

1st Printing, June 1976 2nd Printing (Rev), October 1977 3rd Printing, August 1979

Copyright <sup>®</sup> 1976, 1977, 1979 by Digital Equipment Corporation

The reproduction of this workbook, in part or whole, is strictly prohibited. For copy information contact the Educational Services Department, Digital Equipment Corporation, Bedford, Massachusetts 01730.

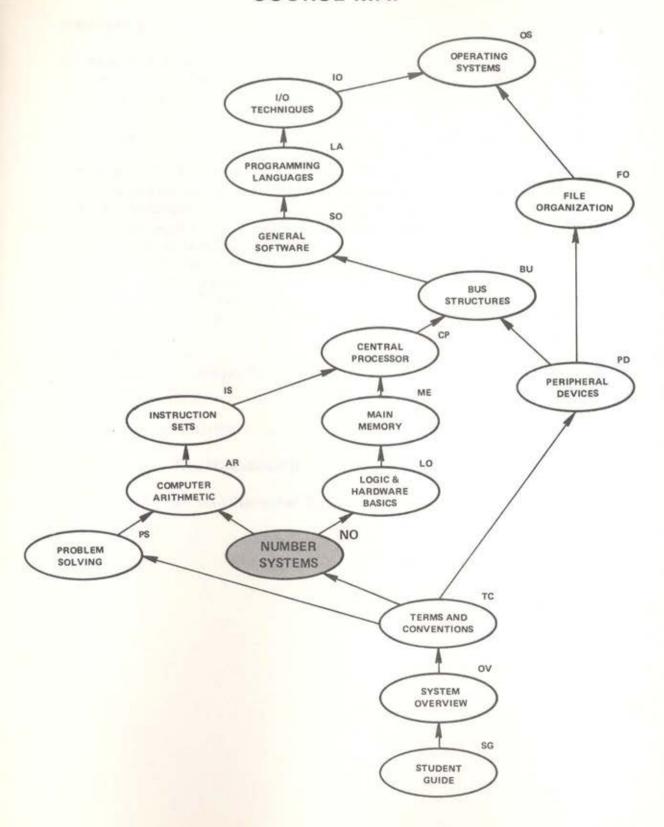
Printed in U.S.A.

# INTRODUCTION TO MINICOMPUTERS

# **Number Systems and Codes**

Student Workbook

## **COURSE MAP**



# CONTENTS

| Introduction. |                               | 1  |
|---------------|-------------------------------|----|
| Number Syst   | ems                           | 3  |
| Objectives a  | and Sample Test Items         | 3  |
| Place Value   | s                             | 6  |
| Counting      |                               | 8  |
| Exercises ar  | nd Solutions                  | 11 |
| Conversion T  | echniques                     | 21 |
|               | nd Sample Test Items          |    |
| Binary-to-D   | ecimal Conversion             | 24 |
| Octal-to-De   | ecimal Conversion             | 25 |
| Decimal-to-   | -Binary Conversion            | 26 |
|               | -Octal Conversion             |    |
|               | octal Conversion              |    |
| Octal-to-Bir  | nary Conversion               | 29 |
|               | nd Solutions                  |    |
| Character Co  | odes                          | 43 |
| Objectives a  | and Sample Test Items         | 43 |
|               |                               |    |
|               |                               |    |
|               | nd Solutions                  |    |
| Appendix A    | The Hexadecimal Number System | 55 |
| Appendix B    | Some Character Codes          | 57 |

# **Number Systems and Codes**

#### Introduction

When people process information manually, they deal with alphabetic and numeric characters. However, because digital computers are binary machines, they represent information *internally* with 1s and 0s. Therefore, computers must perform mathematical operations using the binary number system and must represent alphanumeric information using binary codes.

To prepare information effectively for computer processing, people must understand how the computer will manipulate the information. This lesson not only covers binary numbers and coding, but also presents the octal number system, which many people use as a convenient, shorter form in place of binary when dealing with computer information.

This module contains three lessons. The first lesson describes the binary number system that computers use, the octal number system that people use to represent binary, and the decimal number system that we all use in our everyday lives. The second lesson describes methods for converting numbers from one system to another. Finally, the third lesson discusses binary codes that computers use to represent alphanumeric information.

# **Number Systems**

#### OBJECTIVES -

- Given the names of three number systems, be able to write both the base and the range of actual values for each number system.
- Given a number, be able to write the actual and place values of any digit within the number.
- Given a number in decimal, octal, or binary form, be able to:

   identify the decimal equivalent of the actual and place values for any digit in the number; and (2) write the identified equivalent in decimal, octal, or binary form, as required.
- Given consecutive decimal numbers, be able to write the octal and binary equivalents of each decimal number.

| OAN                                                              | PLE TEST ITE | IVIO          |
|------------------------------------------------------------------|--------------|---------------|
| 1. Complete the table be                                         | low.         |               |
| Number System                                                    | Base         | Actual Values |
| Decimal                                                          |              |               |
| Octal                                                            |              | 11            |
| Binary                                                           |              |               |
| <ol><li>Give the actual value<br/>number 3859. (Circle</li></ol> |              |               |
| Actual Value =                                                   | Place '      | Value =       |

|      | ima  | I Equ | iivale | nts ( | Circl         | e one          | ansv  | ver or | nly.)  |                  |       |
|------|------|-------|--------|-------|---------------|----------------|-------|--------|--------|------------------|-------|
|      |      |       |        |       |               |                |       |        |        | digit 9          | in th |
| dec  | ıma  | nun   | nber   | 19/8  | IS _          | -              | -3    |        |        |                  |       |
| 231  | a)   | 10    | b)     | 9     | c)            | 81             | d)    | 90     | e)     | 900              |       |
|      |      |       |        |       |               | the <i>pla</i> |       | alue ( | of the | digit 9          | in th |
| 707  | a)   | 9     | b)     | 90    | c)            | 900            | d)    | 100    | e)     | 1000             |       |
|      |      |       |        |       |               | the act        |       | alue   | of the | digit 5          | in th |
|      | a)   | 1     | b)     | 8     | c)            | 5              | d)    | 10     | e)     | 4                |       |
|      |      |       |        |       |               | the <i>pla</i> | ice v | alue ( | of the | digit 7          | in th |
|      | a) 8 | 300   | b)     | 100   | c)            | 8              | d)    | 64     | e)     | 512              |       |
|      |      |       |        |       |               | the <i>pla</i> |       | alue ( | of the | digit 1          | in th |
|      | a)   | 32    | b)     | 16    | c)            | 8              | d)    | 2      | e)     | 1                |       |
| W/ri | in   | the s |        | pro   |               |                |       |        |        | decimal<br>answe |       |
| ber  | ady  |       |        |       | $\overline{}$ | 1-01           |       |        |        |                  | _     |
| ber  |      | Deci  | mal    |       |               | Oc             | tal   |        |        | Binary           |       |
| ber  |      | 3     | mal    |       |               | Oc<br>3        | 10000 |        |        | Binary<br>11     |       |
| ber  |      |       | mal    |       |               | 3 5-223        | 10000 |        |        |                  |       |

Mark your place in this workbook and view Lesson 1 in the A/V program, "Number Systems and Codes."

The three most common number systems are: the decimal system, which we use in our everyday work; the binary system, which digital computers use because it is easy to implement electronically; and the octal system, which computer operators and programmers use to represent binary numbers because it is easier to work with. Octal numbers, however, must still be converted to binary before the computer can process them.

As shown in Table 1, each number system has a unique base or radix. This base corresponds to the number of digits or actual values that are used in that number system. For example, the decimal number system uses 10 digits, 0 through 9, and therefore has a radix of 10.

### NOTES

Here we are referring to the decimal number system as whole numbers (integers) only. No quantities are expressed using fractions or a decimal point.

The actual (absolute) value of any digit in any number system is fixed.

Table 1 Actual Values

| Number<br>System | Base<br>(Radix) | Actual Values (digits) |
|------------------|-----------------|------------------------|
| Decimal          | 10              | 0 through 9            |
| Octal            | 8               | 0 through 7            |
| Binary           | 2               | 0 and 1                |

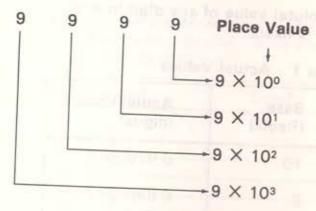
## Place Values

We know that, in the decimal system, two or more digits are needed to represent any value greater than 9. Whenever a number contains two or more digits, each digit is assigned a specific value called a place or positional value. This place value equals the base of the number system raised to some power. In the decimal system, place values are based on powers of ten (that is, units, tens, hundreds, thousands, etc.) The place values for a 5-digit decimal number are given in Table 2. Note that both the place value in powers of ten and the decimal equivalent of the place value are given for each digit position.

Table 2 Decimal Place Values

| Digit<br>Position                       | 5      | 4     | 3   | 2   | 1      |
|-----------------------------------------|--------|-------|-----|-----|--------|
| Place<br>Value                          | 104    | 103   | 102 | 101 | 100    |
| Decimal<br>Equivalent<br>of Place Value | 10,000 | 1,000 | 100 | 10  | u flau |

For example, in a decimal number, such as 9999, the meaning of each digit is the actual value of the digit, multiplied by the place value as follows:



Although the actual value of the digit 9 is fixed, its place value is different for each position in the number. The further left the digit is located, the greater its place value. Notice that the place value increases by a power of ten (we are dealing with a base ten system) each time the digit is moved one place to the left. By convention, the leftmost digit is always referred to as the *most significant digit* (MSD), and the rightmost digit is always referred to as the *least significant digit* (LSD).

Place values, however, are *not* unique to the decimal system. They are also used in binary and octal number systems. Notice that in the binary system, place values are based on powers of two rather than ten, and in the octal system place values are based on powers of eight. Table 3 shows the place values for the binary and octal number systems with their decimal equivalent.

Table 3 Binary and Octal Place Values

| Decimal               | 104    | 103   | 102 | 101 | 100 |
|-----------------------|--------|-------|-----|-----|-----|
| Decimal<br>Equivalent | 10,000 | 1,000 | 100 | 10  | 1   |
| Octal                 | 84     | 83    | 82  | 81  | 80  |
| Decimal<br>Equivalent | 4096   | 512   | 64  | 8   | 1   |
| Binary                | 24     | 23    | 22  | 21  | 20  |
| Decimal<br>Equivalent | 16     | 8     | 4   | 2   | 1   |

Remember that any base raised to the zero power is always one, and any base raised to the first power is the number of the base itself.

### Counting

Whenever the base of any number system is equaled, a zero is placed in that position, and the next most significant position is increased by a one. This is known as a carry. Examples of counting, using this carry principle, are shown in Table 4.

Table 4 Counting

| Decimal          | Oct       | al | Binary                                 |      |  |
|------------------|-----------|----|----------------------------------------|------|--|
| 0                |           | 0  |                                        | 0    |  |
| 1                |           | 1  |                                        | 1    |  |
| 2                |           | 2  | one carr                               | y 10 |  |
| 2<br>3<br>4<br>5 |           | 3  |                                        | 11   |  |
| 4                |           | 4  | two carries                            | 100  |  |
| 5                |           | 5  |                                        | 101  |  |
| 6                |           | 6  | one carry                              | 110  |  |
| 7                |           | 7  | ************************************** | 111  |  |
| 8                | one carry | 10 | three carries                          | 1000 |  |
| 9                | 20        | 11 |                                        | 1001 |  |
| one carry 10     |           | 12 | one carry                              | 1010 |  |
| ¥i.              |           | 10 |                                        | 100  |  |
| *                |           | 10 |                                        | 20   |  |
|                  |           | 20 |                                        |      |  |

#### NOTE

It takes more digits to represent a number if the base is small. In other words, the smaller the base, the more numbers needed. For example, the number nine requires four binary bits, two octal digits or one decimal digit.

Table 5 illustrates counting with larger numbers. Follow the sequence of numbers in each base until you feel that you can count in each number system. Then read on.

Table 5 Counting

| Decimal               | Octal                      | Binary        |
|-----------------------|----------------------------|---------------|
| 0                     | 0                          | C             |
| 1                     | 1                          | 1             |
| 1<br>2<br>3<br>4<br>5 | 2                          | 10            |
| 3                     | 3                          | 11            |
| 4                     | 4                          | 100           |
| 5                     | 5                          | 101           |
| 6                     | 2<br>3<br>4<br>5<br>6<br>7 | 110           |
| 7                     |                            | 111           |
| 8                     | 10                         | 1000          |
| 9                     | 11                         | 1001          |
| 10                    | 12                         | 1010          |
| 11                    | 13                         | 1011          |
| 12                    | 14                         | 1100          |
| 13                    | 15                         | 1101          |
| 14                    | 16                         | 1110          |
| 15                    | 17                         | 1111          |
| 16                    | 20                         | 10000         |
| 17                    | 21                         | 10001         |
| 18                    | 22                         | 10010         |
| 200                   | 98                         |               |
|                       | 92                         |               |
|                       | 25                         |               |
| 500                   | 764                        | 111 110 100   |
| 501                   | 765                        | 111 110 101   |
| 502                   | 766                        | 111 110 110   |
| 503                   | 767                        | 111 110 111   |
| 504                   | 770                        | 111 111 000   |
| 505                   | 771                        | 111 111 001   |
| 506                   | 772                        | 111 111 010   |
| 507                   | 773                        | 111 111 011   |
| 508                   | 774                        | 111 111 100   |
| 509                   | 775                        | 111 111 101   |
| 510                   | 776                        | 111 111 110   |
| 511                   | 777                        | 111 111 111   |
| 512                   | 1000                       | 1 000 000 000 |
| 513                   | 1001                       | 1 000 000 001 |

To avoid confusion when working with two or more number systems, the radix (base) is normally appended as a subscript to the number.

## Examples:

967<sub>10</sub> (decimal 967) 234<sub>8</sub> (octal 234)

101<sub>2</sub> (binary 101)

Before proceeding to the next lesson, do the practice exercises that begin on the following page. There are 20 exercises.

|    |         |                                              | EXERCI                                  | SES                             |        |
|----|---------|----------------------------------------------|-----------------------------------------|---------------------------------|--------|
| 1. | Writ    | e the name of thications:                    | ne number syst                          | em used in each of the fo       | llowin |
|    | a. L    | Jsed in normal,                              | everyday work                           |                                 |        |
|    | b. L    | Jsed in digital c                            | omputers                                |                                 |        |
|    | c. L    | Jsed by program                              | nmers                                   | -                               |        |
| 2. | Fill in | n the <i>base</i> and t<br>ems listed in the | he <i>actual value</i><br>following tab | es (digits) for each of the le: | numbe  |
|    |         | Number<br>System                             | Base                                    | Actual Values (Digits)          |        |
|    |         | Decimal                                      |                                         |                                 |        |
|    |         | Octal                                        |                                         |                                 |        |
|    |         | Binary                                       |                                         |                                 |        |
| 3. | of th   | e following num                              | e appropriate n<br>bers:                | umber system indicated f        | or eac |
|    |         | 346 <sub>8</sub>                             |                                         | <del></del> 0                   |        |
|    | b. 1    | 733 <sub>10</sub>                            |                                         |                                 |        |
|    |         | 1102                                         |                                         |                                 |        |

| SOLUTIONS |  |
|-----------|--|
| 00 -0     |  |

- Write the name of the number system used in each of the following applications:
  - a. Used in normal, everyday work decimal
    b. Used in digital computers binary
  - c. Used by programmers octal
- Fill in the base and the actual values (digits) for each of the number systems listed in the following table:

| Number<br>System | Base | Actual Values<br>(Digits) |
|------------------|------|---------------------------|
| Di-ral           | 10   | 0 through 9               |
| Decimal          | 10   | 0 through 7               |
| Octal            | 8    | 0 and 1                   |
| Binary           | 2    | U and 1                   |

- Write the name of the appropriate number system indicated for each of the following numbers:
  - a. 7346<sub>8</sub> octal
  - b. 1733<sub>10</sub> decimal
  - c. 1110<sub>2</sub> \_\_\_\_\_\_binary

| _  | _  |          |       |          | _      | EXE   | RCISI   | s —     |       |        |           |    |
|----|----|----------|-------|----------|--------|-------|---------|---------|-------|--------|-----------|----|
| 4. | An | other i  | name  | for "b   | ase"   | is _  |         |         |       |        |           |    |
| 5. | W  | nat nur  | mber  | system   | is u   | sed   | by dig  | ital co | mput  | ers?   |           |    |
|    | a. | Deci     | mal   | b.       | Bin    | ary   | C.      | Oct     | al    |        |           |    |
| 6. | W  | nat is t | he m  | ost sig  | nifica | ant d | igit (N | 1SD) i  | n the | num    | ber 2761: | 3? |
|    | a. | 1        | b.    | 2        | C.     | 3     | d.      | 6       | е.    | 7      |           |    |
| 7. | Wh | nat is t | he le | ast sig  | nifica | nt di | git (L  | SD) in  | the n | umb    | er 27613  | ?  |
|    | a. | 1        | b.    | 2        | C.     | 3     | d.      | 6       | е.    | 7      |           |    |
| 8. | Wh | at is t  | he va | lue of   | any    | numb  | oer rai | sed to  | the 2 | rero p | oower?    |    |
|    | a. | The      | numb  | er itsel | f      | b.    | 0       | C.      | 1     | d.     | 2         |    |
| 9. | Wh | nat is t | he va | lue of   | any    | numb  | oer rai | sed to  | the f | irst p | oower?    |    |
|    | a. | The      | numb  | er itsel | f      | b.    | 0       | C.      | 1     | d.     | 2         |    |

|         |                     | - solu      | TIONS -    |          |           |       |
|---------|---------------------|-------------|------------|----------|-----------|-------|
| 4. Anot | her name for "bas   | se" is      | radix"     |          |           |       |
| 5. What | t number system     | is used by  | digital o  | ompute   | rs?       |       |
| а. [    | Decimal b.          | Binary      | c. Oc      | tal      |           |       |
| 6. What | is the most signi   | ficant digi | it (MSD)   | in the r | number 27 | 7613? |
| a. 1    | b. 2                | c. 3        | d. 6       | e.       | 7         |       |
| 7. What | is the least signif | icant digi  | t (LSD) ir | the nu   | mber 276  | 613?  |
| a. 1    |                     |             |            |          |           |       |
| 8. What | is the value of an  | y number    | raised to  | the ze   | ro power? | ,     |
|         | he number itself    |             |            |          | d. 2      |       |
| 9. What | is the value of an  | y number    | raised to  | the fire | st power? |       |
|         | he number itself    |             | c.         |          | d. 2      |       |

10. Fill in the table below with the place values of the digit positions and their decimal equivalents for each indicated number system.

| Number<br>System | Digit<br>Position     | 5 | 4 | 3 | 2 | 1 |
|------------------|-----------------------|---|---|---|---|---|
| Decimal          | Place Value           |   |   |   |   |   |
|                  | Decimal<br>Equivalent |   |   |   |   |   |
| Octal            | Place Value           |   |   |   |   |   |
|                  | Decimal<br>Equivalent |   |   |   |   |   |
| Binary           | Place Value           |   |   |   |   |   |
|                  | Decimal<br>Equivalent |   |   |   |   |   |

11. What is the decimal equivalent of the actual value of the digit 7 in the decimal number 1978?

a. 7 b. 10 c. 49 d. 70 e. 700

12. What is the decimal equivalent of the place value of the digit 7 in the decimal number 1978?

a. 7 b. 10 c. 70 d. 100 e. 700

13. What is the decimal equivalent of the actual value of the digit 7 in the octal number 2376?

1 b. 7 c. 8 d. 10 e. 56

10. Fill in the table below with the place values of the digit positions and their decimal equivalents for each indicated number system.

| Number<br>System | Digit<br>Position      | 5      | 4     | 3   | 2   | 1   |
|------------------|------------------------|--------|-------|-----|-----|-----|
| Decimal          | Place Value            | 104    | 103   | 102 | 101 | 100 |
|                  | Decimal<br>Equivalent  | 10,000 | 1,000 | 100 | 10  | 100 |
| Octal            | Place Value            | 84     | 83    | 82  | 81  | 80  |
|                  | Decimal<br>Equivalent  | 4,096  | 512   | 64  | 8   | 1   |
| Binary           | Place Value<br>Decimal | 24     | 23    | 22  | 21  | 20  |
|                  | Equivalent             | 16     | 8     | 4   | 2   | 1   |

11. What is the decimal equivalent of the actual value of the digit 7 in

a.

b. 10 c. 49 d. 70

e. 700

12. What is the decimal equivalent of the place value of the digit 7 in

a. 7

(b. 10)

c. 70 d. 100

e. 700

13. What is the decimal equivalent of the actual value of the digit 7 in

a. 1

(b.

c. 8 d. 10 e. 56

| _ | EV | _ |   | 0 | 10 | _ | 0 |
|---|----|---|---|---|----|---|---|
| 7 | EX | _ | m |   | 3  | ᆮ | 3 |

| 14. | Wh        | at is t           | he de         | ecimal<br>ber 23 | equiv            | alent   | of the             | place        | valu            | e of t           | he digi  | t7 in  |
|-----|-----------|-------------------|---------------|------------------|------------------|---------|--------------------|--------------|-----------------|------------------|----------|--------|
|     | a.        | 7                 | b.            | 8                | C.               | 10      | d.                 | 56           |                 | е. 6             | 4        |        |
| 15. | Wh<br>the | at is ti<br>decim | he de         | cimal<br>umber   | equiv            | alent   | of the             | place        | valu            | e of ti          | ne digi  | t 5 in |
|     | a.        | 5                 | b.            | 10               | C.               | 50      | C                  | d. 10        | 00              | e.               | 500      |        |
| 16. | Whathe    | at is th          | ne de<br>numb | cimal<br>per 25  | equiv<br>67?     | alent ( | of the             | place        | valu            | e of th          | ne digit | 5 in   |
|     | a.        | 5                 | b.            | 8                | C.               | 40      | d.                 | 64           | •               | e. 3             | 20       |        |
| 17. | Wha       | at is th          | ne de         | cimal<br>ber 1   | equiv<br>0000    | alent o | of the             | place        | value           | of th            | ne digit | 1 in   |
|     | a.        | 1                 | b.            | 2                | C.               | 8       | d.                 | 16           | е.              | 32               |          |        |
| 18. | Wha       | at is th          | e de          | cimal one bina   | equiva<br>ary nu | alent o | of the             | place<br>)1? | value           | of th            | e digit  | 1 in   |
|     | a.        |                   |               |                  |                  |         | d.                 | 4            | e.              | 8                | 4        |        |
| 19. | If w      | e are o           | count         | ting an          | d hav            | e used  | d all ti<br>essary | he ava       | ilable<br>unt f | digit:<br>urther | s in a n | ium-   |
| a   | In        | the d             | digit         | positio          | on we            | are     | currer             | ntly us      | sing,           | we p             | ut dow   | /n a   |
| b   | In        | the ne            | ext co        | olumn            | to the           | left, w | e intr             | oduce        | a               |                  |          |        |

| SOLUTIONS |   |
|-----------|---|
|           |   |
| SULUTIONS | ï |

| 14   | . W        | hat is<br>tal nu  | the de          | ecimal<br>2376            | equiv         | alent        | of the p     | olace v          | alue          | of th | ne digit 7 in the |
|------|------------|-------------------|-----------------|---------------------------|---------------|--------------|--------------|------------------|---------------|-------|-------------------|
|      | a.         | 7                 | b.              | 8                         | C.            | 10           | d.           | 56               | (             | Э.    | 64                |
| 15.  | Wi         | nat is<br>e decii | the d           | ecimal<br>umber           | equiv         | alent        | of the       | place            | valu          | e of  | the digit 5 in    |
|      | a.         | 5                 | b.              | 10                        | C.            | 50           | d            | 100              | 0             | e.    | 500               |
| 16.  | Wh         | at is t           | the de          | ecimal<br>ber 25          | equiva<br>67? | alent        | of the       | place            | value         | of    | the digit 5 in    |
|      | a.         | 5                 | b.              | 8                         | C.            | 40           | d.           | 64)              | е             | . 3   | 320               |
| 17.  | Wh<br>the  | at is t           | he de           | cimal of                  | equiva        | alent o      | of the $\mu$ | olace v          | /alue         | of t  | the digit 1 in    |
|      | a.         | 1                 | b.              | 2                         | C.            | 8            | d.           | 16               | е.            | 32    | !                 |
| 18.  | Wha<br>the | at is t           | he de           | cimal e<br>ne <i>bina</i> | quiva         | lent o       | of the p     | olace v          | alue          | of t  | he digit 1 in     |
|      | a.         | 1                 | b.              | 2                         | c.            | 3 (          | d. 4         | D                | e.            | 8     |                   |
|      |            |                   |                 |                           |               |              |              |                  |               |       |                   |
| 9. 1 | f we       | e are<br>systen   | count<br>n, two | ing and                   | d have        | usec<br>nece | all the      | availa<br>to cou | able<br>nt fu | digi  | ts in a num-      |
| a.   | In         | the zero          | digit           | oositio                   | n we          | are o        | current      | ly usir          | ng, v         | ve p  | out down a        |
| b.   | In         | the n             | ext co          | olumn                     | to the        | left,        | we int       | roduce           | а             | ca    | rry .             |

20. Fill in the table below by counting in octal and binary.

| Decimal                                                                                                                                                                                               | Octal | Binary    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br><br>500<br>501<br>502<br>503<br>504<br>505<br>506<br>507<br>508<br>509<br>510<br>511<br>512<br>513 | 764   | 111110100 |

20. Fill in the table below by counting in octal and binary.

| 0<br>1<br>2<br>3<br>4<br>100<br>5<br>101<br>6<br>7<br>111<br>100<br>1100 |
|--------------------------------------------------------------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                    |
| 10 1000                                                                  |
| 10 1000                                                                  |
| 10 1000                                                                  |
| 10 1000                                                                  |
| 10 1000                                                                  |
| 10 1000                                                                  |
| , , , , , , , , , , , , , , , , , , , ,                                  |
|                                                                          |
| 11 1001                                                                  |
| 12 1010                                                                  |
| 13 1011                                                                  |
| 14 1100<br>15 1101                                                       |
|                                                                          |
| 12                                                                       |
| 2.2                                                                      |
| 24                                                                       |
| 21 10001<br>22 10010                                                     |
| 10010                                                                    |
|                                                                          |
|                                                                          |
|                                                                          |
| 764 111 110 100                                                          |
| 111 110 101                                                              |
| 766 111 110 110                                                          |
| 111 110 111                                                              |
| 770 111 111 000                                                          |
| 71 111 111 001                                                           |
| 72 111 111 010                                                           |
| 773 111 111 011                                                          |
| 774 111 111 100                                                          |
|                                                                          |
|                                                                          |
|                                                                          |
| 1 000 000 000 000 1 000 000 001                                          |
|                                                                          |

# Conversion Techniques

### - OBJECTIVE -

Given a number in the decimal, octal, or binary number system, be able to convert the number to its decimal, octal, or binary equivalent.

### SAMPLE TEST ITEMS-

- 1. Circle the decimal equivalent of each of the following binary numbers:

  - a. 101 111 110<sub>2</sub> b. 010 010 011<sub>2</sub>
    - 1) 38210

1) 13910

2) 38010

2) 13610

3) 28210

3) 14610

4) 28010

- 4) 14710
- 2. Circle the octal equivalent of each of the following decimal numbers:
  - a. 28<sub>10</sub>

b. 57<sub>10</sub>

1) 32<sub>8</sub>

1) 718

2) 338

2) 728

3) 348

3) 738

4) 358

4) 748

Mark your place in this workbook and view Lesson 2 in the A/V program, "Number Systems and Codes."

It is often necessary to convert from one number system to another. The six conversion techniques covered in this lesson are:

- 1. Binary to Decimal
- 2. Octal to Decimal
- 3. Decimal to Binary
- 4. Decimal to Octal
- 5. Binary to Octal
- 6. Octal to Binary

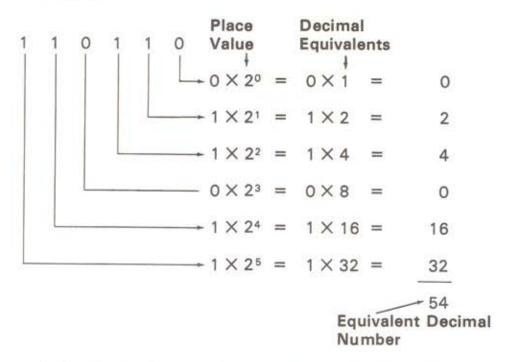
### Binary-to-Decimal Conversion

When converting a binary (base 2) number to a decimal (base 10) number, two rules must be followed:

- 1. Multiply each binary digit by its corresponding place value.
- 2. Add the products.

8

Below is an example of converting the binary number 1 1 0 1 1 0 to decimal.



A simpler method would be to use the decimal equivalent of the binary place values. When this method is used, the place values corresponding to the binary 1s are added to get the decimal equivalent number.

For example, suppose we want the decimal value of binary 110110.

Decimal Equivalent of Binary Place Values 
$$\longrightarrow$$
 32 16 8 4 2 1

Binary Number  $\longrightarrow$  1 1 0 1 1 0

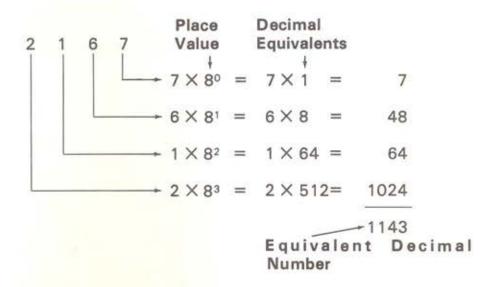
Therefore:  $\longrightarrow$  32 + 16 + 4 + 2 = 54 (Equivalent Decimal Number)

### Octal-to-Decimal Conversion

When converting an octal (base 8) number to a decimal number, there are only two rules to be followed:

- 1. Multiply each octal digit by its corresponding place value.
- 2. Add the products.

The example below shows how to convert the octal number 2167 to decimal.



### Decimal-to-Binary Conversion

When converting a decimal number to a binary number, the following rules apply:

- 1. Divide the decimal number by 2 and save the remainder.
- Divide the quotient from the previous division by 2 and save the remainder.
- 3. Continue step 2 until the quotient is zero.
- The remainders saved from the division make up the digits of the binary number. The first remainder is the least significant digit (LSD), and the last remainder is the most significant digit (MSD).

The example below shows how the decimal number 38 is converted to binary.

| Base | Number    | Quotient | Remainder |
|------|-----------|----------|-----------|
| 2    | <b>38</b> | 19       | O(LSD)    |
| 2    | 19        | 9        | 1         |
| 2    | 19        | 4        | 1         |
| 2    | /4        | 2        | 0         |
| 2    | 12        | 1        | 0         |
| 2    | 11        | 0        | 1 (MSD)   |

Therefore:  $38_{10} = 100110_2$ 

## Decimal-to-Octal Conversion

When converting a decimal number to an octal number, the following rules apply:

- Divide the decimal number by 8 and save the remainder.
- Divide the quotient from the previous division by 8 and save the remainder.
- 3. Continue step 2 until the quotient is zero.
- The remainders produced by the divisions make up the digits of the octal number. The first remainder is the least significant digit (LSD) and the last remainder is the most significant digit (MSD).

The example below shows how the decimal number 1908 is converted to octal.

| Base | Number | Quotient | Remainder |
|------|--------|----------|-----------|
| 8    | /1908  | 238      | 4 (LSD)   |
| 8    | 7238   | 29       | 6         |
| 8    | 729    | 3        | 5         |
| 8    | 73     | 0        | 3 (MSD)   |

Therefore:  $1908_{10} = 3564_8$ 

### Binary-to-Octal Conversion

Conversions between octal and binary number systems are relatively simple. Eight is an integral power of two, i.e., 8 = 23. This means that any octal digit is directly equivalent to three binary digits and vice versa. This equivalency is shown in Table 6.

Table 6 Octal-Binary Equivalencies

| Octal<br>Digit | Binary<br>Digits |
|----------------|------------------|
| 0              | 000              |
| 1              | 001              |
| 2              | 010              |
| 3              | 011              |
| 4              | 100              |
| 5              | 101              |
| 6              | 110              |
| 7              | 111              |

Once you become familiar with these equivalencies, conversions between binary and octal number systems can be performed simply by inspection. The procedure is as follows:

- Start with the least significant digit in the binary number and arrange the digits into groups of three.
- 2. Replace each group of digits with the equivalent octal digit shown in Table 6.

The example below shows how binary 100010011010 can be converted to octal.

As a memory aid, the binary place values 4, 2, and 1 can be placed over each group of three binary digits to aid in finding their octal equivalent. Examples are shown below.

### Octal-to-Binary Conversion

Since any octal digit is directly equivalent to three binary digits and vice versa, octal-to-binary conversion is also a simple matter. To convert an octal number to its binary equivalent, replace each octal digit with the equivalent three binary digits from Table 6.

The example below shows how octal 7721 is converted to binary.

Again, as a memory aid, the binary place values 4, 2, and 1 can be used to find the binary equivalent of each octal digit.

For example, assume that you need a binary number equivalent to the octal number 5. You can use the binary place values 4, 2, and 1 as follows: write down the place values 4, 2, and 1, and ask yourself which of these values add up to the octal number (in this case 5). Put 1s under the place values you need, and 0s under the rest.

Before going to the next lesson, do the practice exercises that begin on the following page. There are 6 exercises, each on a different type of conversion. Each exercise contains 10 problems. Do as many problems in each exercise as you feel necessary to master that type of conversion.

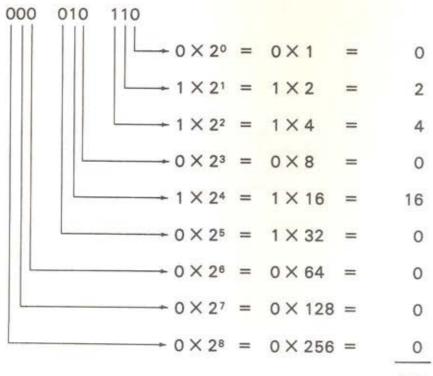
## -EXERCISES -

| 1. | Co | nvert the following | g <i>binary</i> numb | ers to their decimal equivalents. |
|----|----|---------------------|----------------------|-----------------------------------|
|    | a. | 000 010 1102        |                      | (decimal)                         |
|    | b. | 010 100 0112        |                      | (decimal)                         |
|    | c. | 101 000 0002        |                      | (decimal)                         |
|    | d. | 111 010 0102        |                      | (decimal)                         |
|    | e. | 001 111 1102        |                      | (decimal)                         |
|    | f. | 100 011 0102        |                      | (decimal)                         |
|    | g. | 011 011 0112        |                      | (decimal)                         |
|    | h. | 111 000 1112        |                      | (decimal)                         |
|    | i. | 010 001 1012        |                      | (decimal)                         |
|    | j. | 111 111 1112        |                      | (decimal)                         |

- 1. Convert the following binary numbers to their decimal equivalents.
- a. 000 010 110<sub>2</sub>

22 (decimal)

NOTE
Here's how we solved the first problem.



22

b. 010 100 011<sub>2</sub>

163 (decimal)

c. 101 000 000<sub>2</sub>

320 (decimal)

d. 111 010 010<sub>2</sub>

466 (decimal)

e. 001 111 110<sub>2</sub>

126 (decimal)

f. 100 011 010<sub>2</sub>

282 (decimal)

g. 011 011 011<sub>2</sub>

219 (decimal)

h. 111 000 111<sub>2</sub>

455 (decimal)

i. 010 001 101<sub>2</sub>

141 (decimal)

j. 111 111 111<sub>2</sub>

511 (decimal)

### -EXERCISES-

| 2. Cc | onvert 1 | the | following | octal | numbers | to | their | decimal | equivalents: |
|-------|----------|-----|-----------|-------|---------|----|-------|---------|--------------|
|-------|----------|-----|-----------|-------|---------|----|-------|---------|--------------|

a. 527<sub>8</sub> \_\_\_\_\_ (decimal)

b. 136<sub>8</sub> \_\_\_\_\_ (decimal)

c. 742<sub>8</sub> \_\_\_\_\_ (decimal)

d. 433<sub>8</sub> \_\_\_\_\_ (decimal)

e. 277<sub>8</sub> \_\_\_\_\_ (decimal)

f. 4400<sub>8</sub> \_\_\_\_\_ (decimal)

g. 1000<sub>8</sub> \_\_\_\_\_ (decimal)

h. 4577<sub>8</sub> \_\_\_\_\_ (decimal)

i. 7777<sub>8</sub> \_\_\_\_\_ (decimal)

j. 1061<sub>8</sub> \_\_\_\_\_ (decimal)

- 2. Convert the following octal numbers to their decimal equivalents:
  - a. 527<sub>8</sub>

343 (decimal)

Here's how we solved the first problem.

- b. 136<sub>8</sub>
- c. 742<sub>8</sub>
- d. 433<sub>8</sub>
- e. 277<sub>8</sub>
- f. 4400<sub>8</sub>
- g. 1000<sub>8</sub>
- h. 4577<sub>8</sub>
- i. 7777<sub>8</sub>
- j. 1061<sub>8</sub>

- \_\_\_\_\_94 (decimal)
- 482 (decimal)
- 283 (decimal)
- 191 (decimal)
- 2304 (decimal)
- \_\_\_\_\_512 (decimal)
- 2431 (decimal)
- \_\_\_\_\_4095 (decimal)
  - 561 (decimal)

| EXE | ь. | 0 |     | -0   | ı  |
|-----|----|---|-----|------|----|
| PAP | ж  |   | 139 | P 33 | r  |
|     |    | ~ |     |      | ۲. |

3. Convert the following decimal numbers to their binary equivalents:

a. 58<sub>10</sub> \_\_\_\_\_ (binary)

b. 36<sub>10</sub> (binary)

c. 18<sub>10</sub> (binary)

d. 796<sub>10</sub> (binary)

e. 100<sub>10</sub> (binary)

f. 117<sub>10</sub> (binary)

g. 501<sub>10</sub> (binary)

h. 907<sub>10</sub> \_\_\_\_\_ (binary)

i. 511<sub>10</sub> (binary)

j. 512<sub>10</sub> (binary)

- 3. Convert the following decimal numbers to their binary equivalents:
  - a. 58<sub>10</sub> 111 010 (binary)

NOTE
Here's how we solved the first problem.

| (  | Base<br>Divisor) | Number    | Quotient | Rema    | inder    |
|----|------------------|-----------|----------|---------|----------|
|    | 2                | <b>58</b> | 29       | 0 (L    | SD)      |
|    | 2                | /29       | 14       | 1       |          |
|    | 2                | /14       | 7        | 0       |          |
|    | 2                | 17        | 3        | 1       |          |
|    | 2                | /3        | 1        | 1       |          |
|    | 2                | /1        | 0        | 1 (M    | SD)      |
| b. | 3610             |           |          | 100 100 | (binary) |
| C. | 1810             |           | -        | 010 010 | (binary) |
| d. | 79610            |           | 1 100    | 011 100 | (binary) |
| e. | 10010            |           | 0 001    | 100 100 | (binary) |
| f. | 11710            |           | 0 001    | 110 101 | (binary) |
| g. | 50110            |           | 0 111    | 110 101 | (binary) |
| h. | 90710            |           | 1 110    | 001 011 | (binary) |
| i. | 51110            |           | 0 111    | 111 111 | (binary) |
| j. | 51210            |           | 1 000    | 000 000 | (binary) |

| 1  |   |    |             |     |   |
|----|---|----|-------------|-----|---|
| EV | - | 30 | <b>\1</b> ( | ~ - | 0 |
| EX | - | ч. | -12         | 5 P | - |
| -  |   |    |             | -   | • |

| 4. | Convert the | following | decimal | numbers | to | their | octal | equivalents |
|----|-------------|-----------|---------|---------|----|-------|-------|-------------|
|----|-------------|-----------|---------|---------|----|-------|-------|-------------|

- a. 103<sub>10</sub> (octal)
- b. 25<sub>10</sub> (octal)
- c. 67<sub>10</sub> (octal)
- d. 37<sub>10</sub> (octal)
- e. 580<sub>10</sub> (octal)
- f. 321<sub>10</sub> (octal)
- g. 185<sub>10</sub> (octal)
- h. 512<sub>10</sub> (octal)
- i. 561<sub>10</sub> (octal)
- j. 482<sub>10</sub> (octal)

- 4. Convert the following decimal numbers to their octal equivalents:
  - a. 103<sub>10</sub>

147 (octal)

Here's how we solved the first problem.

|    | Base<br>(divisor) | Number | Quotient | Rem  | ainder    |
|----|-------------------|--------|----------|------|-----------|
|    | 8                 | /103   | 12       | 7    | (LSD)     |
|    | 8                 | /12    | 1        | 4    |           |
|    | 8                 | /1     | 0        | 1 (  | (MSD)     |
| b. | 2510              |        | 7        | 31   | _ (octal) |
| C. | 6710              |        |          | 103  | (octal)   |
| d. | 3710              |        |          | 45   | _ (octal) |
| e. | 58010             |        |          | 1104 | _ (octal) |
| f. | 32110             |        |          | 501  | _ (octal) |
| g. | 18510             |        |          | 271  | (octal)   |
| h. | 51210             |        |          | 1000 | (octal)   |
| i. | 56110             |        |          | 1061 | (octal)   |
| j. | 48210             |        |          | 742  | (octal)   |

|       | n 0   | 10   | -0  |
|-------|-------|------|-----|
| P X P | H ( ) | 1.50 | 200 |
| EXE   |       |      |     |

5. Convert the following binary numbers to their octal equivalents:

a. 101 111 101<sub>2</sub> \_\_\_\_\_ (octal)

b. 110 110 111<sub>2</sub> \_\_\_\_\_ (octal)

c. 010 101 101<sub>2</sub> \_\_\_\_\_ (octal)

d. 011 110 100 001<sub>2</sub> \_\_\_\_\_ (octal)

e. 111 111 111 111<sub>2</sub> \_\_\_\_\_ (octal)

f. 010 110 101 100<sub>2</sub> \_\_\_\_\_ (octal)

g. 001 101 011 101 111<sub>2</sub> \_\_\_\_\_ (octal)

h. 010 110 000 011 001<sub>2</sub> \_\_\_\_\_ (octal)

i. 010 100 011 101 111 011<sub>2</sub> \_\_\_\_\_ (octal)

j. 110 110 100 101 010 111<sub>2</sub> \_\_\_\_\_ (octal)

|       | SOLUTION                           | s         |            |           |
|-------|------------------------------------|-----------|------------|-----------|
| 5. Co | nvert the following binary numbers | to their  | octal equi | ivalents: |
| a.    | 101 111 1012                       | OLD.      | 575        |           |
|       | Here's how we solved the fir       | rst probl | em.        |           |
|       | Memory Aid 4 2 1 4 2 1             |           |            |           |
| 1     | Binary Number → 101 111            | 101       |            |           |
| (     | Octal Number — 5 7                 | 5         |            |           |
| b.    | 110 110 1112                       |           | 667        | (octal)   |
| C.    | 010 101 1012                       |           | 255        | (octal)   |
| d.    | 011 110 100 0012                   |           | 3641       | (octal)   |
| e.    | 111 111 111 1112                   |           | 7777       | (octal)   |
| f.    | 010 110 101 1002                   |           | 2654       | (octal)   |
| g.    | 001 101 011 101 1112               |           | 15357      | (octal)   |
| h.    | 010 110 000 011 0012               |           | 26031      | (octal)   |
|       | 0 100 011 101 111 0112             | 24        | 13573      | (octal)   |
| . 11  | 0 110 100 101 010 1112             | 66        | 34527      | (octal)   |

|  | EXE | RCI | SES |  |
|--|-----|-----|-----|--|
|--|-----|-----|-----|--|

| 6. C | onvert the followin | g octal numbers to their binary equivalents: |
|------|---------------------|----------------------------------------------|
| a.   | 3548                | (binary)                                     |
| b.   | 2078                | (binary)                                     |
| C.   | 7368                | (binary)                                     |
| d.   | 26358               | (binary)                                     |
| e.   | 14218               | (binary)                                     |
| f.   | 63748               | (binary)                                     |
| g.   | 277658              | (binary)                                     |
| h.   | 713428              | (binary)                                     |
| į,   | 665573 <sub>8</sub> | (binary)                                     |
| j.   | 1246378             | (binary)                                     |

- 6. Convert the following octal numbers to their binary equivalents:
  - a. 354<sub>8</sub> \_\_\_\_\_\_ 011 101 100 (binary)

## Here's how we solved the first problem.

| b. | 2078    | 010 000 111             | (binary) |
|----|---------|-------------------------|----------|
| c. | 7368    | 111 011 110             | (binary) |
| d. | 26358   | 010 110 011 101         | (binary) |
| e. | 14218   | 001 100 010 001         | (binary) |
| f. | 63748   | 110 011 111 100         | (binary) |
| g. | 277658  | 010 111 111 110 101     | (binary) |
| h. | 713428  | 111 001 011 100 010     | (binary) |
| i. | 6655738 | 110 110 101 101 111 011 | (binary) |
| j. | 1246378 | 001 010 100 110 011 111 | (binary) |

### **Character Codes**

#### - OBJECTIVES -

- Given the term "ASCII CODE" and several detraitions of purpose for it, be able to select the one correct definition.
- Given five examples of even parity character code, be able to select the one example that is incorrect.

#### -SAMPLE TEST ITEMS -

- The purpose of a code such as ASCII is that it \_\_\_\_\_. (Circle one answer only.)
  - a. Allows analog machines such as analog computers to represent character information that people are trained to use.
  - Sets standards for training computer operators in various computer languages.
  - c. Allows binary machines such as digital computers to represent character information that people are trained to use.
  - d. Two of the above are correct.
  - e. None of the above is correct.
- Assuming even parity, only one of the following characters contains an error. (Circle the correct answer.)
  - a. 11011110
  - b. 1101001
  - c. 01011010
  - d. 11010100
  - e. 11011100

Mark your place in this workbook and view Lesson 3 in the A/V program, "Number Systems and Codes."

People are taught to communicate using letters of the alphabet, punctuation marks, decimal numbers, and special symbols such as the dollar sign. However, a digital computer can process only binary data. Therefore, any information used must be coded in binary format prior to computer processing.

#### Codes

A binary-formatted code can represent different symbols only when sufficient binary elements are employed for each symbol. If we use only a single binary digit (or "bit") to represent each symbol, we limit ourselves to two choices: one symbol represented by the "ON" state, the other represented by the "OFF" state. With such an arrangement, we could let the ON, or one-state, represent "no," and the OFF, or zero-state, represent "yes." While it would be difficult, such an arrangement would allow messages of a very limited nature to be conveyed between two remote stations.

If instead of using one binary digit for each character we use two, we have more characters to choose from. We have two choices for a one-bit code: 0 or 1. We have four choices for a two-bit code: 00, 01, 10, or 11. Thus, if we choose a three-bit code, we have a choice of eight: 000, 001, 010, 011, 100, 101, 110, and 111. It can be shown that, for a code with n-bit characters, the number of characters available will be  $2^n$ .

Although we could assign any arbitrary meaning to a code character, in most cases it is more practical to let the characters represent letters of the alphabet, numbers, punctuation marks, and spaces. ASCII is discussed in the following pages. Other codes are included in Appendix B.

ASCII Code - The American Standard Code for Information Interchange (ASCII) is a 7-bit code that has been established by the computer manufacturing, data processing, and I/O device manufacturing industries.

Many input/output devices on the market today are designed to conform to ASCII format. Some manufacturers, however, use minor variations of the ASCII code to make it more applicable to special-purpose devices. (A chart of a version of ASCII code is given in Appendix B.) One variation of the ASCII code is the Data Interchange Code. The primary difference between this code and ASCII is that some printing characters are replaced by non-printing control characters. The Data Interchange Code is readily adaptable to computer-to-computer communication.

#### Parity

Parity checking is a common technique used for detecting data errors where bits have changed value due to unwanted electrical interference or equipment malfunction. Parity checking relies on the inclusion in the data of extra bits called parity bits. Let's see how parity is used to detect errors.

The 7-bit ASCII code for the letter R is 1010010 and, for the letter S, is 1010011. If even parity is used on a computer system, eight bits will be used to represent these characters. The extra bit, a parity bit, will be added to the left end in the positions shown below:

R = ? 1010010

S = ? 1010011

Even parity means that the parity bit either a 1 or a 0, is chosen so that the total number of 1s in the 8-bit character will be even. Therefore, in the case of the letter R, the parity bit will be a 1, and in the case of the letter S, the parity bit will be a 0.

R = 11010010

S = 01010011

In a similar fashion, the codes for all characters in a system designed with even parity have been generated with an even number of 1s.

In even parity systems, parity *checking* is the process of examining each code the computer is processing to verify that it contains an even number of 1s. If the number of 1s is *not* even, then a data error has occurred in the system, and the character that is being verified is not valid. The figure below shows two valid and two invalid characters on a system using even parity.

11010010 valid

01010011 valid

11110010 invalid

01010010 invalid

Once a character has been identified as invalid, computers typically output error messages to an operator or try to obtain another copy of the character.

#### NOTE

We have just described even parity, in which the number of 1s in each character is supposed to be even. Some systems are designed with odd parity. In odd parity systems, the number of 1s in each character is supposed to be odd.

Observe that the simple-bit type of parity we have just described does not allow all errors to be detected. For example, in an even parity system, if two bits are changed in the character R the resulting character still has an even number of 1s. That is,

R = 11010010 four 1s

11011110 six 1s

In both even parity and odd parity systems, any electrical interference or equipment malfunction that causes an *even* number of bits to be changed will *not* be detected. Only changes of *odd* numbers of bits will be detected. More complex error-detection methods use *more than one bit* to detect data errors. With these methods, fewer errors go undetected. *No method is perfect*.

Now do the following exercises on character codes and parity before going on to the unit test.

| EX      |        | 01 | - |         |
|---------|--------|----|---|---------|
| See Mr. | De 140 |    | - | Des San |
|         |        |    | - | _       |

1. Write a brief explanation of the purpose of codes such as ASCII.

2. Fill in the codes for the symbols below using the table in Appendix B. Then fill in the parity bit using EVEN parity. (Note: the table in Appendix B has the parity bit position always equal to 1. This is common in systems that do not use parity checking.)

| Symbol | Parity | Binary Code |
|--------|--------|-------------|
| R      |        |             |
| S      |        |             |
| Q      |        |             |
| space  |        |             |
| Z      |        |             |
| \$     |        |             |

- The purpose of codes is to allow binary machines such as digital computers to represent character information that people are trained to use.
- Fill in the codes for the symbols below using the table in Appendix B. Then fill in the parity bit using EVEN parity. (Note: the table in Appendix B has the parity bit position always equal to 1. This is common in systems that do not use parity checking.)

| Symbol | Parity | Binary Code |
|--------|--------|-------------|
| R      | 1      | 1010010     |
| S      | 0      | 1010011     |
| Q      | 1      | 1010001     |
| space  | 1      | 0100000     |
| Z      | 0      | 1011010     |
| \$     | 0      | 0100100     |

#### EXERCISES -

- 3. Assuming a parity bit and no data errors in the following character codes, which character code is used on a system with even parity?
  - a. 11001011
  - b. 11010110
  - c. 11000001
  - d. 11001001
  - e. 01010100
- 4. Assuming even parity, which of the following characters contains a data error?
  - a. 11011010
  - b. 11010001
  - c. 01011010
  - d. 11010100
  - e. 11011101

- 3. Assuming a parity bit and no data errors in the following character codes, which character code is used on a system with even parity?
  - a. 11001011
  - b. 11010110
  - c. 11000001
  - d. 11001001
  - e. 01010100
- 4. Assuming even parity, which of the following characters contains a data error?
  - a. 11011010
  - b. 11010001
  - c. 01011010
  - d. 11010100
  - e. 11011101

Take the test for this module and evaluate your answers before studying another module.

# Appendix A The Hexadecimal Number System

Some computer manufacturers and programmers use the hexadecimal number system. The hexadecimal number system, sometimes referred to as "hex," has a base of sixteen. A base of sixteen simply means that the system uses sixteen digits. The symbols that commonly represent these digits are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Below is a comparison of counting in decimal and hexadecimal (hex).

| Decimal | Hex | Decimal | Hex | Decimal | Hex   |  |
|---------|-----|---------|-----|---------|-------|--|
| 1       | 1   | 18      | 12  | 35      | 23    |  |
| 2       | 2   | 19      | 13  | 4       | 100   |  |
| 3       | 3   | 20      | 14  |         | 5.00  |  |
| 4       | 4   | 21      | 15  | 500     | 1F4   |  |
| 5       | 5   | 22      | 16  | 501     | 1F5   |  |
| 6       | 6   | 23      | 17  | 502     | 1F6   |  |
| 7       | 7   | 24      | 18  | 503     | 1 F 7 |  |
| 8       | 8   | 25      | 19  | 504     | 1F8   |  |
| 9       | 9   | 26      | 1A  | 505     | 1F9   |  |
| 10      | A   | 27      | 1B  | 506     | 1FA   |  |
| 11      | В   | 28      | 1C  | 507     | 1FB   |  |
| 12      | C   | 29      | 1 D | 508     | 1FC   |  |
| 13      | D   | 30      | 1E  | 509     | 1FD   |  |
| 14      | E   | 31      | 1F  | 510     | 1FE   |  |
| 15      | F   | 32      | 20  | 511     | 1FF   |  |
| 16      | 10  | 33      | 21  | 512     | 200   |  |
| 17      | 11  | 34      | 22  | 513     | 201   |  |

## Appendix B Some Character Codes

#### One Variation of the ASCII Code

Figure 1 summarizes the ASCII code and its binary and octal forms as used in the Model 33 ASR/KSR Teletype.

MOST SIGNIFICANT BIT 1 = HOLE PUNCHED = MARK LEAST SIGNIFICANT BIT 0 - NO HOLE PUNCHED - SPACE NULL/IDLE 0 0 000 START OF MESSAGE 0 0 0 0 1 0 0 END OF ADDRESS 8 0 1 0 C END OF MESSAGE 0 0 0 1 1 0 END OF TRANSMISSION 0 0 100 5 E % WHO ARE YOU 0 0 ARE YOU 8 0 0 G BELL 0 0 н FORMAT EFFECTOR 0 1 000 HORIZONTAL TAB 0 1 0 0 1 LINE FEED 0 1 0 1 VERTICAL TAB 0 1 0 FORM FEED 0 1 м CARRIAGE RETURN 0 1 N SHIFT OUT 0 1 0 0 1 SHIFT IN 0 DCO 1 0 0 0 0 Q 1 READER ON 1 0 0 0 R TAPE (AUX ON) 2 1 0 S READER OFF 1 0 6 (AUX OFF) 1 0 U ERROR 5 1 0 w SYNCHRONOUS IDLE 0 6 LOGICAL END OF MEDIA 1 0 0 50 y 2 [ 0 0 0 53 5.4 1 5.5 Ait-mode 4 56 RUB OUT 0 SAME 0 SAME SAME SAME

Model 33 ASR/KSR Teletype Code (ASCII) in Binary Form

Note: Bit 8 may be parity or always punched. Always-punched is shown in this table.

Figure 1 One Variation of ASCII Code

Baudot Code

The Baudot code is a 5-bit code used mainly for telegraphs and for some keyboards, printers, punches, and readers. Although 5 bits can accommodate only 32 unique codes, 2 of the codes are "figures" (FIGS) and "letters" (LTRS). Prefixing the FIGS or LTRS code before other bit combinations permits dual definition of the remaining codes. In other words, each bit combination could represent either a particular letter, or a particular number or special character, depending on whether a LTRS character or a FIGS character comes before it. This means that when a Baudot input/output device is interfaced to a computer, the computer must maintain proper FIGS/LTRS status in order to interpret the necessary information properly. This code is rarely used with computers. Unlike ASCII code, the Baudot code has not enough bits in each character to make unique code assignments for both alphanumeric and control characters. This is the reason for the use of a letters-figures status with Baudot.

Binary-Coded Decimal (BCD)

The Binary-Coded Decimal code is merely a compression of the Hollerith code. Where the Hollerith code is a fixed ratio code, the BCD code compresses this 12-bit code into a 6-bit code: 2 binary bits replace 3-zone bits, and 4 binary bits replace the 9-data bit.

Extended Binary-Coded Decimal Interchange Code (EBCDIC)

The EBCDIC code is merely the BCD code extended to 8 binary bits. The extra bits provide the capacity for additional control characters that are used in graphic representations and other special applications. The character capability is very similar to ASCII's.

| CHARACTER                     |                   | BIT POSITION |     |       |     |     |  |
|-------------------------------|-------------------|--------------|-----|-------|-----|-----|--|
| LOWER                         | UPPER<br>CASE     | .1           | 2   | 3     | 4   | 5   |  |
| A                             | - 5               |              | 0   |       |     |     |  |
| 8                             | 7                 | 0            |     |       | 0   | 0   |  |
| C                             |                   |              | 0   | 0     | 0   |     |  |
| D                             | S                 | 0            |     |       |     |     |  |
| E                             | 3                 |              |     |       |     |     |  |
| F                             |                   |              |     |       |     |     |  |
| G                             | 8                 |              |     | 11.77 | .0  |     |  |
| Н                             |                   |              | -   | 0     |     |     |  |
| 1                             | 8                 |              |     |       |     |     |  |
| J                             | 1                 |              | 0   |       |     |     |  |
| K                             | (                 |              | .0  |       | 0   |     |  |
| L                             | )                 |              |     |       |     |     |  |
| M                             |                   |              |     |       |     |     |  |
| N                             | *                 |              |     |       | 0   |     |  |
| 0                             | 9                 |              | 100 |       | 0   | 0   |  |
| P                             | 0                 |              |     |       |     | . 0 |  |
| Q                             | 1                 |              |     |       | 100 | 0   |  |
| R                             | 4                 |              | 0   |       | .0  |     |  |
| S                             | BELL              |              |     | 0     |     |     |  |
| T                             | 5                 |              |     |       |     |     |  |
| U                             | 7                 | .0           | .0  |       |     |     |  |
| V                             | 1                 |              |     |       |     |     |  |
| W                             | 2                 |              | 0   |       |     |     |  |
| X                             | 1                 |              |     |       |     |     |  |
| Y                             | 6                 | 0            |     |       |     |     |  |
| Z                             | **                |              |     | 1     | -   | 0   |  |
| LETTERS (SHIFT TO LOWER CASE) |                   |              | 0   |       | 0   | 0   |  |
| FIGURES (SHIFT TO UPPER CASE) |                   | 0            |     | -     | 0   |     |  |
| SPACE                         |                   |              |     |       |     |     |  |
| CARRIAGE RETURN               |                   |              |     |       |     |     |  |
| LINE FEED                     |                   |              |     |       |     |     |  |
| BLANK                         |                   |              |     |       |     |     |  |
|                               | INDICATES MARK BI |              |     |       |     |     |  |

Figure 2 Baudot Code Format

Four-of-Eight Code The Four-of-Eight code is a so-called fixed-ratio code that represents information with a fixed number of one bits and fixed number of zero bits. In the Four-of-Eight code, four bits are one and four bits are zero in every character. The difference is in the bit arrangement. Although this code is much less efficient than ASCII, or even Baudot, it is ideal in applications where high accuracy, and easy error detection and correction are required. A typical application is credit card verification.

Hollerith Code

The Hollerith code is used almost exclusively for punched-card applications. It is a 12-bit code, designed to represent the alphabet plus digits 1 through 9. The most commonly used cards are divided horizontally into columns, and vertically into rows. In this code each character has two parts called zone bits and data bits. The top three rows are used as zone bits, and the remaining nine rows as data bits. Each column can be used to record one character of data, either an alphabetic, numeric, or a special symbol. Numeric digits are represented by a single hole in the appropriate row, while alphabetic characters are indicated by a hole punched in both the zone area and the data area of the same row. Special characters may be represented by one punch in the zone area, and two punches in the data area. There are 3 zone bits and 9 data bits. As with the Four-of-Eight code, the Hollerith code lends itself to easy error detection.

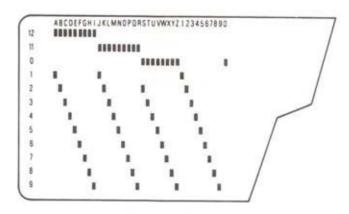


Figure 3 Hollerith Code Format