Introduction

to _ T
Minicomputers |~ - -
Programming Languages =

1st Printing. June 1976
2nd Printing (Rev), October 18977
3rd Printing, August 1979

Copyright “ 1976, 1977, 1979 by Digital Equipment Corporation

The reproduction of this workbook, In part of
whole, is strictly prohibited. For copy information
contact the Educational Services Department.
Digital Equipment Corporation. Bedford, Massa-
chusetts 01730

Printed in U.S.A.

INTRODUCTION TO MINICOMPUTERS

Programming Languages

Student Workbook

Audio-Visual Course by Digital Equipment Corporation

COURSE MAP

o5

DOPERATING

SYSTEMS
o
Wo
TECHNIQUES
FO
FILE
ORGANIZATION
GENERAL
SOFTWARE
BU
BUS
STRUCTURES

CENTRAL
PROCESSOR

PD

PERIPHERAL
DEVICES

INSTRUCTION
5ETS

COMPUTER
ARITHMETIC

PROBLEM
SOLVING

TERMS AND
CONVENTIONS

ov
SYSTEM
OVERVIEW
5G
STUDENT

GUIDE

CONTENTS

LR s Ts L0 £ o o TSP |

Subroutines, Absolute Assemblers, and Relocatable Assemblers...3
Objectives and Sample Test 1eMS.........ccciiiieiniiices e 3
Exarcises and SolUtiONs . cuaammmniminmmmamiaaamnieavamie

Macroinstructions and Macroassemblersccccceevciiiecnnnn. 13
M ACrGINStIUCHONE. ci e s e e 1 B
Macroassemblers .. VU | .
Macromstructmns VErsus Subrnutlnas R A TSy |
Exercises and Eolutmnsz‘l

High-Level Language Translatorscccceviviinniiicsininiisinnininains 29
Objective and Sample TSt IHEM .o r e e 29
Compilers ... T e e v e
lnterpreters PRSI 1 -
Comparison uf Cumpllars and Interpreters,.,..,......,..,..,..,.......,..............41
Exercises and Solutions... N T S S T e AT s e D

Common High-Level Languages...............cccocceviiicivicniiiinincenn 47
Objective and Sample Test Mc.ccccvieiiieiceiineiisirsisiresescesesensn b 7
EXETGIEES and Sﬂlutmns R R e e e B

Programming Languages

Introduction

Now that you have learned the distinctions between low- and high-
level programming languages and some of the general properties of
software, we will discuss further aspects of software and the program-
ming process. Software is a crucial part of any computer system. In
many areas the cost of the software now frequently exceeds the cost of
the hardware. As a result, the central focus of these areas is now the
improvement of programmer productivity and of program reliability.
The increasing importance of quality, correctness, and maintainability
of programs makes the selection of programming languages a pro-
cedure that requires careful consideration. These major considerations
are the focus of this module.

Lesson One discusses subroutines and relocatable assemblers.
These software features allow modular programming - the breaking up
of large problems into small segments (or modules) that are easier to
code and to correct. Subroutines can also be catalogued, filed in librar-
ies, and exchanged.

Lesson Two discusses macroinstructions and macroassemblers, two
software features that allow low-level language programmers to
approximate the productivity of high-level language programmers. The
improvement in productivity makes macroinstructions effective weap-
ons against the spiraling costs of software development.

The third lesson discusses the two major types of high-level lan-
guage translators: compilers and interpreters. These two types perform
complementary tasks, and each type has its own advantages and spe-
cial characteristics. To a significant extent, the choice of which type of
translator to use is closely related to the important question of which
language to use. Hence, knowledge of the translation processes is
highly useful.

The final lesson of this module compares and contrasts three of the
most common high-level languages - FORTRAN, COBOL, and BASIC.
Each language is described in terms of its history, basic design philoso-
phy, and general features. The relative advantages and disadvantages
of each language are discussed with reference to their effect on soft-
ware development costs.

Subroutines, Absolute Assemblers, and
Relocatable Assemblers

OBJECTIVES

. Given statements that describe assemblers, be able to label
those statements that refer to absolute assemblers and those
that refer to relocatable assemblers.

. Given statements describing source code, object code, and
machine code, be able to identify the code described by each
of the statements.

. Given statements describing software features, be able to
label those statements that describe a translator, a sub-
routine, or an argument.

SAMPLE TEST ITEMS

. Indicate that each of the following statements refers to an
absolute (A) or a relocatable (R} assembler by writing the
correct letter in the space provided.

Statement Type of Assembler
Converts the source assembly

language into an intermediate form
called object code.

To be executed, the program must
be translated into machine code by
a linker.

Faster than other assemblers and
requires fewer resources.

hﬂ

SAMPLE TEST ITEMS

2. Indicate that each of the following statements refers to
source (S), object (0), or machine (M) code by writing the
correct letter in the space provided.

Statement Code Type

All addresses are absolute.

Form of a program that a computer
can execute.

Must be translated before it can be

executed. A ———;
Code produced by linkers. _—

L]

3. Indicate that each of the following statements describes a
translator (T), a subroutine (S), or an argument (A) by writing
the correct letter in the space provided.

Statement Software Feature

Sequence of instructions designed
to be solved by more than one pro-

gram. e e o

May require the use of a linker to
complete code conversions. e

LA 4

Mark your place in this workbook and view Lesson 1
in the A/V program, “Programming Languages.”

We know that a conversion process, which we call assembly, is
needed to convert source code to machine code. We also know that
source code is the form of a program actually written by the program-
mer, while machine code is the form used by the computer for execu-
tion. The conversion process is performed by a trans/ator program that
regards the source program as input data and produces machine code
as output. The term assembl/er may also be used for a symbolic lan-
guage translator.

In the audio-visual program, we have seen that development of a
symbolic language program can be a long, tedious process and that
the use of subroutines facilitates the development process in two
cases:

1. When prewritten programs exist in a subroutine library.

2. When an identical sequence of instructions is required many
times within a single program.

Thus, a subroutine is a segment of code which may be shared
among programs or used many times within a single program. Pre-
written subroutines frequently exist as packages or libraries to perform
mathematical functions or input/output operations.

Associated with a subroutine are a name and possibly a list of one or
more arguments. An argument is an operand for a subroutine and may
be either a source of data or a destination for data. For example, a
programmer may have available a subroutine which prints a variable on
the line printer. To be useful, the subroutine should be able to print any
one of a large number of variables by the user specifying which one is
to be printed. In a high-level language, the use of such a subroutine
might look like:

CALL PRINTER (A)

where A is the label (or name) of the variable to be printed. At some
other point, the subroutine PRINTER might be invoked using a different
variable as the argument. For the symbolic language programmer, the
process of calling a subroutine is not as simple. A typical sequence of
instructions for calling and using a subroutine includes:

1. The creation of a list of arguments

2. The establishment and saving of a return address (usually the
next instruction after the call)

3. A jump to the starting address of the subroutine
4. The execution of the subroutine instructions

5. A jump from the subroutine to the return address in the calling
program

A detailed description of this procedure is not within the scope of this
course. It also is highly dependent on a particular computer’s archi-
tecture and instruction set.

Care must be taken to ensure that subroutines and calling programs
are compatible in two ways:

1. The type (numbers or letters) and number of arguments must
agree.

2. There must be no conflict in names and labels if the subroutine
and mainline program are assembled at the same time.

The agreement of arguments is essential for the correct operation of
the subroutine; incompatibility frequently leads to unpredictable
results. The requirement of non-conflicting labels is a result of the
assembly process - conflicting labels will cause a symbol table error
during the initial pass through the program.

The problem of conflicting labels may be solved by assembling each
routine separately. Remember that the assembly process removes all
symbolic addresses. This action, however, causes another problem.
When several programs are assembled separately and are then loaded
together for execution, there can be no absolute assurance that two or
more routines may not attempt to occupy the same memory locations.
This is a situation which, generally, results in a loss of data or program
instructions, and it is clearly an error.

LA 6

machine code
¥, 71200
‘ ;;250

251500

absolute

assembler
source code

Figure 1 Absolute Assembler

To avoid both the problem of conflicting labels and the problem of
conflicting memory assignments, a special type of assembler, called a
relocatable assembler, is used. Until this point, all references to assem-
blers have been to the type called absolute assemblers (Figure 1).
Absolute assemblers have the following characteristics:

* Assembly language is directly transiated into machine code.
* Al addresses are resolved into “absolute” machine locations.
o A/l addresses are fixed.

Relocatable assemblers, on the other hand., have these
characteristics:

* Assembly language is translated into an intermediate form called
object code.

¢ All addresses are relative to a reference address that is assigned
an "absolute” machine location during the linking process.

* All addresses can be reassigned by simply changing the value of
the reference address.

The object code is an intermediate form between the source code
and machine code. It cannot be directly executed by a computer
because all memory references are in a special form that does not
include either the specific addresses of machine code or the symbolic
labels of source code. An object code may be combined with an object
code produced at another time by using a second special program
called a linker or linkage editor. The linker performs the following
operations:

e Combines the mainline and subroutine object code.

* Sets up the communications (links) between calling programs
and called subroutines.

* Converts the object code into machine code by resolving all rela-
tive addresses into specific (absolute) addresses.

machine code

absolute
assembler

i

source code

relocatable linker

assembler
object
—: code

Figure 2 Absolute Assembler, Relocatable Assembler, and Linker

In summary. absolute assemblers translate source code to machine
code in one step. Thus, while less flexible than relocatable assemblers,
absolute assemblers require /ess assembly time. On the other hand,
relocatable assemblers translate source code into object code, which
must then be further translated into machine code by a linker. This two-
step process sacrifices some assembly speed for greatly enhanced flex-
ibility. Subroutine libraries of prewritten programs may be included in
object code form, thereby reducing the development effort. Frequently,
only one of the two types of assembler is present on any single com-
puter, and the choice is determined by the computer resources (primar-
ily memory) available. Where the programmer does have a choice
between an absolute and a relocatable assembler. the choice should be
determined by the trade-off between assembly time and flexibility.

LA 8

EXERCISES

LESN L)

1. Explain the differences between “source code,
“machine code.”

object code,” and

- 2. Define:

a. Translator

b. Subroutine

c. Argument

T

SOLUTIONS

LE)

1. Explain the differences between “source code,
“machine code.”

object code,” and

a. Source Code is the form of the program written by the program-
mer with symbolic addresses and labels. It must be translated
before it can be executed.

b. Object Code is an intermediate form produced by a relocatable
assembler with no symbolic labels and relative addresses. It
must be linked before it can be executed.

c. Machine Code is the form which is executable by the computer,
is produced by absolute assemblers and linkers, and has absolute
addresses.

2. Define:

a. Translator — A program which converts a program, written in
“source code,” into machine code for computer execution. It
may require the supplementary use of a linker to achieve this
goal.

b. Subroutine - A sequence of instructions, of a semi-independent
nature, which is designed to be shared by more than one pro-
gram or called more than once by a single program.

c. Argument - An operand of a subroutine which is the address of
a memory location to be used as a source or destination of data
manipulated in the subroutine.

LA 10

EXERCISES

3. Briefly explain the differences between absolute and relocatable
assemblers, and state one advantage each has over the other.

SOLUTIONS

3. Briefly explain the differences between absolute and relocatable
assemblers, and state one advantage each has over the other.

Absolute assembler - Directly produces machine code from source
code in one step.

Advantages:
* Faster assembly time than relocatable ones

*requires less space, so used on smaller computers.

Relocatable assembler -
* Produces object code from source code
* Requires use of the linker to produce machine code

*Permits flexibility in assembly process, and allows inclusion of
subroutine libraries.

Advantages:
*Greater flexibility

* Program development time is less through the use of pre-written
subroutines.

Macroinstructions and Macroassemblers

OBJECTIVES

1. Given six descriptive statements, be able to select those
statements that describe macroassemblers.

2. Given eight statements of characteristics, be able to label
those statements that describe macroassemblers and those
that describe subroutines.

SAMPLE TEST ITEMS

1. For each of the following statements, write a T in the space
provided if the statement correctly describes macro-
assemblers. Write an F if it does not correctly describe macro-
assemblers.

Statement TorF

Greatly increased operational speed
slightly lessens the chance of error-
free programs.

Can significantly raise the daily
output of assembly language pro-
grams.

SAMPLE TEST ITEMS

2. Indicate that each of the following characteristics describes a
macroassembler (M) or a subroutine (S) by marking the
correct letter in the space provided.

Characteristic MorS
Expanded once for each special
assembly language instruction in

the program.

Frequently consumes more mem-
ory.

Mark your place in this workbook and view Lesson 2
in the A/V program, “Programming Languages.”

Macroinstructions

Macroinstructions are special assembly language instructions that
represent frequently used sequences of assembly language instruc-
tions. Like normal assembly language instructions, macroinstructions
must be translated into machine code before a computer can execute
them. Unlike normal assembly language instructions, however, the
translation process is not as direct.

A macrodefinition is the specification of the sequence of instructions
represented by the macroinstruction. It is therefore a pattern or tem-
plate for the expansion of the macroinstruction. Macrodefinitions must
be collected at the beginning of the program and have the following
parts:

1. A key word, such as DEFINE, to indicate the start of a
macrodefinition.

2. The name of the macro and the specification of its operands. The
operands are frequently preceded by a special character, such as
the ampersand, to indicate that they will be replaced by actual
symbolic names during the expansion phase.

3. The body of the macro in the form of normal assembly language
instructions using the operands. The body of the macro is fre-
quently enclosed by delimiting characters such as “<"” and " >."

Figure 3 shows a complete macrodefinition for the macroinstruction
SWAP. Notice that macrodefinitions must appear at the beginning of
the program and are defined only once.

DEFINE SWAP &FIRST, &SECDND]

<MOV &FIRST, TEMP
MOV &SECOND, &FIRST
MOV TEMP, &SECOND> '

by

i

Figure 3 Complete Macrodefinition

LA 15

Macroassemblers

The process of translating macroinstructions into machine code is
performed by a class of assemblers called macroassemblers. The ability
to process macros is independent of whether an assembler is absolute
or relocatable. Consequently, assemblers with either of these properties
can in fact translate macros into machine code. A macroassembler per-
forms several steps. This process is summarized in Figure 4.

READ IN
ACRODEFINITION

5 THIS
INSTRUCTION
A
ACROINSTRUCTION,
f

COPY
MACRODEFINITION
INTO WORK AREA

REFLACE
DEFINITION
OFERANDS WITH
SYMBOLIC NAMES

L
INSERT EXPANDED
MACROINSTRUC -

TION INTD
PROGRAM

1
CHECK
INSTRUCTION'S
SYMNTAX

UPDATE S¥YMBOL
TABLE IF
NECESSARY

YES MORE END OF
INSTRUCTIONS FIRST
? PASS

Figure 4 The Macroassembly Process

LA 16

The first step for the macroassembler is to read in all the macrodefi-
nitions. Remember that these are placed at the beginning of the pro-
gram. The definitions are stored in memory for use during the
expansion process of the first pass.

FDEFINE
<

symbol table

SWaP KFIRST, &ASECOND
MOV &FIAST, TEMP
MOV LSECOND. &FIRST
=\ | MOV TEMP, &SECOND>

Figure 5 Symbol Table and Definition

The macroassembler then performs the first pass through the source
program. Each instruction is checked to determine if it is a macroin-
struction. If it is not, it is checked for instruction syntax and a possible
label in the normal manner. If the instruction is, in fact, a macroinstruc-
tion, the macrodefinition is copied into a work area, and the temporary
operands are replaced by the specified symbolic names.

In our example (Figure 6), all occurrences of &FIRST in the definition
are replaced by X; all occurrences of &SECOND are replaced by Y.

» DEFINE
<

MOV X, TEMP
MOV Y, X
MOV TEMP, Y

W

‘...Iiu_iiiil-l-ll-

SWaP X, ¥

symbol table

L
-
-
-
-
-
-
.
.
-
-

SWAP &FIRST, &5ECOND
<MOV &FIRST. TEMP

MOV BSECOND, &FIRST
MOV TEMP LSECOND >

o i

_=—=————— /-

Figure 8 Completed Expansion

As a final step, the completed expansion (Figure 7) is inserted
sequentially in the program where the macroinstruction had been.

MOV X, TEMP
1MOV Y, X
MOV TEMP, Y

s MOV X, TEMP
* MOV Y, X
MOV TEMP, Y

Figure 7 Insertion of Expanded Macro

Assembler processing continues with the next instruction. Notice
that the insertion of additional instructions in the program, through the
expansion of macroinstructions, has the effect of separating sections of
user-generated code (Figure 7). This shifting of the relative addresses is
the reason why macroexpansion must occur before or during creation
of the symbol table. (If expansion were deferred until the second pass,
many of the associated addresses in the symbol table would be
incorrect.) Once the macroinstructions have been expanded, the mac-
roassembler functions in the same manner as an assembler without
macrocapability.

In short, macros assist the development of a program in several
ways. First, the creation of a library of pre-written macrodefinitions for
commonly used operations eliminates duplication of effort from pro-
gram to program. Frequently, such a library includes manufacturer-sup-
plied macrodefinitions to enable the assembly language programmer to
easily request various input/output operations and system operations
and services. Secondly, a collection of user-written definitions oriented
toward a specific application can be greatly helpful. Macro libraries and
user-written macros together offer the following advantages:

* Macroinstructions enable the user to enhance the instruction set
to meet a particular application. Thus, statement of the problem
in assembly language will be more concise and easier from the
point of view of the programmer.

LA 18

Macroinstructions, whose expansions have been thoroughly
debugged, generally offer better chances for error-free programs.

Programmers who use macroinstructions can be far more pro-
ductive than assembly language programmers who do not use
them. Remember that the average programmer produces
approximately 20 lines of finished, documented source code per
day. Macroinstructions, like high-level language statements,
exhibit a many-to-one relationship to the generated machine
code instructions. Therefore, the use of macroinstructions can
boost the effective daily output of assembly language program-
mers to ten or twenty times the normal rate.

In conclusion, the use of macroinstructions and definitions enables
the source program to be more concise and easier to write, to be more
dependable, and to be developed in significantly less time.

Macroinstructions versus Subroutines

At this point, it may be useful to compare and contrast macroinst-
ructions and subroutines.

A subroutine is a semi-independent sequence of instructions,
while a macroinstruction is a single, special instruction that rep-
resents a sequence of other instructions.

Although both macros and subroutines are defined only once in a
program, many expansions of the same macrodefinition may
exist within a program while only one copy of a subroutine may
exist.

Subroutines are executed by “calling” or “jumping” to them,
while macroinstructions are executed as sequences of “in-line”
code.

Thus macroinstructions generally consume more assembly time
(because of the expansion step) and more memory (because of
the existence of multiple copies), but consume less execution
time (because the complicated calling procedure is not required).

For the most part, the programmer must choose between execution
speed and memory economy when deciding whether to use macros or
subroutines for a specific application. This decision varies with each
application, and neither macros nor subroutines possess a clear advan-
tage over the other. Rather, they are complementary programming
aids, which may be used together or separately to assist in the devel-
opment of a program.

LA 19

EXERCISES

1. For each of the questions below, answer with one of these words:
MACROS, SUBROUTINES, BOTH, or NEITHER.

a. Which technique produces “in-line”
code?

b. Which technique requires a special
assembler?

c. Which technique allows a sequence of
instructions to be defined once, but
used many times?

d. Which technique produces only one
copy of a defined sequence of instruc-
tions, regardless of the number of
times it is used?

e. Which technique generally requires
less execution time?

f. Which technique generally requires
less assembly time?

g. Which technique generally requires
less memory?

h. Which technique has a clear advan-
tage over the other?

SOLUTIONS

1. For each of the questions below, answer with one of these words:
MACROS, SUBROUTINES, BOTH, or NEITHER.

a. Which technique produces “in-line”
code? MACROS

b. Which technique requires a special
assembler? MACROS

c. Which technique allows a sequence of
instructions to be defined once, but
used many times? BOTH

d. Which technique produces only one
copy of a defined sequence of instruc-
tions, regardless of the number of
times it is used? SUBROUTINES

e. Which technique generally requires
less execution time? MACROS

f. Which technique generally requires
less assembly time? SUBROUTINES

g. Which technique generally requires
less memory? SUBROUTINES

h. Which technique possesses a clear
advantage over the other? NEITHER

LA 22

EXERCISES

2. Given the source program and the macrodefinition shown below,
show the assembly language program as it would be after the first
pass had been completed.

Absolute Value
Source Program Macrodefinition

. Define ABS &ANS, &INPUT
ABS XA CLA
ADD &INPUT
SPA
CMA
IAC
STR &ANS

Expanded Assembly Language Program

SOLUTIONS

2. Given the source program and the macrodefinition shown below,
show the assembly language program as it would be after the first
pass had been completed.

Absolute Value
Source Program Macrodefinition

. Define ABS &ANS, &INPUT
ABS X.A CLA
ADD &INPUT
SPA
CMA
IAC
STR &ANS

Expanded Assembly Language Program

CLA
ADD A
SPA
CMA
IAC
STR X

NOTE
The mnemonic SPA is for the operation “skip
next instruction if the accumulator is positive.”
Thus, the complement operation will be exe-
cuted only if the accumulator is negative.

EXERCISES

3. Given the source program and the macrodefinition shown below,

show the assembly language program as it would be after the first
pass had been completed.

Subtraction
Source Program Macrodefinition

Define SUB &ANS, &ONE, &TWO

SUB X.A.B CLA

ADDC ADD &TWO
STR TEMP CMA
SUBY.E.B IAC

ADD TEMP ADD &ONE
STR ANSWER STR &ANSI

Expanded Assembly Language Program

SOLUTIONS

3. Given the source program and the macrodefinition shown below,
show the assembly language program as it would be after the first
pass had been completed.

Subtraction
Source Program Macrodefinition

Define SUB &ANS, &ONE, &TWO

SUB X.A.B CLA

ADDC ADD &TWO
STR TEMP CMA

SUB Y.E.B IAC

ADD TEMP ADD &ONE
STR ANSWER STR &ANS

Expanded Assembly Language Program

+ CLA

+ ADD B
+ CMA
+ IAC

+ ADD A
+ STR X

ADD C Instructions indicated by a
STR TEMP plus have been generated

+ CLA from a macroinstruction.
+ ADD B

+ CMA

+ IAC

+ ADD E

+ STRY
ADD TEMP
STR ANS

EXERCISES

4. Explain at least one advantage of using macroinstructions and a
macroassembler over an assembler without macro capability.

SOLUTIONS

4. Explain at least one advantage of using macroinstructions and an
macroassembler over an assembler without macro capability.

a. Macro libraries eliminate duplicated effort from program to
program.

b. Macroinstructions permit the instruction set to be enhanced to
fit a particular application. This makes writing the program easier
and allows the source code to be more concise.

c. Thoroughly debugged macros assure a better chance of error-
free programs.

d. Macroinstructions can significantly raise the daily output of
assembly language programmers as a result of their many-to-
one relationship to normal assembler language instructions.

High-Level Language Translators

OBJECTIVE

Given statements of characteristics and advantages of high-level
language translators, be able to label those statements that refer
to compilers and those that refer to interpreters.

SAMPLE TEST ITEM

Statements of characteristics and advantages of two types of
translators are given below. Indicate that each statement refers
to compilers (C) or interpreters (1) by writing the correct letter in
the space provided.

Characteristic Type of Translator

Execution of single statement oper-
ations. Process continues with next
logical statement, not necessarily
next sequential one.

Assembly language instructions
generated one source statement at
a time.

Linking into machine code.

Mark your place in this workbook and view Lesson 3
in the A/V program, "“Programming Languages.”

Compilers

phases.

LETX=A+B+C

1

analysis

A translator is a program that converts a source program into some
other form such as object code or machine code. You have learned that
assemblers are translators for low-level languages. There are two major
classes of translators for high-level languages: compilers and inter-
preters. Although their final result — execution of a high-level language
source program - is the same, their methods of performing this task are
quite different. Let's examine these differences.

A compiler translates a high-level language source program into
object code. This object code can then be linked into machine code.
The complete translation process, using a compiler, includes five

SIMPLE OPERATIONS

1st operand | 2nd operand | 3rd operand
300 | apbp A B &300
3?1 AI?D &300 c X

Figure 8 Analysis Phase

CHECK
STATEMENTS
FOR ERRORS

GENERATE
TABLE OF
SIMPLE
OPERATIONS

5 AMNALYSIS

The first phase involves anal-
ysis of the individual statments
(Figure 8). Each statement is
checked for errors in obeying
the rules of the language (syn-
tax checking). A table that con-
tains the simple machine
operations corresponding to
each statement is then gener-
ated. This table is frequently
called a “1-op table” because
each line of the table contains
one and only one operation.

CHECK
STATEMENTS
FOR ERRORS

I

GENERATE
TABLE OF
SIMPLE
OPERATIONS

:

GENERATE
ASSEMBLY
LANGUAGE
INSTRUCTIONS

2 CLA *
code ADD A
generation ADD B

STR &300

|

ADD B &300

CODE
GEMNERATION

Figure 9 Code Generation Phase

The second phase of com-
pilation is the generation of
assembly language instructions
from the lines of the "1-op
table.” This process is a relative-
ly simple one as can be seen
from Figure 9. Notice the close
similarities between the tabular
“1-op” lines and the generated
assembly language instructions.

LA 32

ASSEMBLY LANGUAGE

ADD B :: ADD B
STR &300 i

CLA

ADD &300

OPTIMIZED
ASSEMBLY LANGUAGE

CLA
ADD A

ADDC
5TR X

Figure 10 Code Optimization Phase

CHECK
STATEMENTS
FOR ERRORS

:)

GENERATE
TABLE OF
SIMPLE
QPERATIONS

GENERATE
ASSEMBLY
LANGUAGE
INSTRUCTIONS

i

OPTIMIZE THE
GENERATED CODE

The third phase involves the
optimization of the generated
assembly language instructions.
Because the generated code
was produced from the "“1-op
table,” unnecessary store-fetch
operations may be created.
These “wasted” instructions are
removed during the optimiza-
tion phase as shown in Figure
10. Depending on the sophis-
tication of the compiler, addi-
tional, more subtle optimiza-
tions may be performed. The
optimization process is an
important one, as it enables
high-level language programs to
have execution speeds com-
parable to those of assembly
language programs.

LA 33

Figure 11

CHECK
STATEMENTS
FOR ERRORS

‘

GENERATE
TABLE OF
SIMPLE
OPERATIONS

:

GENERATE
ASSEMBLY
LANGUAGE
INSTRUCTIONS

.

OPTIMIZE THE
GENERATED
CODE

:

GENERATE
OBJECT CODE

j
)
)

assembly
language
program

simple
operations

RELOCATABLE
ASSEMEBLY

Relocatable Assembly Phase

The fourth phase of com-
pilation is the relocatable
assembly of the optimized
assembly language program
(Figure 11). This phase is identi-
cal to the procedure described
for relocatable assemblers. Fur-
thermore, the object code pro-
duced by this phase is
indistinguishable from the
object code generated by a
relocatable assembler or other
compilers.

34

source code

compiler linker

Figure 12 Linking Phase

The final phase in the trans-
lation of a high-level language
to machine code is the /inking of
the object code. Because this

P phase (Figure 12) is performed
Fom Ennons by the linker, it is not strictly
part of the compilation process.
Taste o Remember that the object code
s produced by a compiler is com-
patible with the object code pro-
EREDALE duced by other compilers and a
o relocatable assembler. This fea-
i ture allows the programmer to
CETne T } write each program and sub-
cane routine in the language which
| best suits the particular appli-
GENERATE THE } cation. The programmer then
O8MECT CODE . ¥ .
links the wvarious object pro-

.__I_ grams into a single machine

o MACHINE i code program that can be exe-
OBJECT COOE PROGRAM cuted. Hence, the programmer

is given a choice in how to
develop a system of programs.
Additionally, the development
phase of programming can be
considerably shortened by
astute choices of the languages.

Several important points remain to be made about compilers:

* The output of a compiler is the object code.
* Compilation and optimization can take a great deal of time.
* Execution speed is relatively high because of code optimization.

* Development time may be reduced by mixing suitable languages
on a subroutine-by-subroutine basis.

* Development time is increased by the fact that logical errors in
the program are not detected until the lengthy compilation link-
ing process is complete. Hence it takes longer to find and correct
a logical mistake.

® The object code output of a compiler can be saved for linking and
execution at a later date. Therefore, libraries of already compiled
programs are easily created.

Interpreters

An interpreter performs high-level language translation by a very
different method ~ the program is executed as it is being analyzed and
translated. An interpreter, therefore, produces the program'’s results as
its output, rather than object code.

The first step in interpreting a program is on-line syntax checking
and editing (Figure 13). This activity is an interactive excha nge
between the interpreter and the programmer. The editing and checking
concerns the correctness (in terms of the language rules, or syntax) of
each statement. Because most interpreters are configured with termi-
nals for users, this man-machine dialogue occurs as each statement is
originally typed. Thus, language errors are immediately detected and
can be immediately corrected.

LA 36

Figure 13 On-line Editing Phase

LA 37

stored
source
program

simple
operations

Figure 14 Analysis Phase

After a program has been correctly entered, it may be run immedi-
ately. The interpreter begins execution of a statement by analyzing it in
a process similar to that of a compiler (Figure 14). Note, however, that
only one statement at a time is translated into a ““1-op table.”

assembly
language
farm

:turad simple
ke operations
program

Figure 15 Code Generation Phase

The "1-op” entries for a single statement are then immediately
translated into the corresponding assembly language instructions (Fig-
ure 15). Again, only the operations of one statement are translated.

LA 38

assembly
language

| stored
sSource
program

internal
machine
code

simple
operations

Figure 16 Absolute Assembly

The assembly language instructions are then immediately assem-
bled into machine code. Remember that only one statement is exe-
cuted at a time. Because of this, there is no reason to generate
relocatable object code. The assembly instructions are therefore trans-
lated into machine code directly by absolute assembly (Figure 16). For
the same reason, there is no code optimization phase as with a com-
piler. Therefore, optimization is simply not practical for interpreted
programs.

assembly
language results

source code form

- internal
imple
PR :pafatinns machine
program codea

Figure 17 Execution Phase

The machine code for a single source statement is then executed
(Figure 17). Once all operations for a statement have been executed,
the interpreter begins the translation process on the next /ogical (not
necessarily the next sequential) statement. In fact, each statement is

LA 39

translated only as it is encountered, and it may be retranslated many
times during the execution of the program. Execution continues until
the program is finished, an error or “bug” is found, or the programmer
stops the execution.

To conclude, interpreters possess significantly different character-
istics from compilers:

The outputs of an interpreter are the executed results of the
program.

Execution speed is relatively slow because each statement must
be translated as it is encountered. This problem can be partic-
ularly time consuming in program loops.

Development time is reduced as a result of the highly interactive
nature of the editing process and the immediate production of
results.

Interpreters are not usually capable of interfacing with other
interpreters, compilers, or assemblers. Hence programmers can-
not mix languages within an application.

Programs may only be saved in source form, as the various inter-
mediate forms of the translation process only exist temporarily
for any given statement,

As a summary of the characteristics of compilers and interpreters,
the following is a tabular presentation of the material in this lesson.

Comparison of Compilers and Interpreters

Compilers

Interpreter

Qutput is object program

Execution time is faster

Development time is generally
slower

Flexible; may be interfaced with
other languages

Programs may be saved in
source or object form

* Output is executed result
e Execution time is slower

* Development time is generally
faster

* Inflexible; may not usually be
interfaced

* Programs may be saved in
source form only

Compilation Process

Interpretive Process

1. Compilation:

* Analysis and creation of
table

e Code generation
e Optimization of code
2. Assembly:

* Relocatable assembly into
object code

3. Linking:

e Linking of object code into
internal machine code

1. Editing:

e On-line development and
editing

2. Run:

* Analysis and creation of
table for one statement

* Code generation for one
statement

* Absolute assembly of one
statement into machine code

* Execution of the operations
for one statement and start
of process for next logical
statement

41

EXERCISES

1. For both compilers and interpreters, list at least one advantage that
each has over the other.

he translation process using a compiler.

SOLUTIONS

1. Compiler advantages over interpreters:

a.

Better execution speed.

b. Flexible; language may be interfaced to other languages.

C.

Programs may be saved in either source or object form.

Interpreter advantages over compilers:

a. Shorter development time.
b. Immediate results.
c. Better programmer control over execution.
2. A compiler translates a high-level language to machine language in
five steps:
a. Analysis - Statements are checked for errors, and a table of

simple operations is created which corresponds to all the
statements.

Code generation - The table of simple operations is translated
on a 1:1 basis into assembly language instructions.

Code optimization — The assembly language instructions are
edited for unnecessary or useless instructions.

Assembly - The optimized assembly code is relocatably assem-
bled into object form.

Linking — When the program is to be executed, the linker trans-
lates the object code into executable machine code.

LA 44

EXERCISES

3. List three major differences between compilers and interpreters.

SOLUTIONS

3. An interpreter differs from a compiler in several major points:

a.

The program is entered interactively. This allows errors to be
found and corrected as they are made.

Analysis and code-generation steps proceed as with a compiler
except that only one statement is worked upon at a time.

There is no code optimization performed.

The assembly codes for a single instruction are assembled abso-
lutely and executed immediately.

The next statement to be interpreted is determined by the pro-
gram execution, not by the sequence of statements in the source
program.

Common High-Level Languages

OBJECTIVE

Given statements of applications and differences for the
common high-level languages, be able to label those statements
that refer to the FORTRAN, COBOL, or BASIC computer lan-
guage, respectively.

SAMPLE TEST ITEM

Check the appropriate box or boxes next to each statement to
indicate which language or languages best answers the state-
ment.

FORTRAN COBOL BASIC

1. Originally designed for
business applications. O O O

2. Originally designed for
educational applications. O O O

3. Originally designed for
scientific/engineering
applications. O O O

- - - L]
L] L] L -

Please mark your place in this workbook and view
Lesson 4 in the A/V program, “Programming
Languages.”

There are literally hundreds of high-level languages, differing from
each other in the statements and expressions that are accepted by their
translators and in the rules that are used to form statements. Many of
these languages are special-purpose, locally used languages that have
limited acceptance elsewhere. Of the dozen or so major languages, this
lesson briefly examines three of the most popular.

FORTRAN

FORTRAN was the first high-level language to be widely accepted.
Developed in 1954 and released to the general public in 1957, FOR-
TRAN has subsequently been made available for almost every com-
puter ever made. FORTRAN was the first programming language to
have an industry-wide standard, and hundreds of thousands of pro-
grams have been written in FORTRAN.

FORTRAN was originally intended for the scientific and engineering
fields, and its primary feature is the easy conversion of com plex formula
and equations into FORTRAN statements. As an example

- P(10.7 - P
Sp= N2

would appear in FORTRAN as
SP = SQRT (P * (10.7 - P)/N**2)

Thus standard algebraic notation is expressed in a similar fashion with-
in FORTRAN. Indeed, the name FORTRAN is a contraction for FOR-
mula TRANSslator.

Another feature of FORTRAN is the ability to specify formats for
input and output operations. This capability permits easy, readable out-
put of the tables of numerical values that are characteristic of scientific
and engineering problems.

Most FORTRAN translators are compilers rather than interpreters for
three reasons:

1. Scientific and engineering programs are often run many times
without changes, once they have been developed.

2. Problems in FORTRAN are frequently lengthy, and the faster
execution time with a compiler is an important advantage.

3. In cases of critical operations requiring high efficiency, assembly
language subroutines may be assembled into object code and
then linked together with the output of the FORTRAN compiler
to form a single machine code program. This procedure was
described in the previous lesson on interpreters and compilers.

A severe deficiency of FORTRAN is the absence of an alphabetic
variable type. This has eliminated FORTRAN from being used effective-
ly in many non-numerical applications such as text processing, many
business operations, and other activities where the manipulation of let-
ters is more important than the manipulation of numbers.

A strong advantage of FORTRAN is a powerful subroutine capability.
This is especially important as many scientific programs are both long
and complex. By using subroutines, the programmer can break such a
program into several smaller subroutines (or modules). The modular
approach to programming accelerates the program development pro-
cess because smaller modules are easier to code and easier to correct.
Thus, program development costs can be significantly reduced.

COBOL

The mathematical background assumed by FORTRAN is neither
common nor necessary in the business world. Accordingly, a language
was developed, in 1959, which better suits the needs and backgrounds
of commercial applications programmers. COBOL, the acronym for
COmmon Business Oriented Language, has been standardized like
FORTRAN, but unlike FORTRAN, COBOL was designed as a stand-
ardized language. Therefore, COBOL programs are more readily
exchanged between different computers than are FORTRAN programs.

COBOL statements are very much like everyday English language
sentences with all variable names and operations spelled out. For
example,

MULTIPLY PRINCIPAL BY RATE GIVING INTEREST

is a legal COBOL statement. COBOL programs, therefore, are highly
self-documenting.

A major feature of COBOL is the ease with which data can be
manipulated and organized. Most commercial applications involve a
great amount of data movement and the use of data files organized in
various ways. COBOL was therefore designed to answer this need,
while subordinating the ability to perform involved numerical calcu-
lations. There are also character handling facilities available in COBOL.
Hence, COBOL is used for processing data involving letters (as are
many business operations).

COBOL. like FORTRAN, is generally compiled rather than inter-
preted, because business programs are executed many times without
changes. However, more computer time is generally used with COBOL
programs than with FORTRAN programs.

The widespread acceptance and use of COBOL by the business
world makes it one of the most commonly known and used program-
ming languages.

BASIC

BASIC, the acromyn for Beginner's All Purpose Symbolic Instruction
Code, was developed at Dartmouth College in 1965. It is intended to be
a very simple language to learn, and is primarily used to train beginning
programmers.

BASIC is very similar to FORTRAN in the expression of mathemati-
cal equations. Thus, the equation

c=|a? + b2

becomes

LETC=SQR(At 2+ B 1 2)

Unlike FORTRAN, however, BASIC uses very simple input and output
statements. There are no complicated format specifications required.
Thus, to print the value of the variable X at the user's terminal, the
programmer can merely write

PRINT X

BASIC translators are normally interpreters because the language's
emphasis is on training, and the error detection-correction feature of
interpreters is an important characteristic. BASIC compilers, however,
are starting to appear as former student users of BASIC enter jobs in
the scientific, engineering, and business worlds. Thus, some appli-
cations presently written in FORTRAN and COBOL are also beginning
to appear in extended versions of BASIC. In particular, BASIC is now
being used for business applications on several minicomputers where
COBOL cannot be adequately implemented.

BASIC has good capabilities for manipulating letters as data. Appli-
cations such as text processing and report generation can be easily
written in BASIC. On the other hand, BASIC has weak subroutine fea-
tures. Therefore, modular programming is not easily accomplished.

Although a standard for BASIC has not yet been completed, a pro-
posed standard does exist and is under review.

Remember that although FORTRAN, COBOL, and BASIC were each
designed to benefit different application areas, there is some overlap. In
general, however, some sacrifice in overall efficiency is required when
these languages are used outside of their primary areas.

The following chart summarizes this lesson on the three high-level
languages, FORTRAN, COBOL, and BASIC.

LA 52

Characteristic FORTRAN COBOL BASIC
Originally Science and Business Education
intended appli- engineering

cation area

Primary Easy trans- English-like for Easy to learn

advantages to

lation of

self-documen-

intended appli- mathematical tation rather Usually
cation areas equations than mathe- interactive
matical
Efficient exe-
cution of Good data
numerical cal- manipulation
culations and definition
abilities
Usual Translator | Compiler Compiler Interpreter
Standard Yes Yes In process
LA 53

EXERCISES

1. Describe the fundamental differences between FORTRAN, COBOL,
and BASIC by giving at least two primary advantages each offers to
their respective areas of application.

a. FORTRAN

b. COBOL

c. BASIC

2. ldentify the application areas for which BASIC, FORTRAN, and
COBOL were originally intended.

SOLUTIONS

1. Describe the fundamental differences between FORTRAN, COBOL,
and BASIC by giving at least two primary advantages each offers to
their respective areas of application.

a.

FORTRAN

* Easy translation of mathematical equations into source code.
* Efficient execution of numerical calculations.

COBOL |

* English-like language which is self-documenting.

* Good data manipulation and definition facilities for com-
mercial programmers.

BASIC
* Easy to learn, so students start to program quickly.

* Usually interactive to assist in correcting programs.

2. Identify the application areas for which BASIC, FORTRAN, and
COBOL were originally intended.

a.

FORTRAN - Scientific and engineering applications, particularly
when involving formulas and equations.

COBOL - Business applications, particularly where little mathe-
matical background or capability is assumed or required.

BASIC - Education, particularly in the instruction of beginning
programmers.

Take the test for this module and evaluate your
answers before studying another module.

	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038
	Scan0039
	Scan0040
	Scan0041
	Scan0042
	Scan0043
	Scan0044
	Scan0045
	Scan0046
	Scan0047
	Scan0048
	Scan0049
	Scan0050
	Scan0051
	Scan0052
	Scan0053
	Scan0054
	Scan0055
	Scan0056

