of an ideal transformer
in a bandpass network adjacent to an L section of two L’s or two C’s. This
subsection may then be replaced by a T or pi section of like-kind elements,
eliminating the ideal transformer without changing the frequency response.
All of these transformation techniques were illustrated by a broadband-
matching example. Another application of Norton transformations is to alter a
network topology in order to make element values more reasonable or to
avoid parasitic effects. For example, the high impedance that occurs where the
series L. and C join in Figure 6.31 is often upset by stray capacitance to
ground. The incorporated Norton transformer resulted in a topology that does
not have such a high impedance point (see Figure 6.34),

6.6. Pseudobandpass Matching Networks

Section 6.1 described the means for designing lumped-element matching L
sections at a given frequency. A cascade of such sections could be assembled
to match a load resistance 0 some source resistance, e.g., an even-degree
lowpass network such as in Figure 6.35. The transducer loss would be zero at
the L-section design frequency, e.g., 1 radian. By (3.49), the dc transducer loss

1
|
J
|
!
l
!
|
}

4

r 9q Gn-2 |

A o' W e |

t

+ . |
90— In-3 I 9 9 =

|

i |

| |

Figure 6.35. An even-degree lowpass matching network.
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Figure 6.36. A lowpass network transducer function with mismaich at de.

of the network in Figure 6.35 would be

(l—l-r)2
r

The transducer function of frequency might appear as in Figure 6.36, espe-
cially if some of the sections were designed for different frequencies in the
vicinity of 1 radian.

The network in Figure 6.35 can be viewed as an impedance transformer
with resistance ratio r; its response in Figure 6.36 indicates that the transfor-
mation might be valid over a band of frequencies., Also, the two-reactance
load indicated in Figure 6.35 coincides with that previously considered in
Figure 6.16a. This section deals with the topic of broadband impedance
matching by a lowpass network structure over a frequency band above dc,
thus the name pseudobandpass impedance matching. Designing individual L
sections and then optimizing their response over a band will usually fail
because of useless local minima. However, a recent procedure by Cotlee and
Joines (1979) achieves the desired result.

A frequency transformation that maps a lowpass response into the response
in Figure 6.36 will be described. The Fano gain-bandwidth integrals will be
evaluated numerically by a BASIC language program so that two-reactance
loads can be matched when possible. Finally, the required network synthesis
procedure will be described. Norton transformers are not required, since both
load and source resistances remain independent. In fact, Norton transformers
could not be embedded in the lowpass networks considered. (why?) The
penalty in this method is that the number of lowpass LC elements is twice that
of an ordinary prototype network.

(H(w="0)|"= (694)

6.6.1. A Pseudobandpass Frequency Transformation, The Chebyshev equal-
ripple transducer function with flat loss, previously considered in (6.52), is



214 Impedance Matching

repeated here using identities (2.34) and (2.35). The lowpass prototype fre-
quency variable will be " and the degree will be n":

|H(w')[*=1+K>+ &’ cos’(n’cos ™' ) (6.95)
for w' <1, and
IH(w'))* =1 +K*+ e? cosh’(n’ cosh ™' &) (6.96)

for o' > 1. These equations define the passband and stopband, respectively, in
Figure 6.21. Substituting the following frequency-mapping function into {6.95)
and (6.96) produces the response in Figure 6.36:

1.2
=2 A“’O , (697
where the defined constants are
2 2
- wb_wa
A= 7 (6.98)
2+ 2
wo= ]2 S b (6.99)

(See Figure 6.36, which is plotted in terms of the frequency variable w.)
Although the defined constant w; is shown, the band-center frequency is taken
as the arithmetic average,

_ w, +wy,
m_ 2 ]
and is scaled so that w_, = 1. The relative bandwidth is defined with respect to

W'

w

(6.100)

Wy, — &
b
W=

2, (6.101)

@

Note that both Cottee parameters, w, and w, differ from the parameters with
the same names discussed earlier in this chapter.

With (6.97) substituted, the transducer function of w, defined by (6.95) and
(6.96), is a double mapping of the conventional (") function shown in Figure
6.21; it maps into Figure 6.36 from w, to 0 and from «, to infinity. It is easy to
confirm the mappings of w—>«w’ for passband edge frequencies w,>1 and
w,— ~ 1, the & image of «'— + 1. The nature of this mapping is such that the
conventional lowpass prototype filter having n’ reactive elements corresponds
to a new filter having n=2n’ elements, giving the response in Figure 6.36. It
will be important to keep track of the complex frequency domains s and s,
corresponding to degrees n” and n and frequency domains «’ and «, respec-
tively.

6.6.2. Evaluation of Gain-Bandwidith Integrals. Fano’s gain-bandwidth inte-
grals were given in (6.45) and (6.46) for one- and two-reactance lowpass loads,
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respectively. An expression for the magnitude of the Chebyshev reflection
coefficient was given in (6.53). Thus numerical integration by Romberg
Program B2-3, described in Section 2.3, is not difficult. The proper integrand
for pseudobandpass networks is

. —]n\/1+K2+E cosz{(n/Z)cos"[(wz—wg)/A]}

ol K2+820052{(1'1/2)(305”[(wz—wg)/A]} (6.102)
in the pass band and
]ni=1n\/T+K2+€ coshz{(n/z ycosh ™~ [(w wf,)/AF 6103
lonf K’+¢? coshz{(n/Z)cosh [(w ——wé)/A”

in the stopband, The values of constants K and e will be required; they can be
determined as follows.

Assume that the resistance ratio, r=R,/R,, and the maximum passband
ripple, L, . in Figure 6.36, are¢ given, where

Loy = 1010g,0(1+ K>+ £%) dB. (6.104)
Then (6.94) and (6.96) may be equated for w=20:
(1+1)°
Pt 1+¥K2+&%-EC, (6.105)
where defined constant EC 1s
3 i 1 wj
EC=cosh (—2—cosh 7\—) (6.106)

Exponentiating both sides of (6.104) enables its simultaneous solution with
(6.105) for the ripple factor:
108/ 10 (14 1) /41

el= TEC : (6.107)

The flat-loss facior is now available from (6.104):
K2=10bw/10 _ s2_ 1, (6.108)

The only other issue to be resolved before numerically integrating (6.102)
and (6.103) is the upper limit of integration. It is well known that the
asymptote for the high-frequency attenuation in Figure 6.36 is 6n dB/octave;
here the octaves arc taken as multiples of passband width above w,. The
reflection coefficient should be essentially 1 when the attenuation is at least 60
dB. Program B6-4 in Appendix B includes the earlier Romberg integration
routine and makes these calculations, including the upper limit of integration
in line 250.
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Example 6.18, Suppose that the load depicted in Figure 6.35 must be
matched over the band from 0.75 to 1.25, where g,=1.571 farads, g,=0.3142
henrys, R,=0.25, and R,=1 ohm. Can the load be matched by an n=4
network? Evaluating the right side of Fano’s integrals (6.45) and (6.46) yields
values of 2.00 and 3.78, respectively. Program B6-4 is used with these data and
the trial values of L_,,, the maximum passband ripple. It can be found that
e =0.0924 dB gives the required integral value of 2.00. Using this L__,
value and the same program for the two-reactance case, Romberg integration
finds the integral value 1o be 1.82. Since this is less than 3.78, the given load
can be matched by an n=4 network, because the effective value of g, can be
increased (padded) easily enough. Note that (6.46) shows that increasing g,
can decrease the required integral value to that computed.

6.6.3. Network Synthesis Procedure. Having determined the Chebyshev pa-
rameters K and ¢, the first synthesis step is to compute the reflection poles and
zeros of the conventional Chebyshev filter in the s plane according to
(6.54)—(6.56). The poles and zeros in the mapped s plane are obtained from an
expression resulting from (6.97):

s=jAs —w] . (6.109)

Only the left-half-plane poles are used in assembling the reflection coefficient
root factors. In the synthesis terminology of Section 3.2.4, the numerator of
p(s) is the polynomial f(s), the denominator polynomial is e(s), and p(s}=1 in
this case, since there are no finite zeros of transmission. The network synthesis
may then proceed as described in Chapter Three,

Example 6.19. Continue the calculation began in Exampie 6.18. The s'-plane

pole locations from (6.54)—(6.56) and the s-plane pole and zero locations from

Table 6.5. Poles and Zeros for Psendobandpass
Example 6.19

In the prototype s’ plane
p'=*1.579=j1.730
z'= +0.3838 +0.3047
In the double-mapped s plane
p'=*+02787+j1.4158 and
+0.5549+j0.7114
z'=%0.0795%+31.2134 and
*0.1169+j0.8211
s-plane polynomials:
f(s) =5 +0.3927s* + 2.204s* + 0.4551s + 1.017
e(s)=s*+ 1.668s +3.5155% + 2.765s + 1.695

p(s)=1
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Figure 6.37. Synthesized lumped-element maiching network for Examples 6,18 and 6.19. [From
Cottee, R. M., and Joines, W. T., IEEE Trans. Circuits Syst., Vol. CAS-26, No. 35, p. 321, May
1979. © 1979 IEEE.)

(6.109) arc shown in Table 6.5. The synthesized network is shown in Figure
6.37. Note that the load inductance is a part of the total g, element.

6.6.4. Summary of Pseudobandpass Matching. The narrow bandpass re-
sponse of matching L sections suggested the use of lowpass networks (cas-
caded L sections) for broadband matching with resistance transformation. A
quadratic frequency mapping function doubled the number of network ele-
ments while providing the appropriate correlation between the conventional
Chebyshev lowpass, flat-loss function and the pseudobandpass function.

Numerical integration over the frequency axis determined the broadband
load-reactance functional values. In practice, the two load-reactance values
are given, and trial evaluation of the one-reactance Fano integral determines
the flat-loss and ripple factors. Then a solution exists if the two-reactance
Fano integral value is less than the corresponding load function requires, If
not, a greater number of elements (n) is assumed, and the process repeated.

When the values of conventional Chebyshev constants are found accept-
able, the pole/zero locations in the conventional §” plane are computed by
formula. The quadratic frequency-mapping function then transforms these n’
values into n=2n’ new values. Selection of left-half-plane poles and zeros
enables the construction of the Feldikeller polynomials, and thus network
synthesis can proceed.

Cottee and Joines (1979) concede that the integration step can be avoided
by proceeding with trial synthesis, However, they claim that the integration
approach allows restrictions to be visualized; to that end, they inciude a dozen
design charts. More significantly, their article further considers distributed
(transmission line} matching networks terminated by a lumped-element load.
The transmission line elements are commensurate—all having the same length
—so that a resistively terminated network response would have harmonic
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passbands extending to infinity on the frequency scale. This does not preclude
Fano integration to a finite limit when the load consists of lumped elements
that truncate (i.e., band limit) the response.

6.7. Carlin’s Broadband-Matching Method

Figure 6.1 pictured the environment for broadband impedance matching: load
impedance Z, must be transformed by the network to some desired Z;,
function of frequency. The quality of the match was indicated by a low
magnitude of the reflection coefficient p,, versus frequency. The difference
between designing filters and broadband-matching networks is the frequency
dependence of load impedance Z,; it is a resistor in filter design. By Fano’s
classical method, Z, was assumed to represent the input impedance of an LC
subnetwork terminated by a resistance. For practical results, the lowpass
model of the load impedance must not consist of more than one or two
reactances and an end resistor, as shown in Figure 6.16.

Given some arbitrary physical load impedance modeled by impedance data
measured at several frequencies, the first—and often difficuli—task in apply-
ing Fano’s method is to classify the actual load, i.e., fit it to the most
appropriate lumped-element lowpass model. For loads with bandpass behav-
ior, this usually requires identification of a synchronous bandpass subnetwork
and then its corresponding lowpass prototype. Furthermore, the power trans-
fer of the classical method is constant over the band; however, a sloped or
other-shaped response often is required.

Fano’s method depends on the fact that the magnitudes of the generalized
reflection coefficients in (3.46) at any interface in a lossless, doubly terminated
network are all equal at a frequency. In fact, his reflection coefficients are
conventional, since they are located adjacent to the resistive terminations.
Carlin (1977) noted that |p,| is equal to lp,| in Figure 6.1. His greater
contribution was in noting that a piecewise linear approximation to R, the
real part of Z =R +jX,, enables a simple computation of X, using the
Hilbert transform. Furthermore, he showed that power transfer in terms of
generalized p, is at most a quadratic function of the R, piecewise linear function
variables. Thus a nonlinear optimization program will usually succeed in
obtaining power transfer and/or several other impedance-dependent objec-
tives by a piecewise fit of R, the real part of Z . The Gewertz method for
finding a resistively terminated lowpass network, given the real part of its
input impedance, was described in Section 3.5. By Carlin’s method, such a
network would be the required matching network in Figure 6.1, where the
source impedance would be the terminating resistance,

This topic will begin by describing the basis for BASIC language
program for finding-the imaginary part of a minimum-reactance impedance
function from z piecewise linear representation of its real part. The
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power transfer function will then be derived, and its derivatives will be
obtained with respect to the piecewise linear fit parameters. An objective
function for the Fletcher—Reeves optimizer (Section 5.4) will be furnished in
another BASIC language program. Finally, utilization of the optimal piecewise
linear fit to the required Z real part to synthesize the matching network will
be described. Actually, this last step has been covered completely in Sections
2.5 and 3.5, so that only the counection between these procedures and Carlin’s
method is required.

6.7.1. Piccewise Hilbert Transform. Blinchikoff and Zverev (1976, p. 76)
give the well-known Hilbert transform that determines the reactance function
from a given resistance function:

f +o ROY) 4 (6.110)

coyw

There is a similar function for the inverse transform. Bode (1945, p. 318) gives
a more useful form for analysis on linear frequency scales:
yte + @

1 f=dR
X(wy=1 f bl e

A restriction on these Hilbert transforms is that the function (impedance in
this case) must have minimum reactance. Restrictions on transfer functions
are similar. Guillemin (1957, p. 301) shows that the phase lag will be least for
any transfer function magnitude if its zeros are restricted to the left-half plane.
The poles are similarly restricted for passive networks. Such functions are thus
called minimum phase; in general, they are associaled with ladder (single
signal path) networks that do not contain delay equalizer (bridge) sections.

In this case, it is convenient to presume that the equation R (w)= Re(Z) in
Figure 6.1 has the piecewise lingar form

(dy. (6.111)

n
R (w)= kzorka.k(w), (6.112)
where the normalized linear interpolation functien is

0 for w<w,_,,
Ly
a, = ;k___‘_‘,k___‘ for o\ <w<w, (6.113)

1 for wrw,

and a,=1. This linear interpolation function is easily visualized according to
Figure 6.38. The overall form of R, is illustrated in Figure 6.39. Since this
form of resistance (R,) will be integrated according to (6.111), it must assume
a zero value, beginning at some finite frequency. Therefore, an arbitrary but
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0

Wy Wy

Figure 6.38. Linear interpolation between sample points according to Equation (6.113).

c

useful choice for the necessary dependent excursion is

L=— > r. (6.114)
k=0
Using (6.112) in (6.111), the reactance at some frequency w is

n
| reoda, |y+w
X(w)= I~ —In [———dy. 6.115
@= 207 ) & y=e|¥ 11)

The crux of Carlin’s method is a broadly applicable linear combination of the
excursions 1, that expresses the reactance function corresponding to (6.112):

n

X (@)= zork by (). (6.116)

The reactance contributions, b, are

y+w
y—w
Note that the narrow limits of integration result from the single segment of a,

in Figure 6.38 having a nonzero slope. The integral in (6.117) has a simple,
closed-form evaluation, as given by Bode (1945, p. 319). Therefore, a final

by(w)=—L7 L :’illn

W =@y

ldy.- (6.117)

256 ii*—j—
20 —— oY
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Figure 6.39. A piecewise linear representation of R, with excursion variables r,.
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expression for the kth reactance contribution is:

_ B(w, 0, ) — B(w, w,_,)

by (=) ) (6.118)
where b,=0, and the defined function B(w, &) is f
B(w. @) =3 (X+ DIn(X+ 1)+ (X~ DI |X-1|-2X n X],
=0 if ©=0, (6.119)
=2, X#1, X0 (6.120)

w

This remarkable result is easily applied: first, construct a band-limited, piece-
wise linear representation of the resistance function; second, calculate the r,
resistance excursions; third, compute the b, reactance contributions for the
desired frequency. The impedance at frequency w then is

n

Z,= kEﬂrk(ak +jby), (6.121)
using (6.113) with ag=1 and (6.118)-(6.120) with b,=0. These equations have
been coded in BASIC in Program B6-5, (Appendix B), making the last
excursion dependent according to (6.114). This computation is equally well
suited to hand-heid computers.

Example 6.20. The impedance looking into terminals 2—2' of the lowpass
network in Figure 3.8 can be computed at any frequency using Program B4-1.
As a test of the Hilbert transform method, the resistance-versus-frequency
curve can be fitted using straight-line segments. Program B6-5 can then be
used to compute the related reactance for comparison to the known values
from the analysis. Table 6.6 tabulates the input data for Program B6-5 in the
first three columns. The program output at these frequencies appears in
columns 4 and 5, and columns 6 and 7 show the impedance values obtained

Table 6.6. Hilbert Transform Data for Example 6.20

Pgm B6-5 Pgm B4-1

k Iy w R, Xq R, Xq

0 22 0 22 0 22 0

1 00544 0.1 2.1456 —~0.3094 2.1465 —0.3208
2 -—0.8484 07 1.2972 - 12311 1.2972 —1.2051
3 —-0.1676 038 1.1296 ~1.3435 11296 —1.3321
4 -07079 1. 0.4217 ~1.3412 04217 — 13444
5 —02579 i3 0.1638 —1.1118 0.1638 —1.0992,
6 -—-0.1205 [.6 0.0433 —-0.8362 0.0433 —0.8138
7 —0.0433 20 0 —-0.6165 0.0102 —0.6028
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Figure 6.40. R-X graph for the Hilbert transform in Example 6.20.

by analysis in Program B4-1. Also, impedances at frequencies other than the
breakpoints may be computed. Figure 6.40 is a graph of these data.

The Hilbert transform calculation works equally: well for minimum-phase
transfer functions such as

H(w)=|H(w)|e'. (6.122)

The appropriate rectangular form for data from an arithmetic frequency scale
is:

In H{w) = In|H{w)| +j#4, (6.123)

where the angle # is in radians.

6.7.2. Gain Objective Function With Derivatives. Carlin and Komiak (1979)
describe a general gain function, which is the inverse transducer function. At
the output interface in Figure 6.1, (3.46) and (3.47) yield

P, 4RR
:(zz,zq)=—li= —, (6.124)

where the denominator term is

A=(R,+R )’ +(X,+ X)) (6.125)
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Note that gain function t is at most quadratic in r, because Z_ is linear inr, according to
(6.121}. A squared-error objective function is

where the vector of variables is

MZ

E(r,w)= > ei(r w), (6.126)
u=1

 ETE200 J% SNUPNS J L (6.127)

and dependent r, is computed by (6.114), A well-conditioned error function
(residual} at each sample frequency is

| unw) B
ehw,)= 2@ 1, {6.128)

where g, < I is the arbitrary gain goal (target) value at sample frequency w,.
The sample frequencies need not coincide with the piecewise linear breakpoint
frequencies. These relationships enable the calculation of the objective func-

tion in (6.126).

Minimization of the objective function in (6.126) requires its derivatives
with respect to the variables in (6.127). Numerical differentiation (finite
differencing) is usually unsuitable. Analytically,

MZ
BE_ 3 g (6.129)
a1,

u=1

Note that t in (6.124) is a function of both R and X, and these are functions
of the r, excursions. Thus the classical chain rule for partial derivatives yields

aeu_ 1| a1 aRq ot 8Xq

for use in (6.129). It is a simple matter to write the following derivatives of t

from (6.124):

A-2R (R, +R,)

a

E‘R—q“‘RZ A2 ’ (6-131)
Ot 4R [ 2R (X, + X, ) [ /A2 (6.132)
ax, 2 R ‘ '

Finally, the derivatives of R, and X, are required in (6.130). Applying the
constraint (6.114) to {(6.112) pertinent to this formulation yields

so that

n—1

R, = > n(a,—a,), (6.133)
k=0
3R,
—a,—a,. (6.134)

ar
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From (6.116),

ax
—2=b,—b

. (6.135)

n

6.7.3. Optimization of the Piecewise Resistance Fanction. The preceding ob-
jective function has been incorporated in the Fletcher—Reeves optimizer in
Program BS5-1. The result is Program B6-6 in Appendix B. The input section
through program line 140 loads the breakpoint data required for the Hilbert
transform calculation of reactance from resistance, as in Program B6-5. All
but the last resistance excursion become the optimizer variables. The objective
function and its gradient are assembled by subroutine 1000 in lines 1000-
1260; this requires appeal to subroutine 3000 at every sample frequency to
compute Z =R, +jX,. Lines 3020-3040 set constraint (6.114), and lines
3050-3250 perform the Hilbert transform calculations as in Program B6-5.

Example 6.21. Input the data in Table 6.7 into Program B6-6 to obtain the
optimum resistance excursions for a gain of 1.0 at the four sample frequencies.
The program output is shown in Table 6.8.

The optimized excursions are ry=2.2754, r,= —1.0603, r,= —1.1167, and
{constrained) excursion r,= —0.0984. Inspection of Figures 6.1 and 3.8 shows
that r, is the eventual generator resistance. If it is desirable to hold this at a
certain value, e.g., 2.5 ohms in this case, then all that is necessary is to add the
statement “1225 G(1)=0" to Program B6-6. A rerun of Example 6.2]1 shows
how the zero gradient holds the first optimization varjable at its initial value.
The choice of starting excursion values is somewhat arbitrary. Carlin (1977)
suggests assuming reactance cancellation and setting the residuals to sustain
the dc gain at the in-band breakpoints.

6.7.4. Rational Approximation and Synthesis. At this point in Carlin’s
broadband-matching method, an optimal piecewise linear representation of R,
is known, The remaining task is to realize a network that provides this
behavior. This is clearly the subject treated in Section 3.5. The Gewertz
method considered there began with a rational function of input resistance in
the form of (3.94), or (3.98) in particular. It is always in powers of w* or the
equivalent powers of s?, since resistance is an even function of frequency. The
next step in Carlin’s method is to fit such a rational function to the piecewise
linear representation. This can be accomplished by the method in Section 2.5.

A table of impedance versus frequency and the form of the desired rational
polynomial were required in Section 2.5. In the Carlin method, the table of
data is created from the piecewise linear resistance function by (1) using
symmetric positive and negative frequencies for the even resistance function
and by (2) using zero reactance values at every sample. A typical data set is
given in Table 6.9. The data in Table 6.9 can be input into Program B2-5 to
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Table 6.7. Input to Program B6-6 for Example 6.21
w? Rz Xz 2. kb Ty [
0.1 2.15 0.31 | 0 2.5 0
0.5 1.58 [.o1 { I | 0.75
0.9 0.89 1.42 1 2 -1 1.25
1.0 0.65 1.42 1 3 -05 2.0
aNumber of measured Z, values is 4.
®Number of breakpoints, including w=0, is 4.
Table 6.8. Program B6-6 Outpnt for Example 6.21°
ITN=0 IFN=I ITN=29 IFN =89
F=2.6976186E—03 F= 1.22678987E — 08
1 X(n G() I X(N G()
1 2.5 0269056668 1 227720383 1.81803783E— 0B
2 -1 0252870452 2 —1.0625151  ~2.06528716E—-08
3 -1 8.41058789E—03 3 —1.1159194 - 1.01505479E—08
ITN=1 IFN=5 ITN=130 IFN=9i
F=461174131E-05 F=12233111E-08
1 X{I) Gy I XM G(D)
] 2.38714539 1.59244045E — 03 1 2.27546837 4.50758795E - 08
2 —1.10606537 1.54801777E-03 2 —-1.06031197 3.71783939E - 08
3 —1.03527783 6.7775074E - 04 3 —1.11666244 5.39050241E - 09
ITN=2 IFN=19 ITN=31 IFN =53
F = 8.30478937E - 07 F=1.22313988E—-08
I XD G(1) 1 XD G()
1 235241762 6.60273984E - 05 I 227542275 6.41003251E-10
2 - 1.13975746 6.48530284E - 05 2 —1.0603496 —1.27783317E-09
3 — 1.04982374 4.22180638E - 05 3 —1.11666789 —2.9785856E 10
ITN=3 IFN =32 ITN=32 [FN=95
=1.79326026E — 07 F=1.22313053E—-08
1 X(1) G(I) I X1 G
i 2.34265967 3.17542868E — 06 1 2.27541404 3.72293618E-09
2 - 1.14933634 1.223805397E— 06 2 —1.06033326 [.83188975E - 09
3 —1.05596202 6.9709696E — 06 3 —1.11666406 7.022927719E - 10
ITN=4 IFN =37 ITN= 33 IFN=99
F= 1.57306571E~07 F=1.22313053E—-08
1 X(D) G 1 X G
1 2.34014065 —3.03374459E - 06 1 2.27541404 3.72293618E—-09
2 — 1.15031054 —5.53521328E—-06 2 — 106033326 1.83188975E—-G%
3 —1.06149199 2.40726355E-06 3 —1.11666406 7.02292779E - 10

9The output for iterations 5-28 has been omitted.
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Table 6.9. Typical Carlin Piecewise Resistance
Data for Fitting Program B2-5

w? R, W R,
-1.5 0.0835 0.05 2.1728
- 1.0 0.6577 0.10 2.1456
—-0.5 1.5800 .15 2.0749
-0.3 1.8628 0.30 1.8628
—0.15 2.0749 0.50 1.5800
—0.10 2,1456 1.0 0.6577
—0.05 2.1728 1.5 0.0835

0.0 2.2000

“X,=0 for all w.

obtain the Levy (1959) coefficients for an appropriate lowpass rational polyno-
mial having a constant numerator and a sixth-degree denominator. The
pertinent linear system of equations may be solved by Program B2-1. The
rational polynomial coefficients of s for the data in Table 6.9 are: a,=2.1819,
by=1, by =0, by=~2.0505, b;=0, b,=—2.7689, b;=0, and b,= —3.0330.
Note that the even input data produce the required even fitting function. This
polynomial is the basis for the Gewertz procedure in Section 3.5.1, which finds
the Z (s)=Zg, . impedance function looking into the matching network from
the load interface (see Figure 6.1).

The last Carlin step is to synthesize the Zg, . input impedance function
obtained by the Gewertz method. This has been described in Sections 3.5.3
and 3.4, The result will be a network like that shown in Figure 3.8; it is similar
to an example given by Carlin (1977). Carlin and Komiak (1979) also give a
rule of thumb for estimating the required complexity of the rational pelyno-
mial used to fit the optimal piecewise linear resistance function; this deter-
mines the matching network complexity as well.

6.7.5. Summary of Carlin’s Broadband-Matching Method. Carlin identified
at least three important concepts applicable to the broadband-matching
problem, First, a piecewise linear representation of a resistance function can
be used in a closed-form application of the Hilbert transform to find the
corresponding reactance function, assuming minimum phase. The excursions
in the piecewise linear representation occur as coefficients in a linear combina-
tion of easily computed resistance and reactance contributions. The technique
is equally valuable for computing the transfer angle given a piecewise linear fit
of transfer magnitude.

Second, the generalized gain function at the load interface is at most a
quadratic function of the resistance excursion variables. If a classical least-
squared-error solution were employed, a standard quadratic program would
suffice. The gain function is well conditioned in any event.
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Third, an objective function for optimizing the resistance excursions need
not be limited to gain; it might be noise figure, noise measure, or any other
function that can be formulated in terms of impedances or admittances.
Equally important, an arbitrary goal/target function may be employed so that
sloped gain functions may be matched. Like most applications of nonlinear
programming (optimization), there are several choices to be made from
experience rather than by analysis.

The optimali piecewise linear resistance function must be fitted with an even
rational polynomial, so that a matching network may be synthesized. The
Gewertz method then provides the input impedance polynomial for the
network at the load interface. Standard network synthesis techniques will
produce the LC element values.

There are two features of Carlin’s broadband-matching method that distin-
guish it from Fano’s classical method. The discrete load impedance versus
frequency data set does not have to be identified with a resistively terminated
LC load network; i.e., load classification is not required. Also, the well-
conditioned optimization process allows sloped-gain or other arbitrary fit of
the objective function. Fano’s method has been adapted by Mellor (1975) to
obtain similar results at the expense of considerable ad hoc procedures.
Network synthesis is required in these and other methods which are more
versatile than the direct design-matching method in Section 6.4,

Problems

6.1. Find four different lossless, lumped-element L-section matching net-
works that transform a load impedance of 36—j324 ohms to match a
50+j0 generator impedance.

6.2. Conjugately match a 6+j25-ohm load impedance to a 7+j20-ohm
generator using only capacitors in an L section. Obtain two different
solutions,

6.3. Plota2:1 SWR load-locus circle on a Smith chart, and explain why
Equation (6.19) is true.

6.4. A T section is composed of the two types of L sections.

(a) Write an expression for the parallel resistance level across the
shunt reactance (X, ) as a function of the T section’s terminating
resistances and transfer phase angle.

(b) A conjugately matched T section delivers 1 watt from a 50-chm’
source to a 21-ohm load with a lagging current transfer phase of
155 degrees. What is the rms voltage across the shunt reactance?




6.6.

6.7.

6.8.

6.9.
6.10.

6.11.

6.12.

6.13.

6.14,

6.15.

Impedance Matching

{a) Can a single, lossless transmission line transform 6425 ohms to
7320 ohms? If so, give its Z, and 6.

(b) What is the input impedance of a lossless, 50-ohm transmission
line 45 degrees long and terminated by a 6 +j25-ohm load?

{c) Can the input impedance from (b) be transformed to 7—j20 ohms
by a single lossless transmission line? If so, give its Z, and 8.

Rotate load impedance Z,=100—j150 ohms on & 50-ohm transmission
line that is 45 degrees long.

(a) What is the input impedance if the line is lossless?

(b) What is the input impedance if this length of line has a uniform
dissipation of 0.25 nepers?

Suppose that Z=R +j0 ohms. Show that SWR with respect to 1 ohm is
RforR>1andis 1/R for R< 1,

A two-reactance Joad (an L section with g, g,, and a 1-ohm resistance)
terminates an infinitely complicated bandpass matching network
driven by a resistive source. Give an algebraic (containing no integrals)
expression for an equality constraint and an inequality constraint on
the minimum possible input reflection loss, In(1/|p|). The band of
interest is w, to w,.

Prove Equations (6.48) and (6.51).

For a 100% bandwidth, what is the greatest Q, that can be matched
with an SWR 2:1?

Derive Equations (6.57) and (6.58).
Derive Equations (6.61) and (6.62).

Find the minimum possible decrement of a single-reactance load for
optimal broadband match when In|p|=10""*.

Estimate Fano’s optimal matching solution using Equations (6.68) and
(6.69); do not iterate.

(a) Find the optimal lowpass network that contains two reactances
and maltches a 2-farad capacitor in parallel with a 1-chm resistor
over the frequency range 0 to 1 radians.

(b) What is the generator resistance?
{c) What is the range of SWR in the pass band?
(d) What is the transducer loss at dc (in dB)?

Evaluate Equations (6.68) and (6.69) for parameters a and b when
N=3, Q. =3, and the bandwidth is 50%.



6.16.

6.17.
6.18.

6.19.

6.20.

6.21.
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Program Equation (6.72) on a hand-held or desktop computer. Start
with g, =1.5000, 0.7229, and 1.9683. Compute g -g ., and compare the
three sequences resulting from the three starting points. Compare the
sequences from r=1ton—1 and from r=n-1 to 1.

Derive Equation (6.87).

Transform the lowpass network in Figure 3.8 (Chapter Three) to a
bandpass network that is driven by a 50-ohm generator; obtain the
20% bandwidth geometrically centered at 70 MHz, Assume that the
passband edges correspond to 1 radian on the lowpass network.

(2) What are the bandpass edge frequencies?

{(b) Give all network clement values and units,

Instead of the capacitive L section indicated in Figure 6.32, replace an
inductive Norton L section with an inductive T section to obtain an
11-ohm load resistance whiie retaining the 50-ohm generator resistance.
Show all element values in your final network,

A resistance function versus a linear frequency scale has the form of a

straight line from 1 ohm at dc to 0 ohms at 1 radian; it is zero at

frequencies greater than 1 radian.

(a) What is the impedance of the associated minimum-reactance
function at 0.5 radians? '

(b) What is the partial derivative of this impedance with respect to
excursion 1, at 0.5 radians?

A minimum-reactance impedance function has a piecewise linear real
part. This resistance is a constant 2 ohms from 0 to 1.5 radians and a
linear function from 1.5 to 2.0 radians. The resistance is zero at all
frequencies equal to or greater than 2 radians. Find the reactance at 0.5
and }.75 radians.




Chapter Seven

Linear Amplifier Design
Tools

This chapter establishes a basis for many modern ampiifier design relation-
ships, especially those related to generalized Smith charts and their bilinear
functions. Impedance and power relationships will be investigated in detail.
The linear two-port network will be analyzed in terms of Z, Y, and §
parameters, as indicated in Figure 7.1. The network may or may not be
reciprocal, i.e., y,; may not be equal to y,,. The simplifying unilateral
assumption that y, =0 will be considered only at the end of this chapter. The
stability of such networks will be studied. Thus some of these results will be
applicable to oscillator design. Further applications of this chapter will appear
in Section 9.5, which deals with load effects on passive networks, especially
dissipative filters.

Impedance mapping will be the main analytic and computational tool. This
technique establishes the position of a small Smith chart image of a branch- or
port-terminating impedance plane embedded in a network impedance, admit-
tance, or scattering response plane, For example, all possible values of
transducer gain S, as a function of a network branch impedance are easily
visualized and calculated. The generalized Smith chart is normalized to a
complex number; it will be crucial to the impedance mapping concept.

This chapter begins with the definition of bilinear functions and several
methods for determining their three coefficients from a set of characterizing
data, The generalized Smith chart bilinear form that maps the right-half plane
onto a unit circle will be studied next. Some useful shortcuts and special
features in its application will be considered. The bilinear theorem that relates
all Z, Y, and S network functions will be derived by obtaining the three-port
to two-port reduction formulas. The impedance-mapping relationship will
then be derived, including the conversion of bilinear coefficients to the
mapping displacement and orientation coefficients,
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Figure 7.1, A linear two-port network.

Linvill’s two-port impedance and power geometric models will be derived
for both visualization and subsequent analysis. The per-unit voltage (or
current} output power parabola of revolution on its mapped Smith chart base
appears in the input immittance plane. Input power per input voliage (or
current) is a wedge-shaped surface in the input plane. Thus several gain
relationships are easy to see and are the basis for special mathematical
development. Finally, the most important computational results will be ob-
tained in terms of scattering parameters. According to current practice, these
parameters are usually measured with respect to 50-ohm resistive termina-
tions. A major development tool will be their renormalization to arbitrary,
complex impedances. This enables direct consideration of linear, active net-
works between complex source and complex load; impedance, power, and
stability issues are readily considered from that basis. The last subject in this
chapter is the specialization of the scattering results to the unilateral case
when §,,=0. The resulting simplifications allow easier comprehension of some
power relationships, although the approximation is