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135 years ago today, on July 27, 1866, a lone officer of the United States Coast Sur-
vey stood at Heart’s Content, Newfoundland, anxiously watching the end of the 1866 
transatlantic telegraph cable being hauled out of the ocean from the Great Eastern an-
chored offshore. As soon as he had ascertained that the signals were sharp, he tele-
graphed his superiors. Within days, the Coast Survey had dispatched astronomers and 
transit telescopes to both ends of the cable—Newfoundland and Valencia, Ireland. 

Why was the U.S. Coast Survey—responsible for accurately charting and mapping 
the United States’ thousands of miles of shoreline and waterways—so interested in a sub-
marine telegraph cable between Ireland and Canada? 

Abundant documentary evidence suggests that the telegraph may have been as 
revolutionary for determining longitude on land as Harrison’s marine chronometer was 
for finding longitude at sea. The telegraphic method of determining longitude reigned in 
both the United States and Europe for eight decades, being replaced only in the 1920s by 
radio positioning techniques. Yet its history appears to have been largely overlooked—
and certainly no mention of it appears in either of two recent popular-level bestsellers on 
the chronometer and the telegraph: Dava Sobel’s Longitude or Tom Standage’s The Victo-
rian Internet. 

 
             
Background: Demand for longitude determinations  
            Determining longitude was essentially determining a difference in local time be-
tween the instant a celestial body transits the local meridian of an unknown point and the 
instant it transits the meridian of a reference location. Recall that in the 1840s, 40 years be-
fore the adoption of standard time, clocks in each city were set to local solar time: local 
noon was the instant the real sun transited the meridian of the town’s observatory or 
other significant landmark. 
            Until the telegraph, there was no direct way to compare differences in local time 
between places hundreds of miles apart. Expeditionary astronomers, surveyors, and ex-
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plorers used the same indirect method as mariners: physically transporting chronometers 
set to the local time of a reference longitude, which could be compared with local times at 
unknown longitudes as determined by meridian transits. But geodesy demands far 
greater accuracy and precision than open-ocean navigation, and the rates of the delicate 
chronometers were altered unknown amounts by temperature changes or jostling on 
horseback.  
           The seemingly-instantaneous transmission speed of telegraph signals, however, 
promised to allow local clocks hundreds of miles apart to be compared in what today 
would be called real time—with (in the words of one contemporary) “the same degree of 
precision as if [the two clocks] were placed side by side.” Beckoned by that prospect, 
whither the telegraph went, astronomers immediately followed, from the first land line to 
the first transatlantic cable. 
 
 
Evolution of timing techniques 
           The telegraphic method of determining differences in longitudes was actually sev-
eral methods, which evolved within the telegraph’s first five years.  

Three were techniques for comparing local 
times with varying rigor, which subsequently be-
came standard to use in tandem [Fig. 1]. 

 
Exchange of clock signals 

The first technique was an “exchange of 
clock signals,” used on the experimental line be-
tween Baltimore and Washington, D.C., on June 9, 
1844—just 2½ weeks after Morse’s inaugural mes-
sage “What hath God wrought?”  

For three days, chronometric expert Commo-
dore (later Admiral) Charles Wilkes and an associ-
ate took turns comparing two solar chronometers 
set to the respective local times of the two cities. 
One observer tapped the telegraph’s battery key 
once every 10 seconds in time to the beats of his 
chronometer. Forty miles away, the other noted on the face of his own chronometer the 
instant he heard the corresponding click of the armature of his receiving electromagnet, 
estimating fractions of a second. After several minutes of 10-second signals, the first 
would communicate the exact local hour, minute, and second at which the beats had 
commenced. Assuming an instantaneous transmission time, subtracting the two local 
times would give the minutes and seconds difference of longitude between the two tele-
graph offices. The mean of all the observations was taken to be the longitude difference 
between the cities.  

Although some later writers dismissed Wilkes’s experiment as “crude,” an ex-
change of clock signals became standard for quickly narrowing longitude differences to 
within a second of time. 
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Fig. 1—Summary of three timing methods used in 
tandem (in order of invention and of use) 



 
Method of coincidences 

After Wilkes’s pioneering experiment for the U.S. Navy, the U.S. Coast Survey 
took the lead. As soon as commercial telegraph lines linked offices in major cities, the 
Coast Survey paid to have additional wires extended to astronomical observatories, and 
contracted with local astronomers or sent trained observers equipped with the agency’s 
own transit telescopes.  

To remove the error inherent in estimating fractions of a second in an exchange of 
clock signals, the “method of coincidences” technique was developed in July and August 
of 1847, when the Coast Survey measured longitude differences between the U.S. Naval 
Observatory in Washington, D.C., the Philadelphia Central High School Observatory, and 
a temporary observatory in Jersey City, N.J. 

An astronomer at one end of the line tapped a telegraph key each second in time 
to his sidereal clock; at the other end of the line a second astronomer listened to the clicks 
of his armature magnet alongside the beats of his own solar chronometer.  Since a sidereal 
clock gains upon a mean solar clock one second in about six minutes, whenever the two 
ticked in exact coincidence, the listener noted his local solar time. After several such coin-
cidences, the second astronomer began beating and the first astronomer began listening. 
Within half an hour, the longitude difference could be calculated accurate to within the 
clock errors and reaction times. 

 
Exchange of star signals 

In 1848, a third technique called the “exchange of star signals” was refined when 
the Coast Survey used a telegraph line between Cambridge, Mass., and New York City on 
seven nights to determine the longitude difference between the Harvard College Obser-
vatory and the private observatory of Lewis M. Rutherford. Each observer tapped on a 
telegraph key each time a pre-selected star near the zenith was seen to cross each of the 
seven wires in the eyepiece of a transit telescope. The local solar time of the star signals 
from each observatory was noted at both observatories, the time difference yielding the 
longitude difference. Pairs of stars were used so the differences in local times were inde-
pendent of any uncertainties in the known celestial positions of the stars.  

 
All three techniques—exchange of clock signals, method of coincidences, and ex-

change of star signals—were used in October, 1848 to determine the difference in longi-
tude (some 37 minutes of time) between Philadelphia and the Cincinnati Observatory 700 
miles west, a new distance record. By the end of that year, the Coast Survey’s superinten-
dent Alexander Dallas Bache declared in his annual report that the telegraphic method of 
determining longitude “may be considered to have passed into one of the regular meth-
ods of geodesy.” 
 

 
Evolution of paper-recording techniques 

But Bache’s deputy in charge of telegraphic longitude determinations, Sears Cook 
Walker, was troubled by there being no permanent record of a longitude determination.   
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Now, the history of the chronograph (the recorder for telegraphic longitude deter-
minations) is murky with nasty controversy over priority of invention, which is beyond 
the scope of this paper on fundamental measurement techniques. But two central techni-
cal issues are clear.  

One primary difficulty was connecting an astronomical clock to a recording device 
without degrading the precise time-keeping of the clock. The 
other was getting the recording device itself to function with 
precise uniformity.  

 
Locke’s Morse fillet 

For recording star signals and clock signals at a dis-
tance, Cincinnati instrument-maker John Locke was the first to 
try using the Morse register used for printing telegraph mes-
sages on a long fillet, or paper tape [Fig. 2].  

In a seminal experiment on the night of January 23, 
1849, a clock of Locke’s design was set up in the Philadelphia 
observatory and connected to the respective observatories in Cam-
bridge, New York City, and Washington, D.C. The star signals tele-
graphed from each observatory were recorded on Morse fillets at all 
four observatories along with the time ticks from the Philadelphia 
clock. Fractions of a second could be measured at leisure by scale and 
dividers. 
 
Mitchel’s revolving-disk chronograph 

Although the Morse fillet was used in several early longitude 
determinations, astronomers quickly rejected it as the ultimate. First, 
the fillet ran irregularly depending on whether or not the pen was 
writing. Worse, the fillet ran out of the register at an inch a second, so 
a night’s worth of longitude determinations spewed out close to 
half a mile of paper tape—impractical for storage or analysis.  

In 1849, Cincinnati Observatory director Ormsby 
McKnight Mitchel developed a revolving-disk chronograph, 
somewhat anticipating the form of an oversized 20th-century pho-
nograph record [Fig. 3]. A flat disk 22 inches in diameter—made by 
pasting a sheet of paper over a circular wooden hoop, which dried 
to become as taut as a drumhead—revolved horizontally once per 
minute. A make-circuit clock marked every other second with a 
tiny dot. At the end of every revolution, the disk’s position was 
shifted by 0.07 inch. Two hours of observations were recorded on 
each flat circular sheet, on which alternate seconds appeared as ra-
dial dotted lines and observations as dots irregularly in between 
[Fig. 4].  

At least two of Mitchel’s revolving-disk chronographs were 
placed in actual operation, one at the Cincinnati Observatory itself 
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Fig. 3—Mitchel’s revolving-disk 

Fig. 4—Mitchel disk chart. 
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Fig. 2—Morse register with fillet 



and the other at the Dudley Observatory in Albany, N.Y. 
 
The Bonds’ spring-governor chronograph 

In 1850, Harvard College Observatory director 
William Cranch Bond and his sons unveiled a cylindri-
cal chronograph. The cylinder, covered with a large rec-
tangular sheet of paper, revolved once per minute and 
measured time as a continuous line that was offset mo-
mentarily by each tick of an astronomical clock [Fig. 5]. 
The cylinder revolved and the paper advanced with 
uniform motions controlled by an ingenious break-
circuit regulator they called a spring governor, consist-
ing of a train of clockwork connected with the axis of a 
flywheel. Each sheet of the Bonds’ spring-governor 
chronograph recorded two hours of observations. Ulti-
mately, the Bonds’ design became standard for chrono-
graphs used in most 19th-century observatories. 
 
The “American method” 

With the addition of a method of permanently recording observations, the tele-
graphic method of determining longitudes was essentially complete. The technique won 
immediate accolades and adoption across the Atlantic, and rapidly became known as the 
“American method” in contemporary literature. In fact, it was one of the first major con-
tributions of the American scientific community to worldwide astronomical practice. 

 
 
Determining global longitude 
           By the mid-1850s, the Coast Survey had telegraphi-
cally determined geodetic baselines extending from New 
Orleans, Louisiana to New Brunswick, Canada [Fig. 6], 
most referred to the meridian of the U.S. Naval Observa-
tory. Still lacking, however, was a definitive reference of 
all U.S. longitude measurements to the meridian of Green-
wich, England. 
           The long-awaited telegraphic opportunity was fi-
nally at hand with the connection of first successful trans-
atlantic cables in July and September, 1866. By October, 
the Coast Survey had built temporary astronomical obser-
vatories at both Heart’s Content and Valencia.  An ob-
server at one end eyeballed deflections of a pencil of light 
thrown onto a screen by a delicate mirror galvanometer to 
indicate when the astronomer at the opposite end beat the 
seconds of his local solar clock [Fig. 7].  
           From October 24 through November 20, 1866, clock 
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Fig. 6—Cities whose longitudes were 
telegraphically determined 1844-56.  
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Fig. 5—Bond spring-governor chronograph 



signals were exchanged on five nights using both the 
1865 and 1866 cables, yielding the first directly-
measured longitude of the dome of the U.S. Capitol 
west of the Greenwich Observatory: 5 hours 8 min-
utes and 2.22 seconds.  

That was the good news. The bad news was 
that the signal-transmission methods essentially 
turned the cables into giant capacitors, whose dis-
charge rate affected the signal transmission times. So 
the first word was not yet the last. 
 
 
Epilogue 

As ambiguous as the first transatlantic tele-
graphic determination of longitude may have been, 
by 1866 the telegraph had bequeathed far more to astronomy than precise longitude 
measurements.  

Perhaps its greatest contribution was the American method of transits for nightly 
astronomical data recording. In the last half  of the 19th century, observatories worldwide 
installed internal telegraph systems in what today would be called a local-area data net-
work, centrally recording time signals along with the observations of astronomers man-
ning several telescopes. The telegraph and chronograph also inspired astronomers’ first 
experiments to quantify personal equation. 

Moreover, applying the telegraph to geodesy unwittingly furthered basic science. 
In a classic case of serendipity, the four Morse fillets from the January 1849 experiment of 
simultaneously registering clock and star signals at four observatories revealed “small, 
but appreciable, differences… in the respective readings of the apparent date of the same 
event as recorded at the different stations.” The farther an observatory was from the 
graduating clock at Philadelphia, the greater was the discrepancy. In short, Walker stum-
bled onto the discovery that electromagnetic signals were not instantaneous, as had hith-
erto been supposed, but had a finite and measurable velocity through a circuit. 
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Fig. 7—Mirror-galvanometer method used to detect 
clock signals (and other telegraphic transmissions) 
on the trans-Atlantic cable, to determine the longi-
tude of Washington, D.C. west of Greenwich, 1866. 
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