©ARTVILLE

Steve Maas

his is about history. Please try to contain
your excitement.

Yes, we all went into technology
because, to put it charitably, we weren't
excited by history, literature, or any of the

humanities, and the few of us who had some stirrings
of interest in those areas weren't excited enough to
make it our lives' work. Or at least, we weren't enam-
ared of the options those fields presented, which rarely
included gainful employment. As a result, we now
enjoy a reputation among the literati as obtuse and

illiterate geeks. I'm sure that gives them great comfort
when their toilets flood their bathrooms and they have
no idea how to shut off the water.

Still—and at the risk of being a traitor to my class—
I enjoy reading novels and listening to music, although
[confess that my musical tastes are a couple of hun-
dred years behind the times. [also have a controlled
fascination with history. And more to the point, Ithink
it's important for technical people to know about his-
tory, especially the history of technology. Although it's
arguably possible to do good research and technology

Steve Maas (smans@awrcorp.com) is with AWR Corporation, El Segundo, California 90278, USA.

Digital Object Identifier 10.1109/MMM.2012.2189990
Date of publication: 7 May 2012

June 2012

1527-3342/12/$31.00©2012 IEEE

IEEE microwave magazine

ais]

e -

The earliest computers were
developed for specific purposes and,
while technically programmable, were
not programmable in today’s sense.

HTTEER WK IPEDN A QORGAWIRSENI AT

development work without any historical perspective,
I've found that historical ignorance has some pretty
serious downsides:

1) First, it’s easy to reinvent the wheel. When [was
the IEEE Transactions on Microwave Theory and
Techniques editor, I saw a lot of this. Whenever I
received a paper that just seemed too fundamen-
tal, I sent it to the oldest reviewer I could find.
Invariably, that reviewer would return a refer-
ence to earlier, identical work. The problem was
not simply a failure to do necessary background
research; it was a failure to understand the simple
fact that, in the evolution of any technology, fun-
damental work is completed early and rapidly,
and subsequent work consists largely of ever
finer fine-tuning. If you come up with some-
thing fundamental in a mature field, someone
undoubtedly has thought of the same thing long
ago. That’s the way all technologies develop, not
just electronic ones.

2) Second, historical ignorance regularly results in
work that is destined to go nowhere, not because
it has no value but because it just doesn't fit into
the evolutionary pattern that any technology fol-
lows. At the risk of being a little controversial, I'd
suggest microelectromechancial systems (MEMS)
as an example. MEMS technology exists in direct
opposition to a clear trend in which mechanical

devices and controls are inexorably replaced by

Figure 1. Part of ENIAC, in a basement laboratory of the
University of Pennsylvania’s Moore School of Electrical
Engineering. Some of the patch cords used to program the
computer are visible on the left. Programiming ENIAC
required several weeks of planning, about a week to plug in
all the patch cords, and days to weeks of debugging.

50 IEEE microwave magazine

electronic ones, as the latter are faster, cheaper,
smaller, more versatile, and more reliable. MEMS
technology attempts to reverse that trend. Now,
if we are to paddle upstream against that evolu-
tionary current, there has to be an awfully good
reason for doing so. I still haven't heard it. Indeed,
we're still waiting for the MEMS “killer app”—
that is, an application so compelling that it makes
this technology essential.

3) Finally, it’s important to understand how tech-
nologies evolve. Thatevolution can be surprising.
Conventional wisdom holds that technologies
undergo a kind of natural selection, in which
useful technologies win out because of their
merits and less satisfactory ones are discarded.
In reality, however, economics, innate conserva-
tism, human inertia, and simple luck are pow-
erful forces influencing technological change.
For example, today we use scattering (S) param-
eters for largely historical reasons. In the 1960s
they made sense, as newly emerging microwave
test systems measured traveling waves, and S
parameters were formulated in terms of trav-
eling-wave quantities. Today, however, circuit
simulators immediately convert S parameters
to admittance (Y) parameters before they can
be used. From a purely technical standpoint, Y
parameters might be more practical. But we've
always used S parameters, and we're comfort-
able with them. We know what to look for when
they are plotted on a Smith chart. So that’s what
we continue to do.

I could carry this topic much further, and perhaps
it should be the basis of a future article. But instead, I'd
like to discuss the evolution of circuit technology, how
it has fit a pattern, and what has motivated it. From
that, perhaps we can understand where this technol-
ogy is going. I think that’s a lot more interesting, and
quite a bit more valuable, than reciting a long, dull
story of what happened and when. We'll still do some
of that, of course, because it’s good for you and may
even make you feel academic.

Computers and Software

In discussing the history of any computer software
technology, it seems that a good place to start is with
the computers themselves. The earliest computers
were developed for specific purposes and, while tech-
nically programmable, were not programmable in
today’s sense. ENIAC [1], normally credited with being
the first real electronic digital computer, developed at
the University of Pennsylvania’s Moore School of Elec-
trical Engineering, was intended for ballistics calcula-
tions and was programmed with switches and patch
cables. Figure 1 shows a picture of part of ENIAC.
Colossus [2], shown in Figure 2, was designed and
built at Bletchley Park, the famous British center for

June 2012

code breaking established during the Second World
War. It was designed to test code-breaking schemes,
once the nature of the cipher was partially understood.
It is likely that Colossus may actually have predated
ENIAC, but its existence was kept secret until the
1970s. The inventors of ENIAC, in contrast, went to
great lengths to develop the technology once wartime
secrecy had ended.

Rapid advances in computer technology, espe-
cially the development of high-level programming
languages, led to wider and more general use of such
machines. In the 1960s, Fortran (the name is no longer
spelled using all capital letters) and COBOL were the
only widely used high-level computer languages. Stu-
dents in the sciences learned Fortran, which included
necessary functions for technical computation, while
COBOL was designed for business applications and
was somewhat less frequently taught to business
students. Much of the early microwave computer-
aided design (CAD) software was written in Fortran.
Although most programmers have abandoned those
languages, they are still in use, and you can still buy
a Fortran or COBOL compiler. While most COBOL
programming today is for the maintenance of old
software, Fortran, because of its superior numeri-
cal libraries, is still preferred in many of the sciences
when computational speed and numerical precision
are critical.

Early computers using high-level languages were
programmed with punched cards. Somewhat later,
time-shared teletype terminals became an option as
well. Before teletype terminals, the process of run-
ning a program was, by today’s standards, almost
intolerably slow and laborious. It was necessary to
punch the cards with a keypunch machine (Figure
3), which always seemed to be located in the over-
heated and underventilated basement of the com-
puter center, crowded with technogeek students
whose hygiene was no better than it is today. The user
would submit the “deck” of cards, wait a day or so,
and receive output printed on fanfold paper saying
that the program had a trivial error. Back to the key-
punch and repeat. Eventually, however, commercial
time-sharing terminals obviated much of this labori-
ous process. Even with a 110 b/s modem connection
and a clunking electromechanical teletype terminal,
the improvement in design efficiency seemed like a
gift from the gods. Finally, by the early 1980s, elec-
tronic terminals with fast modems and dedicated
telephone lines allowed the engineer to have a termi-
nal in his office, connected to a remote mainframe or
a local “minicomputer” (which actually might have
occupied an entire room).

It’s easy to say that computers of the mid-20th cen-
tury were slow and their memory expensive, but that
raises the question, as compared to what? While today
they seem insufferably primitive even when com-

June 2012

By the early 1980s, electronic terminals

with fast modems and dedicated

telephone lines allowed the engineer

to have a terminal in his office,

connected to a remote mainframe or a

local “minicomputer” (which actually
might have occupied an entire room).

pared with a modern handheld calculator, in their era
they provided an enormous advantage over the only
alternative, calculation by hand. Computers spread
throughout society in industrialized countries. They
were quickly viewed as indispensable.

E DL ORGWIKVCOMPUTER_HISTORY

HTTPLER WilKD

; L |L‘Jd BB
Figure 2. One of the few existing photographs of Colossus.
The coded message was read into the machine by paper
tape, and the console at the foreground was used to enter
an educated guess at the encryption key. This was useful,
of course, only when a good idea of the key could be
determined.

HTTP//EN.WIKIPEDIA ORG/WIKI/KEYPUNCH

Figure 3. The IBM 029, one of the most widely used
keypunch machines. Cards were loaded into the hopper on
the upper vight and fed into the punch mechanism. Each
card had one line of data or of source code. Once punched,
the cards were transferred to the bin at the upper-left part
of the machine.

IEEE microwave magazine

I_]l

By the early 1970s, it was possible to
buy small computers that occupied
only the floor space of an ordinary
office or even just a desktop.

92

Mid-20th-century computers were limited by their
circuitry, which used discrete devices hand-soldered
into circuit boards and primitive, expensive memory
technologies. An example of an early computer board
is shown in Figure 4; it doesn’t require a lot of imagina-
tion to realize that this is, by today’s standards, a very
slow, expensive circuit. Circuit parasitics were large,

0 N e

R RN AT ey u .

HTTRAEN WIKIPECIAORG AMEVDIGITAL _EQUIPMENT OOSPORETION

Figure 4. A computer circuit board—a hex inverter—from
about 1960. It used germaniuin transistors mounted on a
PC board.

HTTP AW, INTERNETHNERNS COMBLS-
HEMSPRINT PHRIRITEH

Figure 5. A VAX PDP 11/780 computer from Digital
Equipment Corporation (DEC). These machines were
especially useful for running early IC-layout software.

IEEE Microwave magazine

memory access times were long, and memory boards
required great electronic overhead. Inevitably, the
most successful software technologies would be ones
that made reasonable demands on speed and memory,
did not require special ancillary equipment (e.g., spe-
cial displays or input-output tools) but still provided
great value in eliminating manual labor. Circuit simu-
lation fit these requirements well.

An early, widely used circuit-analysis program was
IBM’s Electronic Circuit Analysis Program (ECAP).
Though its name was not terribly imaginative or clever
(it was coined, after all, by engineers), ECAP analyzed
linear circuits described by LCR components and by
controlled and independent sources. ECAP contained
no formal transistor models (although occasionally
models were added [3], [4]), and it could not handle
noise or nonlinearity. Lacking transmission-line ele-
ments, it was not very useful for high-frequency
design. Other programs existed as well; as this was
an important area of circuit-theory research, many
noncommercial, academic simulators were also in
use. Although it never achieved the rock-star level of
fame enjoyed by SPICE (discussed below), ECAP was
used extensively in industry, and an advanced version,
ECAP II, was reported in 1971 [5]. ECAP II included
time-domain nonlinear analysis, sparse-matrix formu-
lation, and other advanced features.

At the same time, the methods for formulating
circuit equations for computer analysis were being
developed. Initially, methods using such techniques as
nodal incidence matrices [6] were used, but a consen-
sus rapidly developed favoring nodal analysis, as it is
numerically efficient and much simpler to implement
in a computer. Microwave circuit analysis initially
used a block-cascade form, described below. It took a
few years—and significant improvements in comput-
ers—before a consensus for the use of nodal analysis
in microwave circuit simulation developed.

By the early 1970s, it was possible to buy small com-
puters that occupied only the floor space of an ordinary
office or even just a desktop. An example was the VAX
PDP series, one of which is shown in Figure 5. Calcula-
tors programmable in a high-level language (usually
BASIC, originally a simplified Fortran-like language)
had become common, as well. These were possible for
one primary reason: the digital integrated circuit. The
resulting reduction of size and cost, combined with a
significant improvement in speed, brought about rapid
improvements in computer technology.

Early Microwave Circuit-Analysis Software

Until the 1960s, microwave systems consisted almost
entirely of interconnected waveguide components.
Until active microwave devices and hybrid circuits
became common, there really wasn't much need for
microwave design software that could accommodate
an arbitrary circuit. Design software, such as it was,

June 2012

usually analyzed or synthesized specific types of com-
ponents, such as filters.

In the late 1960s and into the 1970s, microwave
hybrid circuits were becoming more common, and
it was clear that the old “cut-and-tune” methods for
creating high-frequency circuits were too slow and
expensive. One motivation was the U.S. space pro-
gram, whose demand for small, light, rapidly pro-
duced components could be met only by hybrids. The
advent of gallium arsenide technology, along with
really good microwave FETs, made it clear that mono-
lithic microwave ICs would soon be practical as well.
You can’t “tweak” an IC; precise design is essential.
Even hybrid circuits were moving to millimeter wave-
lengths, becoming so small that tuning was impracti-
cal. Something better had to be done.

At the same time, all the pieces were in place to
bring about fundamental changes in the way micro-
wave components were designed. These included the
following:

» small desktop computers and programmable cal-

culators

e reasonably powerful mainframe computers

¢ high-level programming languages

¢ IC technology

¢ fundamental theoretical understanding of ways

to analyze circuits by computer.

In the early 1970s, Les Besser, then an engineer
at Fairchild’s microwave division, wrote a program
called Speedy [7]. Its purpose was primarily to pro-
mote Fairchild’s transistors, including some of the first
commercial GaAs FETs, by providing a practical way
to design circuits using them. Three years later, Besser
wrote a more advanced program called Computer-
ized Optimization of Microwave Passive and Active
Circuits (COMPACT) and formed a company, Com-

Until the 1960s, microwave
systems consisted almost
entirely of interconnected
waveguide components.

pact Engineering, to market, support, and develop the
product [8]-[11].

COMPACT was, for many of us, our first introduc-
tion to circuit-analysis software and a good lesson in
what could be accomplished with it. COMPACT dis-
played a remarkable combination of simplicity and
important features. For an early product, COMPACT
was remarkably advanced, including two kinds of
circuit optimization, a rudimentary tuning capabil-
ity, noise analysis, and a plotting capability. Initially
it ran on mainframe computers via worldwide com-
mercial time-sharing, but later it was sold for in-house
computers. COMPACT was ported to a wide variety of
platforms, eventually including programmable calcu-
lators and desktop workstations.

COMPACT used a cascade formulation. Figure 6
shows a circuit described in this manner. Each circuit
element was treated as a two-port block that could be
cascaded with other blocks or connected in series or
parallel. This results in a simple way to create a circuit
model. In principle, cascaded blocks can be analyzed
with ABCD matrices, while parallel and series con-
nections use Y or Z parameters. This would involve
repeated matrix conversions, however, and manipu-
lating even small matrices involved a significant
computational effort for early machines. Speedy and
COMPACT, however, formulated the interconnections
directly in S parameters. This obviated much of the
matrix conversion.

]
i

1
0

Ay
el e
o 5
Parameters
o)

-
1

- o
I

(=]
o]

Cr

Figure 6. Many microwave circuits can be described as a cascade, series, or parallel combination of two-ports. Generating an
S matrix for the entire structure requires only the application of straightforward block-interconnection rules,

June 2012 IEEE micfowave magazine 93

. e

The idea of using the computer
for microwave design in general
and optimization in particular
did not sit well with some of
the older, experienced, but
hidebound engineers.

It is not hard to see that certain kinds of circuits
cannot be described this way. To accommodate these,
COMPACT included the ability to describe a subcir-
cuit by its nodal interconnections. Figure 7 shows an
example of a nodal description. Its 1 nodes are num-
bered and the admittances of the elements are added
to an 1 X 1 nodal matrix according to their nodal con-
nections. The matrix is technically an indefinite admit-
tance matrix, a Y matrix where all the node voltages
are referenced to a common ground point. The process
is completely mindless, perfect for a computer. The
pattern for any element is sometimes called a stamp;
the idea is that setting up the circuit equations is sim-
ply a process of “stamping” the matrix with the ele-
ment values. Figure 7 shows an example of a circuit
and the stamp of one of its elements.

Nodal analysis requires decomposing an # X 1
matrix, where n is the number of nodes. Solution of the
circuit equations requires decomposing this matrix,
not a difficult task if it is small but one that rapidly
becomes larger with increased circuit size, as the

number of operations, for standard methods, scales
as 1°. Furthermore, the nodal matrix is very sparse,
so much of that manipulation involves multiplying
zero by zero and adding it to zero. That’s not an effi-
cient thing to do, and it took some time before efficient
sparse-matrix techniques, which largely eliminated
this nonsense, became available. Until then, the effi-
ciency of the block-interconnection formulation made
it the favored method, when applicable, especially for
small computers.

In 1978, I was one of the first in my lab at Hughes
Aircraft Co. to use COMPACT. 1 used it primarily
for designing the IF filters and matching circuits for
millimeter-wave mixers. Previously, the accepted
method for realizing IF circuits involved a classi-
cal filter design, usually straight out of Matthai et al.
[12]. Analysis by computer showed the limitations of
using an unmodified filter design: while it certainly
resulted in an IF circuit that would reject the RF and
local oscillator (LO), it generally did not provide opti-
mum terminations to the diode at all the important
mixing frequencies. Achieving those terminations

required a fairly complex optimization process; there

was no analytical way to do such a design. At the same
time, the idea of using the computer for microwave
design in general and optimization in particular did
not sit well with some of the older, experienced, but
hidebound engineers. It was met with quite a bit of
skepticism; one even called the optimization process
an “idiot search” and claimed that competent engi-
neers didn't need it.

®

=

A IEEE microwave magazine

Vs
= —- g
A ot
A

AR
i

Figure 7. For nodal analysis, a circuit’s nodes are numbered and each element’s value is added to the nodal matrix in the form
of @ submatrix called o rom. As an example, the stamp for the resistor R is shotwn in the figure. Grounds are always node 0.
Note that this circuit cannot be described as in Figure 6.

June 2012

In 1980, Compact Engineering merged with Comsat
Corp. The new company was called Comsat General
Integrated Systems. COMPACT eventually developed
into a generalized nodal program called Super-COM-
PACT, which included a simple layout program called
Auto Art and ran on a number of mainframe and mini-
computers.

Around 1983, Charles Abronson and Bill Childs cre-
ated a new company called EEsof, whose first product
was a linear simulator called Touchstone. Touchstone
ran on the new IBM PC, whose architecture eventually
became a standard for personal computers worldwide.
Touchstone was a full nodal program and included
interactive graphics consistent with the capabilities of
the PC. It also included a built-in full-screen text edi-
tor and used a format for S parameter files that has
since become a de facto standard. This allowed it to
import files generated by network analyzers. One of
its most attractive features was an ability to tune vari-
ables in the network description file simply by tabbing
between them. As each parameter was selected, it was
highlighted and could be easily modified from the
keyboard.

The 8080 processor used in the IBM PC was limited
to a little over 1 MB of addressable space, and its MS-
DOS operating system allowed only 640K memory
for both the program and data. This quickly became
insufficient for many kinds of application software,
so rather clumsy techniques (and often extra hard-
ware) were needed to address additional memory.
These slowed computational speeds considerably.
This problem continued through the early versions of
the Windows operating system and was not corrected
until 32-b processors, with larger address registers,
became available in the mid-1990s. For this reason,
much design work in the 1980s moved to engineer-
ing workstations: graphically oriented desktop com-
puters using the UNIX operating system. Those were
much more powerful and had fewer limitations.

In response to competition from EEsof, Super-
COMPACT was ported to the PC. Even so, the devel-
opers had difficulty keeping up with the competition,
and in any case, a software company did not fit well
with Comsat’s mission. Thus, in 1985 the company
was sold to U. Rohde and relocated to Paterson, New
Jersey. It grew to more than 100 employees, and in
1997 was sold to Ansoft Corp., until then a company
that exclusively produced electromagnetic simula-
tors. Ansoft renamed the circuit simulator Ansoft
Designer.

Another PC-based program was Super Star, from
a company at first called Circuit Busters, a name
that was wisely changed to Eagleware. Although it
included some nice features such as filter synthesis
and tightly integrated layout, it never achieved a large
market share and was eventually purchased by Agi-
lent Technologies.

June 2012

The 8080 processor used in the IBM
PC was limited to a little over 1 MB of

addressable space, and its MS-DOS

operating system allowed only 640K

memory for both the program and data.

Nonlinear Analysis

1971, SPICE, written at the University of California,
Berkeley, was released free of charge to the pub-
lic. Unlike COMPACT or Touchstone, which were
formulated in the frequency domain, SPICE was a
time-domain program. While microwave programs
provided only steady-state, frequency-domain solu-
tions, SPICE’s time-domain integration provided, pri-
marily, a circuit’s transient response. This was easy to
do with LCR circuits, but including transmission lines
was difficult, and including S, Y, or Z parameters was
seemingly impossible.

While SPICE had major limitations for use with
microwave circuits, it was still used to some degree
for microwave design. Transmission lines could be
approximated by L.C ladder circuits, and lumped-ele-
ment, nonlinear device models supplanted S param-
eters. SPICE was used in certain applications in which
there was simply no alternative, such as the simulation
of oscillator start-up transients and certain kinds of
power amplifiers.

SPICE's pedigree has never been entirely clear
to me. It seems to have evolved partly from a course
taught by R. Rohrer at the University of California at
Berkeley in the late 1960s [13]. The version that was
released, however, came from the Ph.D. dissertation
of Larry Nagel, who, along with Donald Pederson, his
adviser, is viewed as its creator [14]. Pederson received
the IEEE Medal of Honor in 1998 for SPICE's develop-
ment, although it was a surprise to many of us that
Larry Nagel was not a corecipient.

SPICE underwent additional development. In 1975,
SPICE2 was released, offering a number of improve-
ments. Version 2G6, released in 1983, was the last
Fortran version. Subsequently, SPICE was completely
rewritten in the C language and was released in 1985.
The change from Fortran to C made the program much
more portable, and it has been used on a wide variety
of platforms. SPICES3 is still available but is no longer
in development.

The idea of harmonic-balance (HB) analysis had
been in existence for some time before general-purpose
HB simulators were developed. It appears to have been
conceived almost simultaneously by Nakhla and Vlach
[15] and Colon and Trick [16], although neither of these
papers described applications to microwave circuits;
they were concerned with rapidly finding steady-state
conditions, often difficult with SPICE. The value of

IEEE microwave magazine

95

a6

this type of analysis, for microwave circuit design, was
made clear in papers by Egami [17] and Held and Kerr
[18], who used very different formulations applied spe-
cifically to microwave mixers. Egami’s approach was
most like the harmonic-balance formulations we use
today. It is surprising that it received relatively little
attention when it was reported.

A third method that made a brief appearance was
Volterra-series analysis [19]. Volterra-series analy-
sis was most useful for intermodulation analysis of
weakly nonlinear circuits. It integrated well with lin-
ear analysis (which is, in fact, a first-order Volterra
method) but was not capable of meeting many ordi-
nary design needs.

In the early 1990s, it was not at all clear whether
harmonic-balance, time-domain, or Volterra simula-
tion would dominate microwave design. While all
had advantages and disadvantages, harmonic-balance
analysis seemed the only method that, while not opti-
mal in many respects, was adequate in virtually all. It
therefore took its place among such engineering sta-
ples as alumina substrates, coaxial transmission lines,
and many of our personal skill sets: not great at any-
thing but adequate at almost everything. This is the
stuff of which practical engineering is made, so it’s no
great surprise that HB became the dominant analyti-
cal method.

The first general-purpose harmonic-balance simu-
lator (in the sense that, like SPICE, it could simulate
an arbitrary circuit) was written at UC Berkeley by K.
Kundert and A. Sangiovanni-Vincentelli [20]. It was
Kundert’s dissertation work. Originally it was called
Harmonica, although the name was later changed to
Spectre when it was learned that the name Harmonica
had been trademarked. (Spectre has since been used
as a product name by Cadence Design Systems.) The
simulator’s development was supported by Hewlett-
Packard Co. (HP) and the State of California, under
the MICRO program, which makes matching funds
available for industry-supported research. Because of
the MICRO funding, however, the source code became
public domain and thus became the core of other, com-
mercial simulators.

Harmonica/Spectre used SPICE models and an
advanced sparse-matrix solver that was similar to the
onein SPICE3. Like SPICE3, it used a modified nodal for-
mulation, which differed from the classical, port-based
formulation but allowed greater versatility. Although
it could clearly be used for high-frequency circuits, the
program seemed to be intended, like SPICE, more for
analog ICs than for RF or microwave ones. Berkeley
was, after all, a digital and analog IC school.

Commercial HB simulators were quickly released.
These invariably ran on engineering workstations, as
DOS and Windows machines simply did not have the
speed and memory address space to support them.
They included the following:

[EEE MiCTowave magazine

* EEsof released a simulator called Libra. It was
reputedly based on the Berkeley code, although
this has been denied by sources within the
company.

* HP released its Microwave Design System (MDS).
It was also based on the Berkeley code and origi-
nally was supported only on HP computers.

* Compact released a product called Microwave
Harmonica, which was based on the work of V.
Rizzoli at the University of Bologna [21].

Because of its lack of cross-platform support, MDS
never got a strong foothold in the microwave design
industry. In contrast, Harmonica and Libra ran on a
variety of workstations, and as PC computers increased
in capability, both products were ported to them as
well. That left Libra and Harmonica to slug it out in
the marketplace. The clear winner of that match was
Libra, and Libra became the dominant tool in industry
for designing microwave components.

HP acquired EEsof in 1993. Libra and MDS were
merged into a product called the Advanced Design Sys-
tem (ADS). It became part of Agilent Technologies when
the instrument and measurement division split off from
HP. Eventually, Agilent also vacuumed up Eagleware
and a start-up simulator company called Xpedion.

A new company entered the business in the late
1990s. Started by four circuit designers from Hughes
Aircraft Co.,, Applied Wave Research (now AWR
Corporation) in 1998 released its first product, a pla-
nar electromagnetic simulator. Tt eventually offered
tightly integrated electromagnetic, system, linear,
and nonlinear circuit simulation. Microwave Office,
its flagship product, differed from earlier simulation
systems by combining advanced software technology
with advanced simulation technology. This resulted
in a product that was user-friendly and supported
an efficient design flow. The company grew rapidly
and acquired substantial market share from its com-
petitors. AWR became a wholly owned subsidiary of
National Instruments in 2011.

Electromagnetic Analysis

The evolution of electromagnetic software products
is even more complicated and extends over a shorter
period of time than that of circuit tools. Part of the rea-
son is the tendency of seemingly every Ph.D. graduate
in electromagnetics to start an electromagnetic (EM)
simulator company. A seemingly uncountable number
of these have surfaced and submerged; in the future,
there are certain to be many more.

As a minimum, however, three companies should
be mentioned, largely because of their long-term suc-
cess and influence on the way we do things. Sonnet
Software, founded in 1983 by Jim Rautio, is the first.
Sonnet markets a 3-D moment-based simulator for
predominantly planar circuits. (It has become styl-
ish to call these “2.5-D simulators.” Since partial

June 2012

dimensions, in this context at least, make no sense, 1
have always called them “3-D, predominantly pla-
nar” simulators, or “3-D planar” for simplicity.) This
simulator has been Sonnet’s sole product, which has
allowed it to focus on implementing advanced capabil-
ities and solid software reliability. While technically
a stand-alone simulator, Sonnet’s product integrates
nicely with AWR’s Microwave Office through a COM
interface; it also works with ADS. The second company
is Ansoft, which we mentioned earlier as the final
owner of Compact Engineering. Ansoft markets both
planar and full 3-D tools. The third company is Zeland
Software, started in 1992, which also provides a simu-
lator called IE3D that is also 3-D planar. Ansoft was
acquired by Ansys in 2008, and Zeland became part
of Mentor Graphics in 2010. Sonnet is still privately
held. Sonnet was the original planar 3-D program,
and Jim Rautio won the IEEE MTT Society’s Applica-
tion Award in 2001 for its invention.

EM simulation is numerically intensive and mem-
ory-hungry, so its practicality depends strongly on
advances in computer technology. For this reason, EM
simulation was not integrated with circuit simulation
in any meaningful way until the late 1990s. Before
that, critical parts of a circuit would be EM-simulated
on a separate machine, usually network-mounted,
and S parameters for the circuit structure would then
be imported into the circuit simulator. Even as com-
puter technology improved, the simulation of even a
few simple EM structures from a component design
required far more computational effort than its circuit
simulation and optimization. Successful integration
depended on avoiding unnecessary resimulation of
structures that had not changed. The simulator had
to retain sophisticated dependency information for all
its parts so it could mark the parts it had to resimu-
late when any particular change was made. This was
a burden for the software technology and had little to
do with the simulator’s computational “engine” itself.
It required careful thought for the software design of
the system; a kludged-together collection of dissimilar
simulators couldn’t provide that kind of functionality.

Integration

The products we have been discussing are sometimes
called “point tools” single-purpose software that
stands alone and is used for a single purpose: elec-
tronic design, layout, EM simulation, filter synthesis,
matching-network synthesis, or something similar. In
the days when a microwave component consisted of
a single stage, a set of disconnected point tools was
probably adequate. As designs became more complex,
however, it led to a clumsy design process. For exam-
ple, not knowing exactly what the circuit layout would
look like while the component was being designed, the
engineer could easily find himself with a circuit that
couldn’t be fabricated.

June 2012

It worked like this: you design the circuit. You made
a layout sketch and gave it to the layout tech. A couple
hours later, you got a phone call and were asked to
come to the layout lab (a dark, forbidding, hot, under-
ventilated room lit only by the multicolored glow of
large CRT displays), where the tech showed you that
the layout just wouldn't work. You returned to your
office, brought up the design on the computer, changed
microstrip dimensions as necessary, and discovered
that the circuit no longer worked. You reoptimized
and then saw that a critical, EM-simulated part had
changed dimensions. You put the EM simulation into
the queue, got the results a day later, and optimized
the circuit yet again. Then you modified the sketch
and returned it to the layout tech. An hour later you
got another phone call and discovered that you had
to cycle through the process at least once more. It's a
miracle that any work got done.

This description isn’t an exaggeration. I've been
forced into it many times, and I suspect that almost
everyone reading this has, as well. A way was needed
to integrate the “point tools” so that the effect of a cir-
cuit change in, say, layout was immediately clear and
potential problems could be avoided early. This meant,
in effect, that the design process had to be concurrent,
not sequential. That is, the layout, EM simulations, and
even the system simulations had to be performed more
or less simultaneously. To achieve that, integration
among those point tools was necessary.

Early integration efforts involved the creation of
supervisory software that passed data, with any nec-
essary conversions, among the tools. This created an
extra layer of complexity that slowed the design pro-
cess and was error-prone. A better method required
an entirely new architecture, not just a kludge of the
existing pieces.

Fortunately, the computer technologies necessary
for an improved architecture existed. Knowledge of
those technologies resided in the brains of computer-
science specialists, however, not (generally) in those
of microwave engineers. It was essential to elevate the
software system design to the same level as the simu-
lator engine design. This was a new—and perhaps
upsetting—concept for many engineering software
specialists. What are those technologies? Here are two:

¢ Object-oriented design. Object programming

involves the creation of objects, elements that
include all their data along with the functions
necessary to manipulate those data. Objects can
inherit other objects, providing a capability for
code reuse and improved reliability, as well-
verified code can be employed in a number of
places. Object-oriented design simplifies the
design and maintenance of complex software
systems, allowing greater versatility, as objects
can be used in a multiplicity of ways. For exam-
ple, suppose an HB simulator is configured as an

IEEE microwave magazine

97

The best use of technological history

is to show us where we are and in
what direction we're moving.

object. Another simulator, say, a system simula-
tor, can instantiate it, use it to calculate neces-
sary data for a system model, and then dispose
of it. It’s frightening to imagine how that would
be accomplished through some kind of supervi-

sory software.

user’s needs.

Whatever technologies are used, the trend toward
greater integration will continue. This requires that we
become accustomed to an environment that is some-
what foreign, however: engineers and computer sci-
entists working together. This requires adaptation on
both sides. Software specialists at last need to consider
and understand the needs of science and engineering,
and microwave engineers must cede some control of
their products to the computer guys. This is a clear
trend in engineering design software, and following
itis the only way we’ll continue to make real progress.

Trends

The best use of technological history, as I intimated at
the start of this article, is to show us where we are and
in what direction were moving. In view of this, T think

a few observations are in order.

93 IEEE miCrowave magazine

Component software. For many years, computer
scientists have been concerned with ways to inter-
change data among processes. Eatly examples
were pipes in UNIX and Dynamic Data Exchange
(DDE) in Windows. The holy grail of such efforts
has been to develop methods for integrating soft-
ware at the object level, however, not simply for
passing data among processes. The idea was that
two programs created entirely separately (i.e., by
different individuals or even different companies)
should be able to interconnect and operate as if
they were a single entity. A Windows technology
for this kind of integration is called Component
Object Model (COM). It is closely related to the
old idea of object linking and embedding. When
you embed, say, a Word document in a spread-
sheet, you are using COM to do that. Much of
the Windows operating system is built on COM
technology; it is now being used in simulation
systems, too. In its best realization, component
software allows a user to select a desired set of
simulation tools, perhaps from a variety of ven-
dors, and create from them a seamlessly function-
ing simulation system that supports the user’s
own, particular design flow. The user creates the
design flow, rather than having the software force
the user into one that may or may not meet the

* Speed versus versatility. Early in the develop-
ment of these technologies, computational speed
was usually the only characteristic of a simula-
tor anyone cared about. The methods we now
use, however, are not necessarily the fastest,
computationally, but are instead the most versa-
tile. Still, they are fast enough, partly because of
advanced computer technology but also because
of well-conceived and well-programmed numer-
ical methods. It does us no good to use a fast
method that can’t analyze some of our circuits.
One example is the move from cascade formula-
tions to nodal ones. Nodal analysis is slower than
block analysis but necessary to accommodate all
kinds of circuits. Indeed, HB simulation today
uses a nodal formulation instead of the port for-
mulation of classical methods. This increases the
problem size but avoids problems in handling
certain kinds of circuits, particularly ones having
a large number of nonlinear elements and rela-
tively few linear ones. With modern analytical
methods, the nodal formulation can be made as
fast as the port one.

Change in architecture to favor speed over
memory use. When many of today’s simulators
were conceived, memory was expensive. As a
result, those simulators were designed to save
memory at the expense of computational speed.
Today, memory is cheap, and it makes sense for
new architectures to increase speed by using
more memory; for example, by caching results
instead of recomputing them. This kind of change
is difficult to accomplish by modifying existing
software, as it is fundamental to the software sys-
tem’s design. It requires new development.
Blurring of the distinction between circuit and
system simulation. Time-domain system simula-
tors are now quite sophisticated, accounting for
interface VSWR, feedback, and similar properties.
They can automatically invoke a circuit simulator
to calculate the parameters of a system model, in
a sense including that circuit model in the system
simulation. I expect that the system and circuit-
simulation architectures will become more and
more tightly integrated over time. Indeed, circuit
simulation may turn out simply to be a subrou-
tine of system simulation.

Blurring of the distinction between time- and
frequency-domain simulators. Techniques such
as envelope analysis allow HB simulators to
treat nonperiodic signals, while shooting meth-
ods allow time-domain simulators to find the
steady-state response of a circuit quickly. Fre-
quency-domain models can now be included in
time-domain analysis. It seems likely that this
kind of interplay will lead to hybrid methods that
exploit the best parts of each method.

June 2012

¢ Standardization. Currently there exist some sig-
nificant efforts toward standardization and inte-
gration of various kinds of simulators. I suspect we
will see more of this, as software company man-
agers recognize that they can best sell software
by offering customers software that works with
competitors’ products instead of software that
is an “all-or-nothing” deal. Model standardiza-
tion, another matter of great importance, is actu-
ally occurring as well. One example is the series
of Berkeley Short-Channel IGFET Model (BSIM)
MOSFET models, intended to be a standard for
CMOS technologies. Similar efforts for other kinds
of devices (e.g, involving the Compact Model
Council) have been pursued for many years.

Ease of use. Microwave design 40 years ago was
not nearly as intense as it is today. The engineer
had plenty of time to design a component and
could spend hours in the lab getting it working
really well. Those days are over. Today, one per-
son may have to design a multicomponent chip

single-handedly, and time-to-market pressure
may leave little time for the job. Complex designs
create a large amount of data, and thus the proj-
ect is as much a data management challenge as
a technical one. The fastest simulator system in
that environment is not likely to be the one with
the greatest computational speed but the one that
places the necessary data before the user in the
simplest and quickest manner.

Development models and design flow. Much
of the evolution in software technology has been
driven by changes in the way that hardware has
been developed. We no longer make approximate
designs and “tweak” them into existence. We are
more likely to design a circuit, as an 1C, without
ever setting foot in a lab, not even seeing our cre-
ation until it is complete, if at all. Software has had
to adapt to this new reality; in short, it has had to
accommodate a very large change in the ordinary
design flow. It will have to adapt further, in the
future, as that design flow continues to evolve.

Conclusions

Sometime around 1970, the way we create microwave
products began to change inexorably from a kind of
technological cottage industry into a complex indus-
trial technology. That process continued through the
years, and we can now design circuits and systems
with a degree of accuracy and efficiency that seemed
unimaginable only a couple of decades ago. Instead
of tweaking in the dark, we make ICs that work;
“first-pass success” is the term used, and it is regu-
larly achieved. An essential for this success has been
increased software versatility. It may be surprising to
note that versatility has driven software evolution as

June 2012

Around 1970, the way we create

microwave products began to change

into a complex industrial technology.

much as computational efficiency or numerical accu-
racy. As time goes on, we can expect this trend to con-
tinue. It will be fun to see where it all goes.

References

[1] J. G. Brainerd and T. K. Sharpless, “The ENIAC,” Proc. IEEE, vol.
87, p. 1031, 1999.

[2] B. Jack Copeland, The Secrets of Bletchley Park’s Code-Breaking Coin-
puters. London, U.K.: Oxford Univ. Press, 2010.

[3] R. W. Jensen, “Charge control transistor model for the IBM elec-
tronic circuit analysis program,” IEEE Trans. Circuit Theory, vol.
CT-13, p. 428, 1966.

[4] B. D. Roberts and C. O. Harbourt, “Computer models of the field-
effect transistor,” Proc. [EEE, vol. 55, p. 1921, 1967.

[5] F. H. Branin et al., “CAP II—A new electronic circuit analysis pro-
gram,” IEEE |. Solid State Circuits, vol. SC-6, p. 146, 1971.

[6] N. Balabian, T. A. Bickart, and S. Seshu, Electrical Network Theory.
New York: Wiley, 1968.

[7] L. Besser, “A fast computer routine to design high frequency cir-
cuits,” in IEEE ICC Conf. Dig., 1970.

[8] P. Bodharamik, L. Besser, and R. Newcomb, “Two scattering ma-
trix programs for active circuit analysis,” IEEE Trans. Circuit Theo-
ry, vol. CT-18, p. 610, 1971.

[9] L. Besser, “1987 IEEE MTT-S International Microwave Symposium
Keynote Address,” IEEE Trans. Microwave Theory Tech., vol. MTT-
35, p. 1105, 1987.

[10] L. Besser, “COMPACT-—microwave circuit optimization through
commercial time sharing,” in IEEE MTT-S Int. Microwave Symp.
Dig., p. 711, 2008,

[11] L. Besser, F. Ghoul, and C. Hsieh, “Computerized optimization
of transistor amplifiers and oscillators using ‘COMPACT,"” in Eur.
Microwave Conf. Dig.,, 1973.

[12] G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters,
Impedance-Matching Networks, and Coupling Structures. New York:
McGraw-Hill, 1964.

[13] R. I. Dowell, “Hijacked by SPICE,” IEEE Solid-State Circuits Mag.,
Spring, 2011.

[14] L. W. Nagel, “SPICE2: A computer program to simulate semiconduc-
tor circuits,” Univ. Californin, Berkeley, Tech. Rep. ERL-M520, May 1975.

[15] M. S. Nakhla and]. Vlach, “A piecewise harmonic balance tech-
nique for determination of periodic response of nonlinear sys:
tems,” IEEE Trans. Circuifs Syst., vol. CAS-23, p. 85, 1976.

[16] E. R. Colon and T. N. Trick, “Fast periodic steady-state analysis
for large-signal electronic circuits,” IEEE J. Solid-State Circuits, vol.
SC-8, p. 260, 1973.

[17] S. Egami, “Nonlinear, linear analysis and computer-aided design
of resistive mixers,” IEEE Trans. Microwave Theory Tech., vol. MTT-
22, p. 270, 1974.

[18] D. Held and A. R. Kerr, “Conversion loss and noise of microwave
and millimeter-wave mixers,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-26, p. 49, 1978,

[19] S. A. Maas, “A general-purpose computer program for the Volter-
ra-series analysis of nonlinear microwave circuits,” in [EEE MTT-S
Int. Microwave Symp. Dig., 1988.

[20] K. S. Kundert and A. Sangiovanni-Vincentelli, “Simulation of
nonlinear circuits in the frequency domain,” IEEE Trans. Computer-
Aided Design, vol. CAD-5, p. 521, 1986.

[21] V. Rizzoli et al., “State-of-the-art harmonic balance simulation of
forced nonlinear microwave circuits by the piecewise technique,”
IEEE Trans. Microwave Theory Tech., vol. MTT-40, p. 12, 1992.

",

IEEE microwave magazine

99

——I

