
•

1;': J

, ~- ­

Systems Reference Library

mM 1800 Multiprogramming Executive System
\)

Introduction

The purpose of tlris publication is to provide under one cover a
concise overview of the basic concepts, functions and general
organization of the IBM 1800 Multiprogramming Executive (MPX)
System. It is intended as a guide in understanding the system's
capabilities and planning for their use.

The first section defines the MPX system, its operating environ­
ments and system requirements, and highlights the many advantages
of this FORTRAN oriented, disk-based multlprograptming system.
SUbsequent sections discuss system concepts and system components.
A summary of all MPX calling statements used is included in Appendix
A, while Appendix B discusses MPX recommended interrupt level
assignment practice.

Detailed specifications on the use of this system will be supplied In
later publications.

.­

f

Flz<! Edition

Specifications contamed herein are subject to chauge from time to
time. AJly such change wlll be reported in subsequent revisions or
Technical Newslettels.

Requests for copies of IBM publications should be made to your IBM
rep;reselltative Ol' to the IBM branch office se:tVing your locality.

A form is provided at the back of this publication fot reader~s eomments~
If the form has been removed, comments may be addressed to IBM
Corporation, Programming PubUcations, Department 232, San Jose,
Coliform. 95114.

@ Intematioual Business Machines Corporation 1967

,

• • • •

r

CONTENTS

INTRODUCTION 1

Mtnimum System Requkemen1S " " " 1

Mac.b.iue Features Supported 5,. '" " " " " .. " " " " 1

Operating EDvironments • " " .. • " " .. • .. • .. " .. • 3

SYSTEM CONCEPT 4

M<Utlprogtannnmg 4

Method of Operat:ion •• _ ,. 4

Multiple Core Load Areas " ... " " .. " " 5

Time-Sh~ " ~ " " 5

Role of the System Executive .. ~ " ,. 6

On-line Mod!ficat!on of

In-core In:t:em.tpt Sub:outines .. " " 7

Program Segmentation - Core Loads 8

Reentrant Coding • • • 8

Local (Load-On-Call) Subprograms 9

Common Areas 9

r

............ " " 10

SYSTEM COMPO:N'ENTS " • • 11

Control ~ • ~ .. 11

The Executive Dfl'ecmr "............ 11

:Basic Operating Monttel' (80M) 11

Batch Processlng Supel"V'isor • • • • • .. • • • • • • • • • • • 12­
Input..Qtnput Control ~ .. •• 12

Exit from I/O Calls ••••••• • • • • • • • • .. • • • • •• 14

ProceiISWg: PtogrlUn# ••• ~ • • .. • • • .. • • • • • • .. • • • .. • • • 15

Service P1'ogra.m.$ 0- ... ~ 0- • .. • .. • ... 15

.................... 0­ ... ~
 18

APP£NDIX A. SlJM.\iARY OF MPX
CAlLING STA'ITh{ENTS 0- .. •• 19•

APPENDIX B. MPX RECOMMENDED lliTERRUPT
LEVEL ASSIGNlYtENTS ••••• 0­ "' " 20

iii

>'i;~.­-~y,

INTRODUCTION

The IBM 1800 MUltiprogramming Exeoutive (MPX)
System is a 26-area FORTRAN oriented disk-based
operating system designed to provide simultaneous
disk operation, maximum throughput, efficiency and
economy of operation. It is intended for process
control and data acquisition applications which hsve
high system usage requirements (see Figure 1).

Multiprogramming is regulated on a basis of I/O
operation. When an input/output operation is initiated
in one core storage area, that area can he placed in
a suapended state until the I/O function is completed.
Concurrently with this, a program loaded into a lower
priority core storage area can also he executed.
Since a core storage area can he assigned to an inter­
rupt level, the programmed interrupt tochnique Is
used by the system to dIrect these levels of operation,
thereby controlling the execution of anyone of 24
possible core storage areas at any moment in time.

r

The MPX system also provides for unlimited
queueing of I/O operations as well as the ability to
achieve maximum overlap of I/O and computing. In
addition, Interrupt programs may he handled on a
queueing basis, and executed on interrupt levels
within a hierarcby of priority levels chosen by tbe
user. Queueing and I/O overlap as used in the MPX
system provide the ability to gain the full advantage
of 9 cycle-stealing data channels, 24 interrupt levels,
and, in general. the real potential of the IBM 1800
Data Acqoisition and Control System.

MPX will divide core storage Into several areas
as follows:

• 	 An area of permanent core storage for the resident
MPX System Executive.

• 	 A apecial core load area (SPAR) which enables the
user to modify his high-priority interrupt sub­
routines on-line.

• 	 Up to 23 partitioned core load areas which are
transient in natere, and provide for user-written
process core loads. Programs executed in these
areas are executed on an interrupt level.

,
• 	 A variable area of core storage in which mainline

level and interrupt level programs are executed.

This could contain a process or batch processing
monitor program or an out-of-oore interrupt pro­
gram. The variable core area is time-shsred
between mainline process core loads and the
Batch Process!ng Monitor. An interrupt will
cause the mainline program to be saved on disk
before out-oi-core interrupt program is loaded.

Some oi the many advantages of the MPX system are:

1. 	 High throughput
2. 	 Fast reaponse
3. 	 Optimum use of available processor-controlier

time
4. 	 Automatic program scheduling -- low scheduling

burdens
5. 	 Ability to modify system on-line
6. 	 Ability to execute user-written on-line hsrdware

diagnostics
7. 	 Time-sbaring of foreground and background

(Batoh Process!ng Monitor) operations

MINIMUM SYSTEM REQUIREMENTS

To obtain the full capabilities of the IBM 1800 Multi ­
programming Executive System, the macbine config­
uration shall he at least:

1 IBM 1801/1802 Processor-Controller with a
minimum of 24K words of core storage

1 IBM 1053 Printer or IBM 1816 Printer-Keyboard
1 IBM 1442 Card Read Punch
1 IBM 2310 Disk Storage Unit, Model A2 (stand­

ard - two disk drives) or C2 (fast access ­
two dtsK drives)

Machine Features Supported

In addition to the above, the following optional mach­
ine units and features are supported by the MPX
system:

r'

r----------~-----SYSTEM MPX SYSTEM ~ ------------------1I
REA~IV~~I~i:~~~~'NG)

SYSTEM
EXECUTIVE

----N-;;N REAL-TIME .ATCH I
,"OCESSING SYSTEM I

I
I
I
I
I

um PROCESS
CORE LOADS

AND

: t.,.~SU;.:::';;:OU_TI_N'iE:,\:5~5;:;::':3:::
CAltO

UTilITIES
&.ATCH 1.--------~-l

PROCESSING r L______ I.-...t.------- ­ .. SUPEliVISOIt

I
I
I

l~
I
I
I
I
I '- ­ yr- ­
I Customer

Prcx:en
I Devices

tt?
x-v Plotter CJe

ognetic Printer
Tope

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J

J

I
USER BATCH ~:=~~------ll------]==~----~=]==~-rs:~ E i~"'''~ ~ .0"". ,
ro" ~= .'.0 "_',

FORTRAN I
DISK

MANAGEMENT
PROGRAM

ASSEMBLER
COMPILE' J

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

J
I

J

I

I

I

J
J
J
I

I

I

I

I

I

I

I

I

I

I

I

I

I

DEFINE
DISK

STORE/MODIFY

DATA ANi)

PROGRAMS

DUMP
DATA AND
PROGRAMS

SYSTEM

MAtNTENANCE

________________-:­i E e<:utlv. System

Figure 1. The IBM IBOO MultipfOgtammmg x

CORE

LOAD BUILD

I

J

J

J

J
EXECUTIVE I

BUILD I

J
J

J

----'

2

" t•

• 	 Additional core storage (up to a maximum of
32,768 words)

• 	 Additional disk drive for IBM 2310 Disk Storage
Unit (up to a maximum of three disk drives)

• 	 Additional IBM 1442 Card Read Punch Unit (up to
a total of 2)

• 	 Additional IBM 1816 Printer-Keyboard (up to a
total of 2)

• 	 Additional IBM 1053 Printer Units (up to a total of
eight 10538 and 18168)

• 	 Additional Data Channels (up to a total of 9)

• 	 Additional Interrupt Levels (up to a maximum of
24)

• 	 Multiplexer linit (Solid-state or Relay)

• 	 Analog-Digital Converter (up te a total of 2)

• 	 Digital-Analog Output

• 	 Digital Input

• 	 Comparator

• 	 IBM 1443 Printer Unit

• 	 IBM 2401 Magnetic Tape Units (maximum of 2)

• 	 IBM 1627 Plotisr Unit

• 	 IBM 1054 Paper Tape Reader

• 	 IBM 1055 Paper Tape Punch

OPERATING ENVIRONMENTS

t
The IBM 1800 Multiprogramming Executive System
is composed, essentially, of two maln parts: (1) A
System Executive and (2) a Batch Processing Monitor.
It is through the System Executive that process con­
trol and data acquisition applications are serviced in

r

a real-time process mode. with the Batch Processing
Monitor operative in the time-shared mode; or the
Batch Processing Monitor can act as an iodependent
programming system to provide data processing
functions in a standard batch processing mode. Each
of these two modes is brought into play by an appro­
priate and corresponding system generation procedure.
The user elects the option of constructing a real-time
process or batch processing system tailored to indi­
vidual specifications.

Real-time Process Mode. In real-time processing,
inputs arrive randomly from a process being moni­
tored to the processor-controller. The computer
rapidly responds to each input, usually by conveying
an output back to the process. This is in contrast
with conventional batch processing where groups of
input data are processed by passes through the com­
puter. The notion of real-time usually implies that
a processor-controller is responding to inpUts as
they occur in the physical world.

MPX operates in this mode under the control of
the System Executive. In a real-time environment,
user-written programs are continuously monitoring
or controlling a process. The machine is also per­
mitted to he time-shared by process and batch pro­
cess work: that is, batch processing jobs can be
interleaved simultaneously with the real-time process
being monitored. Whenever variable core is not re­
quired for a process program, the Batch Processing
Monitnr may be brought intc service. All programs
executed are fetched from the system resident disk
cartridge(s).

Batoh Processing Mode. The batch processing MPX
system operates in this nonreal-time mode under the
control of the Basic Operating Monitor (BOM) as a
dedicated Batch Processing Monitor System. Typical
batch processing operations are assemblies, compil­
ations, disk management functions and the execution
of batch processing programs.

A batch processing system can he used to test
problem programs before they are permanently cata­
logued on the system resident disk cartridge; to ex­
ecute problem programs that require the full capacity
of available disk drives for data files, or to process
problem programs that are used $0 infrequently that
their real-time storage is not justified. It is also in­
itially used to construct a real-time process disk
resident system.

lnt:.roduction 3

.sYSTEM CONCEPT

MULTIPROGRAMMING

In most current computer installations, process and
data processing functions are performed sequentially;
that is. a new function is not begun until the current
function is completed. The average function per­
formed by a computing system requires at any given
moment only a fraction of the total available resources
of the system. Many parts of the system are. there­
fore. often idle for significant periods of time. For
example, a data conversion and printing function re­
quires only a fraction of the storage space and input­
output devices available in the system, and intermit­
tent use of the processor-controller.

To increase throughput, the IBM 1800 Multipro­
gramming Executive System enables programs, core
storage space, input-output facilities and control of
the processor-controller to be allocated and concur­
rently shared among severai process functions.
These facilities permit multiprogramming; that is,
they permit severai process functions to be performed
concurrently and to share the basic resources of the
computing system. The MPX operating system helps
to ensure that as much of the total system as possible
is kept busy performing productive work as much of
the time as possible. This is accomplished by eifi ­
ciently allocating the available resources of the system
to more than one function, and SWitching control from
one function to another as a delay is encountered
while awaiting an event, such as the completion of an
input-output operation, or the end of a timing interval.
Among the services provided by lI'lPX to allow concur­
rent operation a.re:

• 	 Loading programs and routines into main storage

• 	 Scheduling the use of programs and routines in
main storage

• 	 Swltohing control of the processor-controller from
one function to another, based on I/O operation

• 	 Controlling the execution of the various functions
in accordance with a defined hierarchy of priority

Method of Operation

MPX provides the overall capability of multiprogram­
ming with a fixed number of jobs. This means that a
maximum of twenty-four programs can be run con­
currently within a single computing system having
only one processor-controller.

The system permits from one to twenty-four
separately scheduled programs to reside in their
own predefined sections of core storage. A program
occupies a discrete and contiguous area of core stor­
age; the number of core areas used as well ad the
size of each area is determined when the system is
generated.

Two types of programs are used in multiprogram­
ming: foreground and background. Background pro­
grams are normaily initiated by tile Batch Processing
Monitor from the batohed-job input stream. Fore­
ground programs do not execute from a stack; they
are brought into operation by the occurrence of
random or periodic real-time events. Background
and foreground programs initiate and terminate in­
dependently of one another. The background job is
time-shared with the lowest priority foreground job;
that is, when there is no foreground job available to
be run in the lowest priority foreground area (variable
core), the background job is brought into core and
executed. If a foreground job later requires that
area, tile background job is saved on bulk storage.

MPX is capable of concurrently operating one
background and one or more (up to twenty-four) fore­
ground programs. Priority for processor-controller
processing is based on a multi-l.,el interrupt level
hierarchy controlled by the Executive Director, with
foreground programs having priority over background
programs. All programs operate with interruptions
enabled. When an Interrupt occurs, the Director
gains control, processes the interrupt and gives con­
trol to the highest priority program linked to a spe­
cific discrete area or partition of core storage in
which it is to reside at execution time. Control is
taken away from a high priority program when that
program encounters a condition that prevents contin­
uation of processing until a specified event has 00­

4

I

•

curroo. For example, this condition would occur
when a READ operation is issued to a disk storage

r 	 unit. Control is taken away from a lower priority
program when an event on which a higher priority
program was waiting has been completed. In the
above example, control would return to the high pri­
ority program when the READ I/o operation has been
completed.

Multiple Core Load Areas

By dividing core storage into as many as twenty-three
partitioned core load areas (in addition to a fixed area
for the resident executive, a SPAR area and a vari­
able area), twenty-four separate programs can be ex­
ecuted concurrently. This permits I/O overlap during
program loading, and improved throughPut, since
core exchanges would not be required, except in vari­
able core. The concept of core load areas provides
for efficient USe of the eqUipment, while allowing the
system to handle multiple jobs in rapid succession.

Program execution in a core load area can he based
on Interval timer rundown, process interrupts, pro­
grammed interrupts, or the queueing of a program by
another program. During the loading and execution
phase of a program assigned to a particular interrupt
level, programs linked to that level and competing for
processor-controller time will be queued.. There isr one queue table for each interrupt level; programs
placed in the queue can be assigned with a priority
within a level.

Execution of process programs will be initially
triggered by a programmed interrupt which is activa­
ted when a disk I/O operation is completed., Linking
facilities between core loads within each core load
area are available. Each core load area will have its
own COMMON area and LOCAL (load-on-call)
capability.

Figure 2 illustrates tbe position of core load
areas within a general core organization layout of an
MPX system.

f

LOW ADDRESS

SYSTEM

EXECUTIVE

SPECIAL CORE LOAD AREA
(SPAR)

CORE LOAO AREA 1

CORE LOAD AREA 2

•
•
•
•

CORE LOAD AREA 22

CORE LOAD MEA 23

VARIABLE AREA

i

HIGH ADDRESS

Figure 2. General Core OrgAnuation of MPX System

TIME-SHARING

In many industrial control installations. the real-time
computer control system will have spare capacity to
perform background jobs. Time-sharing techniques
can thus be employed wbenever idle or free processor­
controller time is available in a given system environ­
ment to offer the user the kind of service he requires.

System Concept 5

The notion of time-sharing also implied the sharing of
computer resources, since not only time but primary
and secondary storage as well as input-output facili ­
ties are also shared.

When idle time is available in the IBM 1800 Multi ­
programming Executive System, control is automatl­
calJy transferred to an independent Batoh Processing
Monitor System which is identical to any stack-job
monitor system. All assembling, compiling and sys­
tem activities can now be executed under the control
of the Batch Processing Monitor. Performing such
jobs "time-shared" has a distinct advantage in that
any time not required for process control functions
can be used for batch processing functions. Also,
since process control problem programs and strate­
gies often tend to change, the time-sharing mode
makes It possible to modlJY these programs and stra­
togies at the process on-line Installation without
taking the computer off-line. Time-sharing is an­
other feature of the MPX system which helps to op­
timize the utilization of the IBM 1800 Data Acquisition
and Control System.

ROLE OF THE SYSTEM EXECUTIVE

The System Executive constitutes the main framework
of a process real-time MPX system, and must be
resident in permanent core storage before any contin­
uous and coordinated real-time processing can take
place. Other portions of the system are brought into
core from bulk storage as they are required to per~
form specific functions.

The Executive is extremely flexible. By the sys­
tem generation process, a user can build his own
unique system tailored to individual requirements.
In this way, core will not he wasted for the user who
does not desire certain optional features. Each oper­
ating system consista of a choice of control routines
and programming facilities that are closely Integrated
with a selection of processing, storage, aod input­
output options to form a balanced system for a parti ­
cular range of applications. The process real-time
system is generated using standard language and
editing facilities.

The user may include frequently-called snbrou­
tines, high-priority interrupt servicing routines and
other user-written programs in the System Executive
to make the most effective use of his control system.

A typical Executive may consist of the folJowlng
constituent parts as illustrated in Figure 3. The

function of each Individual part will now be described. c,

Executive I/O. This is a set of input-output sub­
routines and tables which provides a rapid and easy
method for the user to reference the various data
processing I/O devices for input and output of data.
It includes:

• 	 BULKN (Bulk Storage Subroutine: performs all
reading from and writing to the IBM 2310 Disk
Storage Unit)

EXECUTIVE I/O

EXECUTJVE DIRECTOR

USER PROGRAM.S

INSKEl COMMON

SPAR

CORE LOAD AREA 1

CORE LOAD AREA 2

•
•
•

CORE LOAD AREA 23

VARfA8LE CORE

SYSTEM

EXECUTIVE

Figure 3. An MPX Real-time System - Illustrating: the Fout

Component Parts of the System Executive

•

• TYPEN/WRTYN (Printer-Keyboard Subroutine,
transfers data to aJld frOll! the IBM 1053 and IBM

('""' 1816 Printer-Keyboard)

• 	 PRNTN (Printer Subroutine, handles all print and
carriage control functions relative to the IBM 1443
Printer)

• 	 I/O Common Routines

• 	 Error Alert Control (EAC) program package,
provides standard error detection and recovery
procedures

These and other basic system routines make up the
Executive I/O package which corresponde to an iden­
tical set of input-output subroutines used by BOM.

Executive Director. The Director is the control
center of the multiprogramming operating system.
Its primary function Is to perform a variety of serv­
ices for other parts of the system, including problem
programs. It coordinates and controls the perform­
ance of these services in such a way as to ensure
efficient and coordinated use of the physical and
programming facilities or resources of the system.

To perform its functions, the Director receives
control of the processor-controller by way of an inter­
ruption or a call. The interrupt may result from a
specific request fur services from another part of the
operating system; from a problem program; an auto­
matic interrupt that occurs at the completion of an
input-output operation; or from a random or periodic
event that occurs outside the system. Automatic
interruptions associated with a hierarcby of priori ­
ties, in general, enable the Director to coordinate
its control over the physical and programming re­
sources of the system.

A service performed by the Director may be spe­
Cifically requested by a program, such as a request
to load another program, or it may be a service that
is automatically provided when a contingency occurs,
such ss attempting to recover from an error condition.
Among the services that may be provided by the Ex­
ecutive director sre the following:

• 	 Loading programs into main storage

• 	 Sharing areas of main storage among routines that
need not be in main storage at the same time

• 	 Controlling the concurrent execution of programs
and routines

• 	 Providing the time of day and other timing serv­
ices, such as keeping track of the time at which
a particular operation is to be performed

• 	 Making the system available to the Batch Proceess­
ing Monitor

User-written Programs. The user has the option to
include as many programs and subroutines as possi­
ble in the System Executive for reasons of frequent
usage, rapid response and optimum utilization of
bulk storage. These may be:

• 	 Interrupt Servicing Subroutines

• 	 Time-related Subroutines

• 	 Special trace SUbroutine

• 	 IBM-supplied arithmetic, 1/0 and other suhroutines

• 	 Other user-written subroutines

Such routines are first assembled/compiled in re­
locatable format and stored. At Executive build time,
they are bodily Incorporated Into the System Executive.

INSKEL COMMON. A unique labelled common area
can be set aside for communications between the
various types of core loads used in the system. It
can be referenced by any process or data processing
program. The size of INSKEL COMMON is user­
defined when the system is built.

On-line Modification of In-core lnterruptSubroutlnes

A special core load area called SPAR is provided,
at the uaerls option, which can be considered as an
extension to the System Executive. This area can
contain frequently-employed Interrupt servicing
routines or other routines that may be subject to
cbange in a process control environment. By load­
ing these routines into SPAR (rather than having them
assembled with the System Executive), the user gains
the ability to change or switoh any high priority sub­
routine there to meet the demands of the system being

r

System Concept 1

controlled. This important feature of MPX facil! ­
tates modifioation of in-core Interrupt subroutines
without the necessity of a system regeneration.

SPAR is fixed in size by tho user when the system
is Initially generated. A core load containing any
user-selected servicing subroutines and routines
referenced by these subroutines is loaded during the
cold start procedure.

It will henceforth always remain in core, unless
a specific call is made to the Executive Director to
load a new SFAR core load. Subroutines loaded into
the special core load area will not he used by any
other area core load..

PROGRAM SEGMENTATION--CORE LOADS

When the core storage size of a multiprogramming
system is not sufficient to hold all the necessary
process control programs at one time, some form
of program read-in scheme is normally employed
whereby programs, upon demand, are brought in
from bulk storage. Very often, such a scheme will
reserve part of core storage for program read-in,
and divide it into fixed-length partitioned core storage
areas which form a repository for programs of a lim­
ited size. This forces the multiprogrammer to make
a segmentation of his program into one or more parts
which will fit into the fixed-size core areas at execu­
tion time. The program segments can he of any size
as long as they do not exceed the core storage area
size.

This technique is employed in the MPX system
where programs are formed into smaller units termed
core loads. A core load is, by definition, an execut­
able program or portion of a program which performs
some user function. It is not necessarily a program
in its entirety because the program may he too large
to fit into a core load area in one piece for execution.
The core load is unique in that it is stored on disk in
core image format to facilitate rapid loading for
execution..

Figure 4 illustrates a typical type of core load
commonly used in MPX. A core load may contain
other subroutines that are not associated with the
main program--that is, subroutines not otherwise
available in core (either included in the System Execu­
tive or employed in the form of LOCAL subprograms).
A typical core load may consist of a mainline or inter­
rupt program, and required subroutines that are not
included with the System Executive.

SYSTEM
COMMUNICATIONS

TABLES

MAINLINE
PROGRAM

SUBROuTINES
AND

SUBPROGRAMS

COMMON

Figure -4. A Typical Core Load Osed in MPX

Core loads are important in reai-time systems for
the following reasons:

• 	 They are permanently built and stored on bulk
storage

• 	 It is possible to reference the program by name

• 	 No compiliog/assembling is needed at execution
time

• 	 Rapid execution

REENTRANT CODING

One of the basic problems that arises in multi-level
programming is that different levels of operation
require the use of the same subroutine. Suppose a
block of coding, servicing Interrupt level 3, calis
subroutine ALPHA. Before completing subroutine
ALPHA, a bigher priority interrupt at level 1 oocurs,
which aiso calls the same subroutine ALPHA. If

8

ALPHA is coded in the conventional manner, the
argument pointers, temporary core storage locations,
computed instructions, and the return point for the
first call to ALPHA are destroyed by the second call
or reentry of ALPHA. Reentry, then, is defined as
the nse of a subroutine before completion of a previous
call to tbat subroutine. A similar situation occurs
when a program calls itself, which is known as
recursion.

A sophisticated metbod of reentrant coding using
level work areas is devised for MPX to allow one sub­
routine to be entered at any time and from any inter­
rupt level without loss of results. All system sub­
routines that are required on multiple levels in MPX
are fully reentrant. That is, they can be called re­
peatedly by different interrupt Bubroutines at different
levels; they are automatically reenterable, and auto­
matically keep guard of the partial results acquired
at the time they were interrupted. Within ihe MPX

~ 	philosophy, a single subroutine can be used slmulta­
neously at all 26 levels, while it is servicing any
other level. The automatic accounting of the partial
results of subroutines is a very significant step for­
ward which is made possible by the programming
structure of MPX.

Many of tbe subroutines in the MPX Subroutine
Library are supplied in both reentrant and non­
reentrant form. The non-reentrant versions have
been added to give the user greater flexibility in the r cboice of execution speeds.

The choice of selecting a reentrant or non-reentrant
subroutine for use with a specific program should be
accomplished with care. In general, the reentrant
version of a subroutine should be used if the subroutine
is to be called from different levels, included in the
System Executive, or included in the Special Core
Load Area (SPAR). Any type of subroutine can be
included within a core load.

MPX also provides ihe user with the capability to
taIlor each core load to the specific uses of that core
load. For example} non-reentrant subroutines may
he specified for inclusion in core loads where speed
is more significant than core size, even though cor­
responding reentrant subroutines may be resident in
ihe System Executive.

Some of the advantages of MPX reentrant coding
may be summarized as follows:

• All levels of operation may execute any given
subroutine

• 	 The size of the overall system in core and on
bulk storage is reduced

r

• 	 All subroutines can share the same temporary
data storage area on a given interrupt level

• 	 The system overhead may be reduced

The ability to cope with program reentrance is one
of the most important attributes of ihe MPX system.

LOCAL (LOAD-ON-CALL) SUBPROGRAMS

MPX supplies a facility for loading subroutines at
the time they are called for in the execution of a
program. Such a subroutine is known as a LOCAL
(load-an-call). All LOCALs associated with the
same program use the same area of core storage by
overlaying one anoiher as they are called. A copy of
each LOCAL subprogram used with a core load is
kept on disk in core-image format together with that
core load.

LOCALs allow the user to have, effectively, a
larger program executed in core by baving certain
individual or groups of subroutines specified as load­
on-calls. There is no theoretical limit to the number
of LOCALs which the user can implement. This
means a virtual extension of a core load area. Other
advantages of this feature are (a) the ability to read
in subroutines, (b) the breakdown of core loads to the
subroutine level.

COMMON AREAS

Four unique areas of core storage are used for
FORTRAN COMMON storage within MPX. These
are

1. INSKEL COMMON
2. Normal COMMON
3. Interrupt COMMON
4. Core Load Area COMMON

INSKEL COMMON has already been defined (see Role
of the System Executive). To assign a variable to
this area, a special FORTRAK statement, COMMON/
INSKEL/, must he used. All otber attributes of the
COMMON statement remain the same.

The normal COMMON area at the high-address
end of variable core can be referenced only by main­
line or batch processing core loads executable in that
area. The normal COMMON statement in a mainline,
special or batch processing core load is used to refer

System Concept 9

to this area. This COMMON may be used to communi­
cate between LINKed mainline and batch processing
core loads. Communications between mainline core
loads which call other mainline core loads via a
CALL SPECL or a CALL EXIT must take place
through INSKEL COMMON.

The third COMMON area (Interrupt COMMON) is
used only for inter-program oommunication for pro­
grams that form an interrupt core load. The normal
COMMON statement In an Interrupt core load is used
to refer to this area. The highest addressed location
of this area must he assigned by the user when the
system is assembled. This specified location Is the
high-address boundary of the variable core storage
area that is saved when an Interrupt core load is
loaded for execution. Thus, it is necessary to save
only the area specified by the user for interrupt core
loads (not the entire variable area).

The fourth type of COMMON (Core Load Area
COMMON) will reside at the end of each core load
area. It will be used to communicate between pro­
grams that are linked or queued to that area.

FLEXIBILITY IN SYSTEM CONFIGURATION

A modern real-time operating system must be geared
to change and diversity. The MPX system iteelf can
exist In an almost unlimited variety of machine con­
figurations: different installations will typically have

different configurations as well as different applica­
tions. Moreover, the configuration and control stra­
tegy at a given installation may frequently change. If
we look at application and configuration of an operat­
Ing system, we see that the operating system must
cope with an unprecedented number of environments.
All of this puts a premium on system modularity and
flexibility •

MPX gives the user the ability to define his config­
uration according to his needs: he is therefore never
bound to a I!Xed system. Furthermore, after having
specified and generated a particular system, he is
still free to move process and/or data processing
portions of that system from one disk cartridge to
another~

In general, the input-output capability of the IBM
1800 Data Acquisition and Control System can he
backed-up. For example, under program control,
a 1053 printer can have its messages automatically
switched to a back-up 1053 printer; disk storage
drives can be logically switched or removed from
the system; and any device may be removed from
service if it continues to fall. This dual capacity
indicates that an installation may suffer from the
failure of one or more input-output devices and re­
main Hon the air" under the most stringent usage
conditions. Hand-In-hand with this back-up capability,
a history of hardware device failures can be examined
at any time for maintenance purposes.

10

MPX oomponents can be considered under two sepa­
rate group-headings: 1) control programs and 2)
processing programs. In general, control programs
govern the order in which the processing programs
are executed, and provide ssrviceFl that are required
in common by the processing programs during their
execution. A key control program is the Executive
Director which is loaded into main storage (as part
of the resident System Executive) and remains there
indefinitely to ensure continuous coordinated opera­
tion of the system. Other parts of the system are
brought into main storage from secondary storage
aJ! they are required to perform specific functions.
Processing programs consist of language translators
and service programs that are provided by IBM to
assist tbe user, as well as problem programs that
are user-written and incorporated as part of the MPX
system. Both IBM and USer programs have the same
functional relationship to the control programs.

CONTROL PROGRAMS

There are four control programs within the MPX sys­
tem, as follows:

r 	. Executive Director

• Basic Qperating Monitor (BOM)

• Batch Processing Supervisor (SUP)

• Input-Output Control

The Executive Director

This forms the heart of the MPX system and controls
all facets of process monitoring. It resides in core
storage at all times as part of the executive in a real­
time MPX system where permanent areas are storage­
protected to ensure that they are not inadverlently
violated or altered.

The Executive Director directs the handling of
prooess and data processing input-output interrupts
in a priority fashion determined by the user; provides
timer control over the process; supervises the execu­
tion of any number of mainline oore loads or programs

SYSTEM COMPONENTS

diotated by the process; and makes the system avaU­
able to the Batch Processing Monitor. Basically, it
is made up of four control routines whose functions
can be summarized as follows:

Program Sequence Control (PSC) -- Sequences and
initiates the loading and execution of user­
specified core loads.

Master Interrupt Control (MIC) -- Automatically
determines the type of each Interrupt as it is
recognized, and transfers control to the appropri­
ate servicing routine.

Interval Timer ContrQl (ITC) -- Services all inter­
rupts involving three machine interval timers,
nine programmed timers, and a programmed
real-time clock. Provision is also made for II
real-time diagnostic timer.

Time-Sharing Control (TSq -- Controls the time
allocation of variable core between real-time and
batch processing core loads such that batch
processing programs may be executed when vari ­
able core is not required by the process.

Primary entry to the Executive Director is from (1)
internal and external hardware interrupts, and (2)
MPX calls in user's programs. The control program
is read from disk only during a cold start or reload
procedure.

Basic Operating Monitor (BOM)

BOM is a stand-alone disk-oriented monitor program
from which a real-time or batch processing MPX
system is constructed. It performs three distinct
functions.

1. 	 SUpervises the generation of a disk-resident
MPX operating system according to user
specifications.

2. 	 Supports a full monitor capability so that MPX
can be used as a batch processing monitor system.

3. 	 Allows the user to load absolute programs Into
core for execution or to store them on disk.

System Components 11

Since real-time process control installation require­
ments vary from installation to installation, it follows
that each installation must be defined or tailored to
the specific system function requirements and input­
output configuration of that installation. The tailoring
function, defined as system generation, Is carried
out by BOM, which provides the facilities for the cre­
ation and maintenance of a monitor system composed
of IBM and user-written programs. In a real-time
MPX system, BOM control ceases at cold start
time when the System Executive has been loaded Into
core storage. In a bateh processing MPX system,
BOM itself functions in much the same fashion as a
System Executive with permanent time-sharing.

Figure 5 illustrates BOM organization in simpU­
fied form.

EXECUTIVE I/O

80M

80M PROGRAM
SET

,
VCORE I

VARIABLE

CORE

The Executive I/O is a collection of input-output
and general supporting subroutines that the MPX ,
system requires to be in core at all times. It is
that portion of a user-configursted BOM which cor­
responds exactly to the Executive I/O in a real-time
system. The BOM Program Set is that integral part
of the Basic Operating Moniter which functions in an
analogous manner te the Executive Directer.

Like the Executive Director, BOM can be assem­
bled (at system generation time) with extreme flexi­
billty so that no core is wasted by selecting only
tOOse options desired. For example, if the User
elects to include tbe compiete trace and utility pack­
age, BOM will assist him in debugging his programs
before he loads them into the SjStem Executive.
Furthermore, portions of the BOM system can be
deleted. The \lBer thus selects a configuration that
best matches the functions required.

Batch Processing SUpervisor

The Batch Processing SUpervisor (SUP) directs the
execution of all batch processing core loads which
may be either user-written or IBM-supplied as part
of the MPX package, and provides continuous inter­
job linkage within the Batch Processing Monitor. It
normally operates in the time-sharing mode under
the control of the Executive Director, but it may also
be run as a dedicsted nonreai-time monitor system
under BOM.

Its main function is to recoguize certain system
control records and transfer control te the processing
program specified. It also initializes the batch pro­
cessing system when a JOB control record is
identified.

Input-Output Control

The 1800 Processor-Controller communicates with
I/O devices by means of direct program control or
through a data channel and by the multi -level inter­
rupt facility. Data channel or direct program control
allows the user to initiate I/o operations, or makes
it possible for him to check on a specific device
status by analyzing the 16-bit device status word for
that device, while the completion of an I/O operation
causes an interrupt to occur on a particular level

12

(speolfied at system generation time) whioh can be rupt functions; they are also capable of controlling
recognized through programming. multiple input-output devices simultaneously and r, In the MPX system, I/O subroutines are designed asynchronously. To provide this control, each input­
to accomplish the above by handling all of the details output subroutine is written in three distinct parts
peculiar to each device, including the complex Inter- (see Figure 6).

USER'S I'I<OGRAM 1/0 SUBROUTlN'

CALlIOC'

DC LIST

MASTER INTERRUPT CONll!:OL

'"

CALL PART 1

..t-----l
I

... I­

INTERRUPT RESPONSE PAAT Z

... ,I"

-----+,
I I
I I
I I
I I
I I
I I
I I
I I

----I I I ,.
~

e- f4 EXIT START I/O

.. -

...

...

..

1-­
I I

! I I
! I I I
! i I I

I- -/_L...J I
I I
i I , I
! I
! I
I I
I I
! I
I I_L___..J

PART 3

'* '" INTERRUPT

F1g= 6. MPX I/O Control

Symm Componeuti 13

Part 1. Call Routine (analyzes the I/O call for
validity and queues the list for execution).

Part 2. Interrupt Response Routine (services the
operation-complete interrupt).

Part 3. Start I/O Routine (initiates the function
specified by a list when instructed to do so by
Part 1 or Part 2).

The Call Routine is entered when a user's calling
sequence is executed; the Interrupt Response Routine
is entered as a result of an I/o interrupt; the Start
I/O Routine is entered from either the Call Routine
or the Interrupt Response Routine whenever it is
time to initiate a new I/O operation.

All the requests received by I/O Control are in­
serted into a queue and threaded in priority sequence
according to the priority of the calls that request the
use of a device. Requests of the same priority will
be serviced in the order received. The queue thus
represents at any moment in time the complete picture
of the input-output operations requested.

The user initiates an I/O operation by calling
Part 1 of a subroutine written for a specific type of
device; the subroutine may be resident in the System
Executive or contained in a mainline core load from
which the call is issued. The I/O parameters in the
call's associated list are DOW analyzed for correct­
ness, and an entry placed in the queue. If this is the
only list in the queue, and the device is idle at the
time, Part 3 of the subroutine is entered and initial­
izes the particular I/O function. No immediate action
will occur if the device should he busy at the time,
while incorrect parameters cause an error indication.
The user's program may then resume operation fol­
lowing the I/O calling sequence (see Exit from I/O
Calls).

Upon completion of an I/O transfer (which may be
one character/word in the case of direct program
control or multiple words in the case of data channel
operation) an operation-complete interrupt will cause
a branch to Part 2 of tbe suhroutine which will check
for errors, initiate retry operations and manipulate
data. If there are any lists in the queue at this time,
Part 3 is reentered to start a new operation, such as
for the next block of data to he read/written in the
case of the disk routine, or for another character to
he typed in the case of the 1053 printer routine. The
Interrupt Response Routine will reset the device busy
status and return to the user program where it had
been interrupted.

Figure 6 illustrates the gener·al flow of command
used by MPX I/O subroutines. A cal! to IOCR enters
the I/O request into the queue, and may then return
to the sequence of statements following the calling
sequence. Dotted lines show entry to and exit from
the Start I/O Routine in the two situations discussed
above. The Interrupt Response Routine (Part 2) itself
is entered by a hardware interrupt. The MPX Master
Interrupt Control (MIC) program is responsible for
routing the interrupt through a branch table to the
required entry point. In order to reset the interrupt
priority and to restore the machine status, it is nec­
essary to pass through the exit portion of MIC. Part
1 of the I/O subroutine is always executed on the
same priority level as the progr= from which the
call is given, while Part 2 is executed on the device
priority level (which must be higher).

Exit from I/O Calls

MPX provides three types of exits in FORTRAN and
Assembler language for all I/O devices that are ini­
tiated from a CALL statement.

Type I-This is the normal exit associated with MPX
--wiiich is used either in the variable area of core,

in SPAR, or in the resident Executive. The call­
ing section will transfer control to the I/O servic­
ing routine and return to the first statement follow­
ing the call as soon as the call's list has been
entered into the I/O queue. At operation-complete
time, the I/o servicing routine will return control
at the point of interruption. It is the user's respon­
sibility to determine when the I/O operation has
been completed by testing when the list has been
removed from the I/o queue.

Type 2 -This exit is assumed to specify an operation­
----complete parameter which points to a subroutine.

The I/O call proceeds in the manner explained
under Type 1 except that at operation-complete
time, control will be transferred to a subroutine
referenced in the CALL statement. The user may
code his operation-complete subroutine in
FORTRAN or Assembler language. One example
of the use of this type of exit is to free an area for
the execution of other programs. If the user has
placed the operation-complete subroutine outside
of the executing core load area (in the System Ex­

14

ecutive) and the 1/0 buffer and 1/0 List in INSKEL
COMMON, he may call EXIT from the mainline
core load. This will free the current core load
area, so that the next program in the queue may be
loaded. The operatIon-complete subroutine could,
in turn, queue another program for the area.

Type 3-The Type 3 exit will he used only in the core
load areas. After the call has heen initiated, the
core load area will he placed in a suspended state,
and the execution of a program on a lower priority
level continued until the I/O operation Is completed.
At this time the calling core load wnI he reactiva­
ted and program execution continued at the first
statement following the I/O call.

PROCESSING PROGRAMS

Processing programs consist of service programs'
and language translaters broken down as follows:

Service Programs

• System Loader

• MPX Builder

• Cold start

• IBM MPX Subroutine Library

• Disk Management Program (DMP)

Language Translators

• Assembler

• FORTRAN Compiler

Service Programs

Service Programs Include a group of loaders and
builders which serve as system generation aids,
as well as a disk management program and a com­
prehensive IBM MPX Subroutine Package.

System Loader

The System Loader is the means by which the Initial
IBM MPX system is loaded onto the disk, an interrupt­
assignment table is built from user-supplied control
records, and the disk layout prepared for system
generation. System aSSignment cards are specified
by the user to define the interrupt structure; that is,
to inform the loader of individual interrupt level
assignments of digitsl, analog and data processing
Input-output devices, interval timers and external
(process) interrupts. As each program is loaded to
disk, an entry is made In a directory called the
Location EqUivalence Table (LET) for each component
part of the MPX source system. LET thus serves as
a disk map of all system programs, subroutines and
relocatable programs.

The MPX Builder

This is a disk-resident composite program which
performs two distinct functions:

• Core Load Build

• Executive Build

It operates under the control of the Batch Processing
Monitor Supervisor.

Core Load Build. The Core Load Build function is
provided for use in combining program segments that
were individually compiled or assembled inte a
single executable core load that is ready to he loaded
into main storage fur execution. It also enables
changes to be made in a program without recompiling
or reassembling the complete program; only those
sections that are modified need be recompiled.

Input to the MPX Builder is supplied by the user
in the form of control records which contain the
name of the relocatable mainline, restart mainline
name, data files used, interrupt routines lncluded as
part of the core load and LOCAL (load-on-call) sub­
programs. This information will enable the builder
to distinguish between real-time and batch processing
programs, and to talie the appropriate action for
these two types of programs.

System Components 15

Using the tnformation supplied by the System
Loader (and tbe Executive Build function) as well as
information from programs and subroutines, the
builder establisl1es all subrouttne linkages, hardware
Interrupt servicing connections and the creation of
certain communications areas which are integrated
with instructions to make up an independent core load.
Core loads may be of several types, process matn­
line, interrupt, batch processing or apecial. Core
loads are stored on bulk storage in core-image
format to facilitate rapid loading whenever the core
load is called for execution. The storing function is
carried out by the Disk Management Program. By
definition, all process core loads must he built and
stored on disk prior to execution under control of an
on-line MPX system.

Executive Bul1d. To complete an on-Une system,
the System Executive and user programs for execu­
tion with that executive must he built. The Executive
Build function operates under Batch Processing
Monitor control to construct this in-core executive
core load and store It on disk for MPX system opera­
tion within the limits prescribed by the user.

Input to the builder is obtained from user-assigned
control recorda, programs, subroutines and informa­
tion from the System Loader. The executive can be
considered as the permanent portion of all executable
core loads. It is read into core for execution by a
cold start operation.

Cold Start

This program loads the System Executive into main
storage, storage protects it, starts the real-time
clock and calls the user's initial process core load
from disk for execution. The design of the initial
core load by the user wlll greatly determine the
manner of execution of existing core loads. The
cold start procedure places the executive in direct
control of the real-time system.

IBM MPX Subroutine Library

This comprises a comprehensive set of reentrant
subroutines as well as a selected set of non-reentrant
subroutines designed to aid the user tn making effi ­
cient use of the IBM 18()O Data Acquisition and Control

System. The library oonsists of the following groups
of subroutines:

1. 	 Data Processing and Process tnput-output
subroutines

2. 	 Conversion subroutines
3. 	 Arithmetic and Functional subroutines
4. 	 FORTRAN Input-output subroutines
5. 	 Miscellaneous subroutines

Data Processing sod Process I/o Subroutines. Data
processtng (printers, punohes, eto.) and process
input-output (P I/O) subroutines provide a quick and
direct method for the programmer to reference the
various data processing, digital and analog I/O
devices for tnput or output of data. All I/o routines
may be called directly from FORTRAN; D P I/O
subroutines may he called indirectly by the use of
FORTRAN I/O.

Conversion Subroutines. The design sod operation
of the numerOUS input-output devices is such that
many of them impose a unique correspondence
between character representations in the external
medium and the associated bit configurations within
the computer. Conversion subroutines convert inputs
from these devices into a form on which the computer
can operate and prepare computed results for output.

Arithmetic and Functional Subroutines. The arith­
metic and functional group of subroutines tncludes a
selection of twenty-seven basic routines which are
most frequently required because of their general
applicability. The arithmetic library contatns both
the routines that are visible to the FORTRAN program­
mer, as well as the many routtnes that are used by
the FORTRAN compiler-generated object code, which
may also he used by tbe Assembler programmer. A
useful featore permits the testing of error indicators
set by the functional routtnes through a FORTRAN
call.

FORTRAN I/o Subroutines. FORTRAN I/o sub­
routines provide a link hetween the FORTRAN object
program and the I/O devices. They suppert both
slandard and extended precision.

Miscellaneous Subrouttnes. The miscellaneous group
provides the user with the abillty to perform certain
machine operations ustng the FORTRAN language.

16

These include real-time, selective dump, trace and
overlay routines. r Real-time subroutines are operational control
routines which service the System Executive in a
real-time environment. Examples are DEFER
(specify one of two hardware interval timers or one
of nine programmed interval timers for some periodic
activity). LEVEL (set one of twenty-four levels for
programmed interrupt use). QAREA (Place a core
load into the mainline core load queue table according
to name, execution priority, level number, and core
load area), and MASK (inhibit selectively one or more
levels of interrupt).

Selective dump subroutines allow the user to print
chosen areas of core storage during the execution of
an object program. For example, DUMP will output
on the list printert in hexadecimal or decimal form,
a certain portion of core storage; DUMPS will print
the ststus of the 1800 (that is. ststus indicators,
contents of registers, and work areas).

The user can exercise the option of writing his
own mainline trace interrupt routine which can be
included in a core load to process a trace interrupt.
He might, for example, design sucb a routine to
monitor a number of conditions. The TRPRT sub­
routine is available for use in tracing< routines which
print a specified number of characters on the 1053/
1816 keyboard printer or 1443 printer.r The MPX Subroutine Library aleo contains an
,)verlay routine called FLIP which serves to call
LOCAL (load-on-oall) subprograms into core storage.
All LOCALs in a given core load are executed from
the same core storage locations; eacb LOCAL group
overlays the previous group_ In order to permit
entry from multiple programs and interrupt levels
before completing oomputations from a previous call,
the arithmetic and functional subroutines, and most
of the I/O subroutines are designed to be reentrant.
That is, they can be entered from a different level
of machine operation despite the fact that they may
not have completed ope ration on a previous level.
Non-reentrant versions of the arithmetic, functional,
and conversion subroutines are also supplied.

Disk Management Program

The Disk Management Program (DMP) is a compre­
hensive group of generalized utility and maintenance
routines designed to ald the Wler in the day-to-day
operation of the MPX system. By this means, the
most frequently required services of disk and dats
maintenance can be performed with a minimum of

r

effort. Tile MPX DMP philosophy is to provide as
much assistance as possible to the user. DMP is
a component part of the Batch Processing Monitor.
DMP Is called Into service by the Batch Processing
Monitor Supervisor (SUP) whenever it recognizes a
DlVlP monitor control card. It is also automatically
summoned after the successful completion of an
assembly or FORTRAN compilation. DMP functions
can be summarized as follows.

1. 	 Permits the user to store, modify and refer to
programs and dats using the compact and econom­
ical direct-access disk storage facilities of the
system without regard to speCific input-output
configurations.

2. 	 Allows the free interchange and use of programs
and data among programmers.

3. 	 Provides a systematic method for identifying
and locating programs and data, and systematic
methods to reference data after It is located.

All of these functions can be carried out while the
MPX system is In real-time, as well as in the batch
processing mode. Examples of DMP facilities in­
clude the following.

• 	 Define the disk system configuration for a real­
time or batch processing MPX system.

• 	 Pack a disk file to eliminate unused areas, thus
minimizing disk storage requirements.

• 	 Remove one or more system programs from the
disk-resident system.

• 	 Update a master disk cartridge.

• 	 Reserve a data file area on disk without actoally
moving any data.

• 	 Copy one disk to another disk on-line.

• 	 Dump an entire disk to cards on-line.

• 	 Segment available core storage into a number of
partitioned core load areas during system genera­
tion.

• 	 Build op to four types of core loads, in conjunction
with the Core Load Builder.

• 	 Modify core loads on line.

• 	 Change the sequence of execution of a series of

System Components 17

core loads.

• 	 Print out a map of all interrupt core loads con­
tained in the System Executive.

• 	 Delete a program, core load or data file from the
disk.

• 	 Dump data/programs from one medium to another.

Language Translators

Language translators assist a programmer by en­
abling him to define a problem or an application in
a language form that can be readily learned and under­
stood. In the MPX system, the user may define his
problem solution or application

• 	 In a flexible easy-to-use symbolic language
(Assembler language) and/or

• 	 In a form of mathematical notation (FORTRAN)

Assembler

The Assembler program is a one-for-one disk orien­
ted symbolic-type translator which assemhles object
programs In machine language from source programs
written in symbolic language. It normally resides
on disk. The Assembler accepts control records
and source programs in card form only. Upon a

successful assembly, the object program in reiocat­
able format is moved to disk where it is permanently

"",,,\stored or, alternatively. where it can be called for
"xecution. The Assembler language is fully des­
cribed in the publication JIlM1800 Assembler Lan­

-"-''''-'- (Form C26-5882).

FORTRAN Compiler

The FORTRAN language is a widely accepted and
used language that closely resembles the language
of mathematics and enables engineers and scientists to
to define problem solutions in a familiar, easy-to­
use notation.

The MPX FORTRAN Compiler is a disk-resident
version of the 1800 Card Compiler which accepts
source program statements written in the IBM 1800
FORTRAN language as input from cards, and pro­
duces, as output, an executable machine language
program. At object time, the system utilizes ad­
vanced techniques, such as relocatable subroutines,
highly compressed formats, and flexible input and
output command structnres which facilitate data
conversion operations. The FORTRAN language
optimizes redundant subscript calculations to produce
an efficient object program.

The MPX FORTRAN Compiler permits the user
to mske the most of the digital and analog I/O features/""""
using a higher level language--while at the same time
allowing background jobs to he executed. The
FORTRAN language is described in the publication
IBM 1130/1800 Basic FORTRAN IV Language
(Form C26-3715).

18

,
,.

APPENDIX A. SUMMARY OF MPX CALIJNG STATEMENTS

MPX calling statements oan be conveniently olassi­
fied, according to the type of function performed,
into five groups as follows:

Sequencing or Linking Statements

CALL LINK 	 Specify the next program to be
executed.

CALLSPECL 	 Suspend current program, save
it in bulk storage, and execute
another program.

CALL BACK 	 Return to a program that was
only partly executed.

Queueing Statements

CALL it.'I1.... Place a program into the queue
~i.ElJL.. table according to program

name, execution priority, level
number and core load area.

CALLDEQUE Delete a program from the
queue table according to
program name, execution pri­

r
ority and level number.

CALL EXIT Terminate the current program
and execute the highest priority
program named in the queue
table on present level. If the
queue is empty, time-share.

Timing Statements

CALL DEFER 	 Specify one of eleven hardware
or programmed interval timers
for some periodic activity.

CALL DELAY 	 Specify a program by level
number and bit posiiion for ex­
ecution on one of eleven hard­
ware or programmed interval
timers.

CALL REPET Cause a subroutine to be ex­
ecuted repeatedly, afier each
user-specified interval of
time.

CALL CYCLE Set-up a programmed in­
terrupt by level and bit
position repeatedly,
afier each user-specified
interval of time.

CALLSUSPN Suspend a program execution,
but allow lower priority
Interrupts to occur.

CALL CANCL Terminate a speclfied hardware
or programmed interval timer.

CALLSETCL Set-up the programmed real­
time clock to some desired
value.

CALL CLOCK Read the programmed real­
time clock in hours and thou­
sandths of hours.

CALL TIME Read the programmed real­
time clock in hours, minutes,
and seconds.

Masking/Unmasking Statements

CALL MASK Inhibit selectively one or more
levels of interrupt.

CALL Ul'.'MSK Enable selectively one or more
levels of interrupt.

CALL SAVMK Save current masked status.
CALLRESMK Restore masked status.

Miscellaneous Statements

CALL LEVEL 	 Program an interrupt on a
specified level and bit.

CALLOPMON Reset Operations Monitor.
CALL LSPAR Change the program In SPAR

(special core load area).
CALL DUMP Print out on the list printer a

selected portion of core storage.

Appendix A. 19

APPENDIX B. MPX RECOMMENDED INTERRUPT LEVEL ASSIGNMENTS

Priority assignments are necessary so that an
order of precedence (that is, a level) can be estab­
lished among the several Interrupt conditions. In
configuratlng a multi-level Interrupt system, the user
should remember that certain I/O devices such as
the disk, magnetic tape and timers require high res­
pODse capabilities. Other I/O devices such as the
list printer, typewriter and card read punch do not
demand such a critical response.

In general, process interrupts (PISWs) are as­
signed lower priority levels than data processing
and process I/o devices, except for process Inter­
rupts that do not require I/O and demand immediate
response, or initiate extended operations at lower
levels through the programmed interrupt feature.
The renson process interrupts are assigned lower
priorities than I/O devices Is because user-written
subroutines for the servicing of these process inter­
rupts can then utilize all I/o devices. I/o devices
must, however, receive an operations-complete inter­
rupt which cannot occur if it is located on a lower
priority level than the level from which the I/O device
Is called.

The amount of computer time required to service Ii
particular interrupt can Influence Its priority aSSign­
ment. If, for example, its servicing is relatively
short, an Interrupt can be accorded higher priority
than one which entails more elaborate servicing pro­
cedures. Those basic I/O devices that demand fast
response Include the disk, magnetic tape, and timers.
Because the 1053 Printer uses the disk when it buffers
messages, the analog Interrupts should be at a higher
level than the assignment of the 1053 Printers, due to
a possible loss of comparator interrupts. It should
be pointed out that, although fast response Is not

normally required hy the 1053 Printer, this device
should be assigned to a high enough Interrupt level
to allow it to run continuously at a maximum rate.
Thus, typewriter messages will be serviced without
overloading of the message buffer.

It is recommended tbat the Analog Input Compara­
tor feature be assigned to a higher priority level than
the Analog Input. The remaining I/o devices do not
possess any special characteristics for assignment
at a high level, except that they should be at a level
higher than the highest level from which they are
called, and at a higher level than any assigned core
load.

Flgnre 7 illustrates how a multi-level interrupt
system confignratlon might look In the IBM 1800 Data
Acquisition and Control System for a typical process
control application. The example serveS to convey
some of the principles noted above: It should not he
taken as a model. The machine confignration chosen
for this example includes:

1 IBM 1802 Processor-Controller
32K words of core storage
1 IBM 2310 Disk Storage Unit with three disk

drives
1 IBM 2401 Magnetic Tape Unit
4 IBM 1053 Printer Units
1 IBM 1443 Printer Unit
1 IBM 1442 Card Read Punch
1 IBM 1627 Plotter Unit
1 Analog Input Basic with Comparator
1 Analog Input Extended with Comparator
1 Digital Input
1 Digital and Analog OUtput
12 Interrupt Levels

20

• •

1----j-----1

.. .. •) I))
INTERRUPT LEVEL STATUS WORD '.0 1 2 3 5 6 7 8
 II 12 13 14 15

Q

"r~~ 10
~~·r---rmw 1 j11MERSA, a,c

~ (."
PISW 2." J ,-, J !~ --t--t---t-+-_+_-I--I--+--I--I-----J

2310/1 I 2310/2 I 2310/3

I ~:~ 3 I ---r-t- I

I-+ I -\-\-~

DI

105313

(4)

1627

DAO

1053/.. -+ nJ I --
I 1443

(4)

+--- I - ---+\--+--_+_---1

t---t--+--+--+I --~--

-t-- -+I--+--+-----jr---l

~~~-4--+--+---t-_t_~I--~~~-+---r-t_--r~- '" I 

-~""'t------'I_-I_-I_-I_-t---.. j------ t-
NOTE --

__L-_-'--__.LI__'--_..!--_...L__ (1} '" Process Interr!J9'f1 which ore servic«l by routines 
that do not petfotm I/O operotlol'l$. 

{2) '" Proc6ulnterruptswhkh Q(fj $ervi<:ced bYfouHnes ...L 

21 


22 


23 


I----­ 1-1-~ 

.' I_~ 

that can perform I/O operoti()I'ls. '1" 
(3) '" Interval Timers mm' be on (I hlgOef le ..el than 

2310, 1816/1053, 1442 -and 1443 devl(:es. 

(4) - The 1616/10535 m1l$f be on a lower level than 
the 2310s. 

+ -­ t ­ --t­
~__ ~_ . _____ .---L__ 

-­

Figure 7. Example of It:tterrupt Level AssignmeJlt 

~ 
~ 


~ 


i 


