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Data  Compression  Using  Adaptive  Coding  and  Partial 
String  Matching 

JOHN G .  CLEARY AND IAN H. WITTEN, MEMBER, IEEE 

Abstract-The recently developed technique of arithmetic coding, in 
conjunction with a Markov model of the source, is a powerful method 
of data  compression in situations where a linear treatment is inap- 
propriate. Adaptive coding allows the model to be constructed dy- 
namically by both encoder and decoder during the course of the 
transmission, and has been shown to incur a smaller coding overhead 
than  explicit transmission of the model’s statistics. But there is a basic 
conflict between the desire to use high-order Markov models and the 
need to have them formed quickly as the initial part of the message is 
sent.  This paper describes how the conflict can be resolved with 
partial  string  matching, and reports experimental results which  show 
that  mixed-case English text can be coded in as little as 2.2 bits/ 
character with no prior knowledge of the source. 

I .  INTRODUCTION 

R ECENT  approaches  to  data  compression  have  split  the 
problem  into  two  parts:  modeling  the  statistics  of  the 

source  and  transmitting  a  particular  message  generated  by 
that  source  in a  small  number  of  bits [ 191. For  the  first  part, 
Markov  modeling is generally  employed,  although  the  use 
of  language-dependent  word  dictionaries  in  data  compres- 
sion  has  also  been  explored [ 2 11 . In  either case the  problem 
of  transmitting  the  model  must  be  faced.  The usual  procedure 
is t o  arrange  that  when  the  transmission  system is set  up,  both 
encoder  and  decoder  share a  general  model  of  the  sorts  of  mes- 
sages that will be  sent.  The  model  could  take  the  form  of a 
table  of  letter  or  diagram  frequencies.  Alternatively,  one  could 
extract  appropriate  statistics  from  the  message  itself.  This 
involves a preliminary  scan of the message by  the  encoder 
and  a  preamble to  the  transmission  which  informs  the  decoder 
of  the  model  statisitics.  In  spite  of  this  overhead,  significant 
improvement  can  be  obtained  over  conventional  compres- 
sion  techniques. 

The  second  part,  transmitting a  message  generated  by  the 
source  in a  small  number of bits, is  easier.  Conceptually,  one 
can  simply  enumerate  all  messages  which  can  be  generated 
by the  model  and  allocate  a  part  of  the  code  space  to  each 
whose  size  depends on the message  probability.  This  procedure 
of enumerative  coding [ 6 ]  unfortunately  becomes  impractical 
for  models  of  any  complexity.  However,  the  recent  invention 
of arithmetic  coding [ 151  has  provided  a  method  which is 
guaranteed  to  transmit a  message in a number  of  bits  which 
can  be  made  arbitrarily close to  its  entropy  with  respect  to 
the  model  which is used.  The  method  can  be  thought  of as  a 
generalization  of  Huffman  coding  which  performs  optimally 
even  when  the  statistics do   no t  have  convenient  power-of-two 
relationships to  each  other.  It  has  been  shown  to  be  equivalent 
to enumerative  encoding [5], [ 181, [ 191,  and gives the  same 
coding  efficiency. 
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There  are  obvious  disadvantages in having the  encoder  and 
decoder  share  a  fixed  model  which  governs  the  coding  of all 
messages.  While it  may  be  appropriate  in  some  tightly  defined 
circumstances,  such  as  special-purpose  machines  for  facsimile 
transmission  of  documents [ 91 , it will not work well for a 
variety  of  different  types  of  message.  For  example,  imagine 
an  encoder  embedded  in  a  general-purpose  modem  or  a  com- 
puter  disk  channel.  The  most  appropriate  model t o  use for 
such  general  applications  may  be  one  of  standard  mixed-case 
English text.  But  the  system  may  have  to  encode  long se- 
quences of upper-case-only  text,  or  program  text,  or  for- 
matted  bibliography files-all with  statistics  quite  different 
from  those  of  the  model. 

There is  clearly  a  case for basing the  model  on  the  statis- 
tics  of  the  message  which  is  currently  being  transmitted. 
But t o   do  so seems to require  a  two-pass  approach,  with  a 
first  pass  through  the  message  to  acquire  the  statistics  and  a 
second  for  actual  transmission.  This  procedure  is  quite  un- 
suitable  for  many  applications.  Usually,  one  wishes to begin 
sending  the  message  before  the  end of i t  has  been  seen.  The 
obvious  solution is to arrange  that  both  sender  and receiver 
adapt  the  model  dynamically  to  the message  statistics  as  the 
transmission  proceeds.  This is called  “adaptive  coding” [ 121 . 
It  has  been  shown  theoretically [ 51 that  for  some  models, 
adaptive  coding is never  significantly  worse  than  a  two-pass 
approach  and  can  be  significantly  better.  This  paper  verifies 
these  results  in  practice  for  adaptive  coding  using  a  Markov 
model  of  the  source. 

But  even  with  adaptive  coding,  there  is  still  a  problem  in 
the  initial  part of the message  because not  enough  statistical 
information has  been  gained for  efficient  coding.  On  the  one 
hand,  one wishes to  use  a  high-order  Markov  model t o  provide 
as much  data  compression  as possible once  appropriate  statis- 
tics  have  been  gathered.  But  it  takes  longer to gather  the 
statistics  for  a  high-order  model. So, on  the  other  hand,  one 
wishes to  use a low-order  model to accelerate  the  acquisition 
of frequency  counts so that  efficient  coding  can begin sooner 
in the message. Our  solution is to use  a  “partial  match” 
strategy,  where  a  high-order  model is formed  but used for 
lower  order  predictions  in  cases  when  high-order  ones  are 
not   ye t  available. 

The  structure  of  this  paper is as follows.  The  next  section 
presents  the  coding  method  and  the  partial  string  match 
strategy  which is  used to gain  good  performance  even  early 
in  the message. In  Section 111 the  results  of  some  experi- 
ments  with  the  coding  scheme  are  presented.  These  experi- 
ments use  a variety  of  different  sorts  of  data  for  compres- 
sion,  and  respectable-in  some  cases  exceptionally  good- 
performance is  achieved  with all of  them.  Finally,  the  re- 
sources  required  to  use  the  method  in  practice  are  discussed. 
An  appendix gives a  formal  definition of how  character 
probabilities  are  estimated  using  partial  string  matching. 

11. THE CODING METHOD 
Arithmetic Coding 

Arithmetic  coding  has  been  discussed  recently  by  a  number 
of authors [ 7 ] ,  [ l o ] ,   [ 1 5 ] ,  [191. Imagine  a  sequence  of 
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symbols X l X 2  ... X ,  is to be  encoded as another  sequence 
Y ,  Y2 ... Y M .  After  a  sequence X 1  ... Xi- 1 ,  the possible  values 
for X i  are  ordered  arbitrarily,  say w1 ... w,,, , and assigned 
probabilties p ( w l )  ... p(w,). The  encoding Y is computed 
iteratively  using  only  these  probabilities at  each  step. 

Arithmetic  coding  has  some  interesting  properties  which  are 
important  in  what  follows. 

0 The  symbol  probabilities p ( w k )  may  be  different  at 
each step.  Therefore,  a  wide  range  of  algorithms  can  be  used 
to  compute  the ~ ( w A ) ,  independent  of  the  arithmetic  coding 
method  itself. 

It is efficient  and  can  be  implemented  using  a  small 
fixed number  of  finite  arithmetic  operations  as  each  symbol 
of X is processed. 

0 The  output  code  length is determined  by  the  probabil- 
ities of the  symbols Xi and  can  arbitrarily  closely  approximate 
the  sum 2 - log p ( X i )  if arithmetic  of  sufficient  accuracy 
is used. 

Adaptive Transmission of the Model 
Arithmetic  coding  commonly uses fixed  probabilities, 

contingent  on  the  current  context,  which  are derived  from 
statistical  analysis  of  text.  However,  our  method  derives  the 
probabilities  from  the  message  itself.  Furthermore,  because 
encoding is done  in  a  single  pass  through  the  message,  the 
statistics  are  gathered  from  the preceding portion of the 
message  only.  Thus,  they  are  continually  changing  with 
time as the  transmission  proceeds.  Such  an  adaptive  strategy 
has  been  used  by  Langdon  and  Rissanen [ 121  with  fixed-order 
Markov  models.  Roberts  [20]  also  discusses  similar  techniques 
applied  to  encoding  and  authorship  identification of English 
text.  Ziv and  Lempel  [24]  have  proposed  a  coding  technique 
which  involves  the  adaptive  matching of variable  length 
strings.  Superficially,  this  technique  appears to be very  dif- 
ferent from the  “arithmetic  coding  plus  .adaptive  model” 
approach  pursued  here.  Nevertheless,  it  has  been  shown  by 
Langdon [ 131 that  there  exists  a  scheme  of  this  form  which 
is  equivalent t o  Ziv-Lempel  coding, 

It  may  at  first  seem  difficult to  implement  a  coding  system 
based upon  predictions  whose  probabilities  are  changing  all 
the  time.  However,  the  problem is not so great as might  be 
imagined,  because  usually, nothing  extra  need be transmitted 
to  update  the  probabilities.  After  all,  the  decoder-if  it is 
working  properly-is  seeing  exactly  the  same  message  sequence 
as the  encoder,  and so it can  update  frequency  counts  just as 
easily  as  can the  encoder.  It  is,  of  course,  necessary  that  a 
character is encoded  according  to  the  old  model,  before  the 
counts  have  been  updated  to  take  into  account  that  occur- 
rence  of  the  character.  Having  encoded  a  character,  the  en- 
coder  updates  its  model.  Having  decoded  it,  the  decoder 
updates  its  own  model.  Assuming  error-free  transmission- 
and  this is an assumption  that is made  throughout  this  paper- 
the  models will  always  agree,  even  though  explicit  details  of 
the  models  are  never  transmitted.  Appropriate  error  correction 
policies, or  error  detection  and  retransmission  protocols,  can 
be  applied to  the  encoded  data  to  make  the  probability of 
undetected  errors  arbitrarily  small. 

Markov  Modeling with Partial String Matching 

The  coding  scheme  uses a Markov  model  which  conditions 
the  probability  that  a  particular  symbol will occur  on  the 
sequence  of  characters  which  immediately  precede  the  symbol. 
The  order of the  Markov  model,  for  which  we use the  symbol 
0, is the  number of characters  in  the  context  used  for  predic- 
tion.  For  example,  suppose  an  order-2  model is selected,  and 
the  current  symbol  sequence is “. . . #and#the#current#sym- 
bol#sequence#i.”  The  next  character,  which  will  be  denoted 
by cp, could  be  any  member  of  the  coding  alphabet-we use 

7 bit  ASCII  codes  in  this  section.  (Of  course,  the  techniq.ue 
is not restricted t o  this  alphabet.)  In  particular,  characters 
such as (space)  are  significant. (space)  is written  here as 
“#” merely to enhance  legibility. 

Since  the  model is of  order o = 2,  the  next  character 
is predicted  on  the  basis  of  occurrences  of  trigrams “# i cp” 
earlier  in the message. A scan  through  an  English  dictionary 

“y,”  and “z” are  unlikely in  this  context,  while  the  high 
frequency of the  word  “is” will give cp = “s” a  reasonably 
high  probability  in  this  context. 

The  coding  scheme  does  not use a  fixed  order. If it  did 
and  the  order o were  large,  then  predictions  would  be  in- 
frequent  until  most  of  the ( a  -t 1)-sequences  which  actually 
occur  in  the  message  had  been  seen.  When  a  context  occurs  in 
which  the  following  character  has  not  been  seen  before-for 
example,  on  the  first  occurrence  of. “# i #’-an escape  mech- 
anism is used to  transmit  the  character  identity. 

Instead of using  a  fixed  length  context,  both  encoder  and 
decoder  recognize  predictions  on  the  basis  of  the  longest-’ 
string  match  between  the  present  context  and  previously 
seen  ones.  This  creates  no  ambiguity  because  each  sees  the 
same  message  sequence.  For  example,  when  the  character cp = 
“s” occurs  in  the  context “ # i cp” for  the  first  time,  the  pre- 
diction  will  be  based  on  the  length-1  context “i cp”. Thus,if  the 
string  “is”  has  occurred  previously  in  the  message,  even  without 
a  preceding  space  (as  in  the  word  “history”),  the  coding  of  the 
character “s” will be  based on this  foreshortened  context.  In  es- 
sence,  both  encoder  and  decoder use an escape mechanism to 
back  down  to  the  previous  level.  Then  the  character is encoded 
at  this  level,  using  the  order-1  model  which is implicit  in  the 
stored  order-2  one. 

If the  string  has  not  occurred  previously,  the  context will 
be  further  shortened  to  the  empty  string.  The  encoder will 
use a second escape  sequence to inform the decoder  of  this 
event.  This will cause the  character  to  be  predicted  on  the 
basis  of the  order-0  model,  that  is,  on  its  frequency so far  in 
the message.  If,  however,  the  character  has  never  been  seen 
before, so that  it  is not  predicted  by  the  order-0  model, 
the  escape  mechanism is used  a  third  time.  The  actual  identity 
of  the  character is then  transmitted  usinga  probability  of  1/128 
for  each. 

show  that cp = ‘<e,>>  “h,” “i,” 6‘’ 3, “k,” 6 G q , > >  6‘ J ,  u,” “w,” 

Escape  Probabilities 
A case  of  great  interest  occurs  when  the  encoder  encounters 

a  character  in  a  context  where  it  has  never  been  seen  before. 
For  example,  suppose cp = “s” occurs  for  the  first  time  in  the 
context “# i #’-that  is,  the  word  “is,”  or  indeed  any  other 
word  which  begins ‘‘is,’’ has not  occurred  in  the  message so 
far.  (This,  of  course, will happen  quite  frequently  in  the 
initial  part  of  the  message.)  Then  it is impossible  for  the 
encoder  to  encode  it on the basis  of  its  present  model.  Notice 
that we are  talking  here  not  just  of  the  first  occurrence  of  a 
particular  character  in  the  message,  but of its  first  occurrence 
in each  possible  context. 

For  each  context,  one  must  allocate  a  probability  to  the 
event that  a novel  character  occurs  in  that  context. It is 
difficult to  imagine  a  rationale  for  optimal  choice  of  this 
probability.  There  has  been  extensive  discussion  of  this  prob- 
lem  by  philosophers  from  at  least  the  time  of  Kant.  Pierce 
gives an  outline  of  this  early  work  in [ 161 . Some  more  modern 
solutions  in  the  context of Markov  models  have  been  sum- 
marized by Roberts [ 2 0 ]  who  refers  to  this  as  the  “zero 
frequency  problem”  (see  also [ 171 and [ 1,  p.  4241 ). Roberts 
also proposes  his  own  solution  (LOEMA)  which  takes  weighted 
sums of the  probability  predictions  of  models  of  different 
orders. As noted  by all these  authors,  in  the  absence of a 
priori knowledge,  there  seems to  be no theoretical  basis  for 
choosing  one  solution  over  another. 
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We take  a  pragmatic  approach  to  the  problem,  and  have 
investigated  the  performance of two  different  expressions 
for  the  probability  of  a  novel  event.  One  motivation  for  the 
experiments  described  in  the'next  section was t o  see  if there 
is  any  clear  choice  between  them  in  practice.  Further  experi- 
ments  are  needed  to  compare  them  with  the  other  techniques 
referred t o  above. 

The  first  technique  estimates  the  probabilities  for  arithmetic 
coding  by  allocating  one  count  to  the  possibility  that  some 
symbol will occur  in  a  context  in  which  it  has  not  been  seen 
before.  Let c(cp) denote  the  number of times  that  the  symbol 
cp occurs  in  the  context "# i cp" for  each cp in  the  coding 
alphabet A '(say,  ASCII).  Denote  by C the  total  number of 
times  that  the  context "# i" has  been  seen;  that  is, C = 
X,+,lp~~c(cp). Then,  for  the  purpose of arithmetic  coding,  we 
estimate  the  probability of a  symbol cp occurring  in  the  same 
context to be 

The escape  probability that  some  character  occurs  which is 
novel  in  that  context,  one  for  which c(q)  = 0, is therefore 
what  remains  after  accounting  for  all  seen  characters: 

Let 4 be  the  number of characters  that  have  occurred  in  that 
context,  and a be  the  size of the  coding  alphabet A .  Then 
there  are a - q characters  that  have  not  yet  occurred  in  the 
context. We allocate to each  novel  character  the  overall 
coding  probability 

p((p)  ='- - - 
1 S C  a - 4  

' c(cp) = 0. 
I '  1 

For  convenience  we call this  technique  method  A. 
The  second  technique,  method B, classes a  character  in  a 

particular  context as novel  unless it has already  occurred rwice. 
(This  is  motivated  by  the  consideration  that  a  once-off  event 
may  be  an  error  or  other  anomaly,  whereas  an  event  that  has 
occurred  twice or more is likely to  be  repeated  further.)  The 
probability  of  an  event  which  has  occurred  more  than  once 
in  the  context is then  estimated  to  be 

The  escape  probability is therefore 

We allocate t o  each  novel  character  the  overall  coding  proba- 
bility 

4 1  = - * ~ 

A  formal  definition of the  probability  calculations  used  by 
partial  string  matching is given in  the  Appendix  together  with 
an  example  calculation of the  probabilities.  This  includes 
an  improvement  whereby  characters  predicted  by  higher  order 
models  are  nzglected  when  calculating  the  probabilities  of 
predictions  by  the  lower  order  models. 

111. EXPERIMENTAL PERFORMANCE 
The Sample Messages 

The  adaptive  partial  string  match  coding  method  has  been 
tested  on several different  kinds of message.  Table I sum- 

TABLE I 
SUCCESS OF  THE  PARTIAL  STRING MATCH  METHOD  ON 

DIFFERENT  KINDS  OF  MESSAGE 

data chars bits/ bits/coded char 
char 0-0 0=1   0=2  0=3 0=4  0=9 

2 .  English text 
I .  English text 

3.  English text 
4. c source program 
5.  Bibliographic data 
6 .  Numeric data in 

551,623 
3 , 6 1 4  

44 ,871  

20 ,115  
3 ,913  

102.400 

7  4.622  4.102.3.891  3.792  3.800  3.838 
7  4 .555  3 .663  2 .939  2 .384  2 .192 -- 
7  4 .535  3 .692  3 .101  2 .804  2 .772  2 .890 
7  5 .309  3 .719  2 .923  2 .795  2 .789  2 .831 
7  5.287  3.472  2.951  2.713  2.695  2.766 
8 5.668  5.189  5.527 -- -- -- 

binary format 
7.  Binary program 21,505 8 6 .024  5 .171  4.931 4.902 4.914 4.950 
8 .  Grey-scale picture as  65,536 8 6 .893  5.131 5 .803  6 .106  6 .161  -- 

8-bit pixel values 

4-bit pixel values 
9 .  crey-scale picture as 65,536  4  3.870 1.970 1.923  1 .943  1 .991 -- 

Escapes calculated using Method A 

For example, a 256-point transform with a sample rate of 8 kHz gives the 256 
equally-spaced frequency components between 0 and 8 kHz that are shown in Table 
4.2 .  

time domain frequency domain 

sample time sample frequency 
number number 

I 
0 0 sec 0 
I 125  
2 250 
3  375  3 
4  500 

0 Hz 
1 . 3 1  
2  62 

94 
4  125 

...... ...... ...... 
254  31750  254 
255  31875 sec , 255 

7938 
7969 HZ 

Table 4.2  Time domain and frequency domain samples far a 256-poin t  DFT. 
with 8 kHz sampling 
The top half of the frequency spectrum is of no interest, because 

corresponding to frequencies greater than half the Sampling frequency. 
it contains the complex conjugates of the bottom half (in reverse order). 

Thus for a 30 Hz resolution in the frequency domain, 
256 samples or a 32 msee stretch of speech, needs to be transformed. 
A common technique is to take overlapping periods i n  the time domain to 
give a new frequency spectrum every 16 msec. From the acoustic point 
of view this is a reasonable rate to re-compute the spectrum. f o r  as noted 
above when discussing channel vocoders the race of change in the spectrum 
is limited by the speed that the speaker can move his vocal organs, and 
anything between 10 and 25 msee is a reasonable  figure far transmitting 
or storing the spectrum. 

The DFT is a complex transform, and speech is a real signal.  It is possible 

of the input and another into the imaginary parts. This destroys the DFT 
to do two DFT's at once by putting one time wave form into the real parts 

of a complex sequence formed in this way. it is easy to separate out the 
symmetry property, for it only holds for real inputs. But given the DFT 

DFT's of the two real time sequences. If the two time sequences are ' 
and , then the transform of the complex sequence 

is 

It follows that  the complex conjugate of the aliased parts of the  spectrum. 
in the upper frequency region. are 

Fig. 1. Example text taken from data sample 3. 

marizes  the  results,  for  a  few  different  values of 0 ,  the  order 
of the  Markov  model, using method A. Before  discussing 
these  results,  however,  we  should  say  something  about  the 
kinds of message which  were  used. 

The  first  three  samples  are English text. All of  them use 
upper  and  lower case characters  in  the  normal  way.  Sample 1, 
the  shortest, is an  abstract of a  technical  paper.  It  includes 
some  formatting  controls as well as a (newline) character 
at  the  end of each  line.  Sample 2 ,  the  longest, is a  complete 
1  1-chapter  book [ 231 . Notice  that  this  sample  contains 
over  half  a  million  characters.  Prior to  coding,  we  removed 
the  formatting  controls  and  mathematical  expressions  auto- 
matically,  which  left  some,  rather  anomalous  gaps  in  the  text. 
Tabular  illustrations  were  not  deleted.  Fig.  1  shows  a  repre- 
sentative  part  of  the  text  which  includes  a  small  table.  Sample 
3 is the  first  chapter  from  the  book  and,  thus,  forms  a  sub- 
sequence  of  sample 2: i t  is inchded  to  study  how  the  coding 
efficiency is improved  by  exposing  the  coding  scheme t o  a 
large,  representative  sample  of  text  before  transmitting.  the 
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actual  message.  The  fourth  sample  is  a  computer  program  in TABLE I1 
source  form,  written  in  the  language C [ 1  11,  including  some CoMPARIsoN OF OPTIMUM  COMPRESSION  ACHIEVED BY 
comments  and h e d i n e )  characters.  The  fifth is a  short ESCAPE  TECHNIQUES 
extract  from  a  bibliography  file.,  which  contains  authors’ 
names,  titles,  and  reference-  detaiis  in  a’  structured  manner 
suitable  for  computer  indexing  and  keyword  retrieval [ 141 . 
These  first five samples  are  all  represented as ASCII text, 
requiring  7  bits/character. 

The  next  three  samples  each use 8 bits/character.  Sample  6 
is a  data file containing  geophysical.  information  in  binary 
format.  Sample  7 is a  binary  program,  compiled  from Pascal 
for  the  VAX  11/780  computer.  Care was taken  to  remove 
the  symbol  table  from  it  before  coding so that   no English- 
like  text is included.(apart  from  literal  strings).  Sample 8 is 
a grey-scale picture,  histogram  equalized  and  stored  in  raster 
order,  with  256  grey levels. Finally,  sample  9 is- the  same 
picture  with pixels truncated to 4  bits  (16  grey  levels). 

Performance of the Coding Scheme 
Now  we  can  examine  the  results’  of  coding  with  met.hod 

A  which  are  presented  in  Table  I.  These  are  expressed  in  terms 
of bits/coded  character.  For  example,  the  first  line  shows 
that  a  short English  message can  be  coded  in  3.792  bits/ 
character, using the  optimal value of o = 3.  The  penalty 
paid  by  choosing o too  large is  very small,  however;  for  with 
o = 9  only  3.838  bits  are  needed-about  1.2  percent  more. 
The  optimal value of o grows  slightly  with  the  length of the 
message. 

The  piece of English text  in  sample 3 has  an  optimum  at o = 
4 (although  this is not  apparent  from  the  table  because  the 
figure  for o E 5 is not  shown).  For  the  text  of  sample  2 
we  were  unable  to.carry  the  experiment  beyond o = 4 for 
resource  reasons.  However,  we  have  demonstrated  that  the 
method  is.  able  to  code  mixed-case  English,  including  tables 
and  rather  arbitrary  spaces,  below 2.2 bits/character.  And  this 
is the average coding  performance  over  the  entire message- 

no  prior  informatian  at  all  about  the  likely  statistics of the mes- 
sage. Although  the  table  does  not  show  it,  the  final  90  percent 
of this  sample-half  a  million  characters-was  coded  in  2.132 
bits/character  with o = 4.  This  indicates  the  perforinance,which 
can be expected  when  the  cpding  and  decoding  modules  are 
primed  with  a  short  but  representative  sample  of  the  kind 
of English  used (55 000 characters  in  this  case).  Notice  how 
much  better  it is than  operating  in  unprimed  mode  for  the 
short  (45 000 character)  text of sample  3-2.772  bits/character 
a_t the  same value of o = 4.  

It is interesting to  compare  the  results  for  sample  4,  the 
program  in  source  form,  with  those  for  sample  1,  which is 
English text  of  about  the  same  length.  For  the  lowest value 
of o ,  o = 0, the  coding  scheme  does  not  perform as  well with 
the  program as it  does  with  English.  This is because of the 
abundance of unusual  characters,  like “{” and “*”, in  the 
program  text,  leading  to  a  larger  effective  alphabet.  (Any- 
one  who  has  encountered  the  C  language will assure you  that 
it  appears  cryptic,  especially  at  first.)  However,  performance 
improves  with  larger values of o ,  until  at o = 4  (which is in 
fact  the  optimum  for  sample  4)  the  coded~message  occupies 
only  2.789  ‘bits/character-73  percent  of  that  for  sample  1. 
This  is  because  of  the  more  structured  form of a program: 
variables are all declared  before  they  are used and  are  repeated 
relatively  often,  keywords  are  drawn  from  a  relatively  small 
set,  the  syntax  constrains  most  operators  to  occur  only  after 
variables and  not  after  keywords,  and so on. 

Another  example  of  structured  information  is  the  biblio- 
graphic  text  file  of  sample  5.  This  contains  formatted  informa- 
tion  together  with  free  text  in  the  form  of  titles,  authors’ 
names,  and so on.  At o = 4,  coding  with  2.695  bits/character 
is achieved,  better  than  that  obtained  on  the  text  file  of 
similar  size  in  sample 3. 

Not  surprisingly,  a  much  smaller  coding  gain was obtained 
with  binary  data.  The  geophysical  data  of  sample  6  can  be 

. .  with  both  the  encoder  and  decoder  starting  from  scratch  with 

d a t a  

I .  E n g l i s h   t e x t  
2 .  E n ’ g l i s h   t e x t  
3 .  E n g l i s h   t e x t  
4 .  C s o u r c e   p r o g r a m  
5 .  B i b l i o g r a p h i c   d a t a  
6 .  N u m e r i c   d a t a  i n  

b i n a r y   f o r m a t  
7 .  B i n a r y   p r o g r a m  
8.  G r e y - s c a l e   p i c t u r e  as 

9 .  G r e y - s c a l e   p i c t u r e  as 
83-bit p i x e l   v a l u e s  

4 - b i t   p i x e l   v a l u e s  

0 b i t s / c h a r  
M e t h o d  A 

o b i t s / c h a r  B o v e r  A 
M e t h o d  B I m p r o v e m e n t   o f  

3 3 .792  
4 2 . 1 9 2  
4 2 . 7 7 7  
4 2 ; 7 8 9  
4 2 . 6 9 5  
1 5 . 1 8 9  

3 4 . 9 6 2  
1 5 . 1 3 1  

2 1 . 9 2 3  

4 2 . 1 9 8  
4 3 . 5 4 2  

-0 .3% 
4 . 1 %  

5 2 . 7 4 6  0 .9% 
4 2 . 9 3 7  
4 2 . 7 5 0  

-5 .0% , 

-2.0% 
3 4 . 6 8 0  10.9% 

4 4 . 3 1 7   1 3 . 6 %  
I 5 . 0 6 1   1 . 4 %  

2 1 . 9 3 8  - 0 . 7 %  

coded  in  5.189  bits/byte  at  the  optimal value o = 1.  This 
represents  a  reduction to 65  percent of the  unencoded value 
of 8 bits/byte;  much less that  the  reduction  to  31-54  percent 
which was achieved for the  samples of English.  The  compiled 
program of sample  7  takes  ‘4.902  bits/byte,  or  61  percent of 
the  unencoded value. Presumably  this is less “noisy?’  than 
the  geophysical  data,  which  would  lead  one  to  suspect  that 
greater  gains  are  possible  for it. On  the  other  hand,  the  coding 
in  which  machine-language  programs  are  expressed  has  been 
carefully  designed t o  eliminate  redundancy. 

The grey-scale pictures  provide  an  interesting  example. 
With 8 bit  pixels,  only 5.1 31  bits/pixel is achieved (64  per- 
cent)  at  the  optimal value o = ‘1.  This value of o is rather 
low,  indicating  that  little  information is obtainable  from  the 
context  of  a  pixel.  This  is  not  suiprising  considehng  that  the 
low-order  few  bits  are  undoubtedly very noisy.  A  linear 
treatment  with  the  assumption of additive  Gaussian  noiie  would 
probably  be  much  more  approprate  for  this  kind of data. 
On  the  other  hand,  discarding  the  lower  order  bits  to give a 
4 bit  pixel  eliminates  most of this  noise,  making  the  coding 
scheme  perform  much  better-1.923  bits/pixel, or 48  percent 
of the  unencoded value. We suspect  that  this  may  be  better 
than  could  be  achieved using techniques  such as linear  pre- 
diction [ 8 ] . 

Selection of the Escape Probability 

We have  investigated  the use of two  algorithms  for  calculat- 
ing  the  escape  probability,  that  is,  the  probability  that  a  char- 
acter will occur  in P context  in’  which it has  n’ot  occurred 
before.  The  two  methods, called A  and B, were  described 
above.  In  practice, we find  that  there is no clear choice  be- 
tween  them.  This  can  be  seen  in  Table 11, which  compares  the 
best  compressions  achieved  by  the  two  techniques on each of 
the messages. Method B is  slightly  better  than A on five of 
the  texts  and  worse  on  four.  Also,  there is no  apparent  relation 
between  the  length  and  type  of message and  which  escape 
technique  fares  better.  This  insensitivity  to  the  escape  probabil- 
ity  calculation  is  actually  quite  satisfying,  It  illustrates  ‘that 
the  coding  method is robust,  gaining  its  power  from  the idea 
of the  escape  mechanism  rather  than  the  precise  details of the 
algorithm used to  implement  it.  This  point  is  futher  rein- 
forced  by  Roberts  [20] , who used a  very  different  technique 
of  “blending”  Markov  models  of  different  orders t o  achieve 
excellent  results  (unfortunately on texts  which  are  not easily 
compaiable  with  those used here).  This  insensitivity  is 
particularly  fortunate  in view of the  fact  noted  earlier 
that  it  is. hard  to  see  how  any  particular  escape  algorithm  can 
be  justified  theoretically. 

Fig.  2  shows  graphs of the  coding  performance versu6 value 
of o for  both  ,methods, using the  text of samples 1,. and 3. 
The  general  behavior,shown  there is typical of that  for  all  the 
examples.  In  each case method B is relatively less efficient  for 
small values ‘of o but  more  efficient  for  large  ones.  Also, 



400 fEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32, NO. 4, APRIL 1984 

I I 1 I L 
10 20 50 1 0 0  2M) 500 

CHARACTERS X loo0 

Fig. 3. Cumulative  coding performance plotted against time, for 
sample 2. 

methiod B’s efficiency  does  not  deteriorate so quickly  past 
the  optimum value of 0. This  relative  lack  of  sensitivity to  
o once  it is large  enough  may  make  Method B preferable  in 
situatiods  where  it is hard to  estimate  the  best value for 0. 

Evaluation of Partial Matching 
Recall  th?t  the  coding  scheme uses a  “partial  match” 

stritegy,  whereby  it  begins  forming a model of the  desired 
order  at  once  but uses partial  string  matching  to  force  predic- 
tions  out of the  nascent  model  in  the  early  stages,  The value 
o f  this  approach is demonstrated in,;Fig. 3,  which  shows  how 
the  coding  performance varies as t i h e  progresses during  the 
long  text  of  sample  2.  Time,  in  terms of number of characters, 
is  plotted  horizontally  on  a  logarithmic  scale.  The  ,vertical 
axis  represents  coding  performance  over  the  entire  initial 
substting  of  the  message.  The low.er 1ine.shows  the  performance 
of the  partial  string  match  algorithm,  while  the  same  algorithm 
is used for the  upper  line  but  with  partial  string  matching 
suppressed.  In  both  cases, o was chosen t o  be 4 .  

I t  is partial  string  matching  which  allows  efficient  coding 
to   he achieved  early  on  in  the  message.  For  example,  the 
bit rate in the first 10 000 characters is below  3.5  bits/char- 
acter  ,with  partial  string  matching,  whereas  without  it, it 
exceeds 5.5 bits/chaiacter.  Moreover,  the  improved  perform- 
ance of partial  string  matching  can  be  seen  throughout  this 
rather lohg piece of text.  Eventually, of course,  if  the message 
really ,doe; have  an  homogeneous  structure,  partial  string 
matching will cease t o  give.any  advantage.  But  Fig. 3 indicates 
that  this will take  a  long  time,  even  for  a  fairly  modest value 
of 0 (0 = 4) .  

There is an  upturn  in  both  lines  between  320 000 and 
550 000 characters.  This is caused  by  a  sudden  disruption 
of the  statistics o f  the  text  at  around  character 450 000, 
which  the  interested  reader will find  just  over  halfway  through 
Chapter 9 of the book [231 . Perhaps  this  should,be  taken as 
a  warning  that  text  statistics  in  real  life  are  not  homogeneous 
and nicely, behaved,  making  it  particularly  appropriate  to use 
an  adaptive  encoding  method. 

IV. RESOURCE REQUIREMENTS 

. ?  Let us now  consider  the  resources  required  to  run  the 
coding  algorithm.  Its  most  important  feature,  from  the  point 
of view of practical  coding,  is  that  the  time  required  for  both 
encoding  and  decoding  ,grows  only  linearly  with  the  length 
of the  message.  Furthermore,  it  can  be  implemented.in  such 
a  way  .that  it  grows  only  linearly  with  the  order of the  model. 
And  impressive  data  compression  has  been  demonstrated  with 
models of low  order-o = 3  or  4. 

Our  current  implementation is experimental  and  inefficient. 
I t  is written  in  the  Pascal  language  on  a  VAX  1  1/780  computer. 
For  models of order  between o = 0 and o = 4 ,  encoding 

time is on  the  oidef of 10-50  mslcharactei, or 20-100 char- 
acters/s.  Decoding  takes , a similar,  time.  However,  the  per- 
formance of other  implementations of parts of the  system 
have been  investigated  previously  in  different  contexts.  In  an 
Algol implementation,  the  partial  string  match  search  has  been 
found  to  be  possible  in 9 ms/character,  even  for  an  eighth-order 
model,  on  a  B6700  computer. We believe that  it  would  be 
possible to  reduce  the  time  taken  for  partial  string  matching 
by  the  present  program  by  a  factor of ten,  using  better algo- 
rithms  and  hand-coding of critical  parts.  A  tightly  coded 
assembly-language  program  for  arithmetic  coding  has  already 
achieved  120  ps/character  for  encoding  and  150  pslcharacter 
for  decoding  on  a VAX 11/780.  Since  partial  string  matching 
and  arithmetic  coding  between  them  cover  the  whole  opeta- 
tion of the  scheme,  a  complete  data-compression  system 
could  operate  at  approaching  1000  characters/s.  Special- 
purpose  architectures  using VLSI can  be envisaged which 
could  increase  the  speed to 100 000 characters/s. 

The  ,second  important  resource is the  memory  space  re- 
quired  by  both  encoder  and  decoder. As is common  in  Markov 
models,  this  can  grow  exponentially  with  the  order of the 
model,  and is quite  large  in  practice  even  for  order-5  models 
of English  text.  However,  notice  that  the  scheme  uses  no  pre- 
stored  statistics;  the  required,  memory is empty  initially. 
There  are  complicated  tradeoffs  between  space,  time,  and 
implementation  complexity  in  partial  string  matching algo- 
rithms  [2],  [4].  Our  experimental  implementation  stores 
the  Markov  model  in,a  tree  structure  (as  must  any  implementa- 
tion  whose  execution  time  grows  at  most  linearly  with o and 
which  occupies  a  reasonable  space). 

For  each  sample of data,  the  number of nodes  in  the  tree 
is shown in Table 111 for  various  orders  of  model, All results 
reported  in  this  paper  have  been  obtained  with less than 
200 000 nodes.  Our  experimental  implementation  in  Pascal 
consumes  128  bits/node,  but  this  can easily be  improved. 
At  each  node  must  be  stored a character  code,  a  count of the 
number of times  that  node  has  been  visited  (to  allow  prpba- 
bilities to  be  calculated),  and  two  pointers-one  to  indicate 
the  next  node  at  the  current level and  the  other to  show  the 
subtree  for  the  next  level.  Allowing  32  bits  for  the  count  and 
each  pointer,  and 8 bits  for  the  character  code,  the  node  con- 
sumes  104  bits  of  storage.  For  an  implementation  which 
accommodates  200 000 nodes  (the  maximum  attained  in 
any of our  examples),  only  18  bits,  are  required  for  each 
pointer.  Furthermore,  the  count  could  safely  be  reduced  to 
the  same  figure  or less; on the basis that  limiting  the  counts 
t o  even  a  small  maximum  value  would  probably  not  impair 
coding  efficiency  significantly.  This  would  reduce  the  storage 
for  each  node  to  about 54 bits, so that  1.4  Mbytes  would 
suffice  for  200 000 nodes. 
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TABLE 111 
SIZE O F  DATA  STRUCTURE  REQUIRED  FOR  DIFFERENT  KINDS 

O F  MESSAGE 

data  chars 
o=o 0=1 

nodes  in  tree 
032   0=3  0 4  0=9 

I .  Enelish  text 3,614  61  550 1966  4014  6677  22358 
2 .  English  text 
3 .  English  text 44,871  76  1102  5822  17196  35793  198628 

5. Bibliographic data 
6 .  Numeric  data in 

20,115  76  1051  4805  11397  19915  80610 

551.623  94  2417  16802  61546  154077 -- 
4. c source program 3,913  69  625  1733  3236  5062  17571 

102,400  255  14150  48580 -- _ _  _ _  

TABLE IV 

USING METHOD A 
CALCULATION OF PARTIAL STRING MATCH PROBABILITIES 

c,(d Ip a 
b C d e 

I 
rn 
3 0 0 0 0 
2 4 l W 4 )   2 W 2 )  0 0 0 3 1 / 4  

2 1 / 3  

I 5 3 2 0 
0 5 3 2 1 0 0 0 1  

1 1 / 2  

-1 1 1 1 1 

3 2 l ( 1 1 2 )  0 0 I 1 1 / 2  

b i n a r y  format 
7,. Binary program 21.505  255 5139 14140  25716  38789  114914 O f  p,(’) are given in brackets 
8. Grey-scale picture as  65,536 140  6664 40376 95980 159411 _ _  
9 .  Grey-scale  picture a s  6 5 , 5 3 6  15  212 1600 6634 17912 _ _  &bit pixel  values 

4-bit  pixel values 

than 0 in  higher  order  models: 
0 

Alternative  implementations,  such as the  compact  hash 
described  by  Cleary [ 3 ] ,  [ 4 ] ,  could  reduce  this t o  an  esti- 
mated  28  bitslnode  and  0.7  Mbytes  without  sacrificing  search 
time. 

Modifications  could  be  made to  the  coding  method  which 
reduce  the  number of nodes  needed.  One  example is partial 
model  storage.  An  order-1  model is stored  initially.  Only 
when  this  has  been  seen  to give ambiguous  predictions is it  
augmented  to  an  order-2  model,  and  then  only  for  the  con- 
texts  in  which  ambiguity arises. In  general,  the  order of each 
node  in  ‘the  model is increased  selectively,  up  to  a  maxim- 
value of 0 ,  whenever  more  than  one  prediction is seen  to 
emanate  from  it.  Another  possibility is to  construct  a  non- 
deterministic  automaton  model of the message string,  and 
store  a  reduced  form as described by  Witten [ 221. 

However, we are not  overly concerned  about  the  amount 
of storage  that  the  method  consumes.  After all, only unfilled 
storage  ‘is  needed.  With  the  continued  improvement  in  inte- 
grated  circuit  technology,  empty’store is becoming  a  cheap 
resource..  The  major  expense  associated  with  memory is the 
cost of filling it  with  information  and  maintaining  and  up- 
.dating  that  information.  But  this is done  automatically  by  the 
coding  scheme. 

Most  coding  methods  do  exact  a  cost  by  requiring  statistics 
to be  calculated  and  stored  before  coding  begins.  The  one 
described  does  not.  However,  many  applications will find i t  
worthwhile t o  prime  the  encoder  and  decoder  with  representa- 
tive statistics  before  transmitting  a  message.  This is  easily 
done  by  sending  a  representative  sample of text  before  the 
main  transmission  begins,  and  we  saw  during  discussion  of 
Table I that  this can be  most  effective. If the  statistics  are 
misleading,  then of course  some  deterioration in coding 
efficiency is only t o  be  expected.  Adaptation will ensure 
that  the  initial  priming is eventually  outweighed  by  the  statis- 
tics of the message itself. 

APPENDIX 

A  formal  definition is now given of  the  probabilities  esti- 
mated  for  characters  using  partial  string  matching. TO do  
this we extend  the  notation used earlier.  Let c,(cp) be, the 
count of the  number  of  times  the  character cp has  occurred 
in  the  current  context  of  an  order rn model;  where 0 < rn < o 
and o is the  maximum  order of the  stored  model. In order 
to gracefully  cover  the  special case when  a  character  has  never 
occurred  before  in  the message (so that c,(cp) = 0 for all 
the  models), rn is allowed to range  from -1 and c- ~(cp) is 
defined t o  be  1  for all cp in  the  alphabet. 

Let  the  set of characters  predicted by the  model of order 
m but  not  by  higher  order  models  by A,,  . Then using method 
A, A ,  is the  set of characters  which  have  counts  greater 
than 0 in  the  order rn model less all those  with  counts  greater 

Am = {P: Cm(v)  > 0 }  - U AI. 
l=m + 1 

The  sets A m  will allow  the  probability  predictions  to  be 
improved  by  neglecting  characters  predicted  by  higher  order 
models  when  calculating  the  probabilities  predicted  by  the 
lower  order  models.  For  example, if the  current  context 
is “# i” and  the  sequence “i s” has  occurred  previously  in  the 
message but  not  the  sequence “# i s”, then “ S ”  is a  member 
of A I  but  not of A - 1 ,  A o ,  or A , .  Because of the  definition 
above,  no  character  can  occur  in  more  than  one  set A,. 
Also because  of  the  definition of c -  , every,  character  in 
the  alphabet will occur  in  precisely  one of A- through Ao.  

Following  method  A,  the  probability  for  a  character rela- 
tive t o  a  model  of  order rn is estimated  to  be 

where C ,  is the  total  count  for  characters  first  predicted  by 
a  model  of  order m ; 

\PEA m 

This gives the  estimated  escape  probability  of  a  novel  character 
occurring  relative to  order m as 

Finally,  the  estimated  probability  for  a  character  using 
partial  string  matching is 

p(p> = P,(cp) * fi el, 
I=m+l 

In  other  words,  to  compute p ( q )  start  at  the .highest order 0 .  

Reducing  the  order  at  each  step,  take  the  product of the 
escape  probabilities  until  the  character is positively  predicted. 
Then  multiply  this  product  by  the  probability  estimated  for 
the  character using the  model  which  first  positively  predicts 
it.  An  example  calculation of ,p(cp) using  a  small  alphabet of 
six characters,  “abcdef”, is given in  Table IV. 

It is  possible to extend  method  B  to  partial  string  matching 
by  suitably  modifying  the  definitions of A , ,  e,, and p m  
above. 
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