General Software

EVALUATION SHEET

1. Match each of the following concepts with its definition by writing the correct letter in the space provided.

Concept	Definition
Source Program	_d_
Symbol Table	e
Assembly	С
Machine Code	_b_
Assembler	_a_
Assembly Language	f

Definitions

- a. Program that translates a symbolic language program into machine code.
- b. Form of a program that is executable by a computer.
- c. Process of translating a symbolic language program.
- d. Form of a program as it is written by a programmer.
- e. Establishes the relationships between labels and actual addresses.
- f. Rules that a programmer must obey in writing a program.

- 2. Circle the letters of the statements that describe the advantages of using assembly language rather than machine code.
 - (a.) Faster to write.
 - b. Manipulates a greater number of binary addresses.
 - c. Less costly to use.
 - d. Greater variation in types of programs that may be written.
 - (e.) Easier to learn.
 - (f.) More self-documenting.
 - (g.) Less error prone.

3. For each of the actions listed below, place an X in the column corresponding to the assembler pass during which the action occurs. (Note that some actions may occur in more than one pass. In such cases, indicate *all* passes in which the action may occur.)

Action	Pass 1	Pass 2	Pass 3
Symbol Table	E Constitution		
a. The symbol table is constructed.	X		
b. The symbol table is printed.	Х	X	Х
Binary Machine Code			
c. The binary machine code is generated.		Х	
d. The binary code tape is punched.		X	
Assembly Listing			
e. The assembly listing is printed.		X	X
Error Checking			
f. Duplicate labels are detected.	X		
g. Unresolved references are detected.		X	
h. Instruction syntax errors are detected.	Х		

4. Indicate whether each of these statements is an advantage (A) of using high-level programming languages, a disadvantage (D), or neither (N) an advantage nor disadvantage by writing the correct letter in the space provided.

Statement	A, D, or N
Uses a different amount of execution time and memory space than low-level languages.	D
Efficiency of a high-level language translator differs from that of a low-level language translator.	D
Similarity to natural language and algebra.	_A_
Uses a very specific vocabulary and grammar.	_N_
Translated into assembly language, then into machine code.	D
A high ratio of machine instruction to lan- guage statement affects program devel- opment time.	_A_
Use of mnemonic variable names and syntax affects documentation.	_A_
A primary purpose is to express program procedures.	N
Translator used to handlemachine-dependent details.	_A_

5. Using the instruction set below, convert the statement

RESULT =
$$A + B - C + D$$

into equivalent assembly instructions.

CLA ADD STR CMA IAC "Data"

- As the statement would most likely be part of a larger program, a halt statement would not be inserted after the operation is coded.
- It is *not* necessary to convert the instructions into binary machine code.
- RESULT, A, B, C, and D are stored at successive locations beginning at location 205. Assume that the instructions for the arithmetic are to begin at location 317.

RESULT =
$$A + B - C + D$$

Location	Label	Operand
205	RESULT,	0
206	Α,	1
207	B.	7
210	C,	5
211	D,	10

Location	Op Code	Operand	Comments*
317 320 321 322 323 324 325 326	CLA ADD CMA IAC ADD ADD ADD STR	C D B A RESULT	/clear the accumulator /AC = C /AC = $-C$ (1's complement) /AC = $-C$ (2's complement) /AC = $-C + D$ /AC = $-C + D$ /AC = $-C + D$ /AC = $-C + D$ /AC = $-C + D$

^{*} This is supplementary information. It is not expected to be part of the student's answer.