Form C26-3718-0

Systems Reference Library

IBM 1800 Multiprogramming Executive Sgstém
Introduction

The purpose of this publication is to provide under one cover &
gonelge overview of the basic concepts, functions and general
organization of the IBM 1800 Multiprogramming Execntive (MPX}
System. It is intended as a guide in understanding the gystem's
capabilities and planning for their use.

The first section defines the MPX system, its operating environ-
ments and gystem requirements, and highlights the many advantages
of this FORTRAN oriented, disk-based multiprogramming system.
Subsequent gections digcuss system concepis and gystem components,
A summary of all MPX calling statements used is included in Appendix
A, while Appendix B discugses MPX recommended interrapt level
assignment practice.

Detailed specifications on the use of this system will be supplied in
later publications.

S)

First Edition

Specifications contaized herein are subject to change Irom time to
time, Any such ehange will be reported it subsequent revisions or
Technical Newsletters.

Requests for copies of IBM publications should be made to your IEM
representative or to the IBM branch office serving your locality.

A form is provided af the back of this publication for reader’s comments.
If the foem has been removed, compnents may be addressed to iIBM
Cowporution, Progmamming Publications, Department 232, San jose,
California 95114,

§© Intemational Business Machines Corporation 1967

M
PN

- Ut &

[T

“

INTRODUCTION

N N R R I N A WA R IR I I B R R S I

Minimum System Requirementt .voravsrassrvrararasnn
Machine Featuses Supported s saresmrssrrrrrresnany
Opﬁraﬁngﬂnvimnmm RS R I ARSI LE A XS T RSN FAASERS

SYSTEM CONCEPT DR NN R RN RN R R XN

Multhropraminitg seeesssvesrnsrassrsanrrsosnnnes
Mathod of Operation ssrsrevensnsrsvanssscsrsnn

Multiple Core
Time-Shariag »

Ioad ATEES s s s s ci s s emer e hna st o

L R R R A RN R RN]

Rﬁitoﬂfﬂiesmmﬁx&cﬂﬁv‘e Fr s TR I EEREN S LAY BT EN AN
On-line Modification of
In%mlntz:mgt&z‘bmﬂnes R R R R R T E S
Prograr: Segmentation — Core Loads ssvnnrvassosnavtos

Resutesnt Coding

TR AT LR E T E AT L E RN T EIE AT A LT AN A

Local {Load-On~Call) SubpIograms s cetscecsstoncnes s

Common Arsas

R R N N R I I A N S]

LI

U A e

WOW 0 9 =3

i

CONTENTS

ﬂexihﬁi?yinsmmconﬂguzaﬁﬂu tereansisesesarans 10

SYSTEM COMPONENTS sssusecusvsnravanssssrvenes 11
Cﬂnmlmﬂmg vhEv s e s uearterurbassvesrasvese 11
The Bxpoutive DIreCEsr s s s v eassmonsserensrsacas 11
ﬁasiCOpmatinngim{BoMj wemsenrsereremnanves 3
B&whl’mm:ssiagsz.zpm thkresssaaser oAb usnene 3B
Imtvéu:put(iml f . -]
ExtHom IfOCalls covrsssesvrsasancnvraoasnena M
Processing Programs saesssvasrvnvsssssnavussneaca 15
Smgmgrm sassunersEsanraercaunrnsrses 15
I,anguag@'rmmlamm Fsasrrcrasasrserestrranes I8

APPENDEX A, SUMMARY OF MPX
CALLING STATEMENTS +ssvraacssennnsnrvonnss 19

APPENDIX B. MPX RECOMMENDED INTERRUPT
IEVELASSIGNMENTS weusvvvernvsorcssrnsovvess 20

Fy

1)

The IBM 1800 Multiprogramming Executive (MPX)
System is a 26~arean FORTRAN oriented disk-based
operating system desigaed to provide simultaneous
digk operation, maximum throughput, efficiency and
economy of operation. If is intended for process
control and data aequisition applications which have
high gystern nsage requirements (see Figure 1).

Multiprogramming is regulated on a basis of 1/0
operation. When an input/output operation is initiated
in one core gtorage ares, that area can be placed in
a suspended state until the 1/0 function is completed.
Concurrently with this, a program leaded into a lower
priority core storage area can algo be executed,
Since a core storage area can be aggigned to an inter-
rupt level, the programmed interrupt technigue is
used by the system to direot these levels of operation,
thereby controlling the execution of any one of 24
posgille ecore storage areas al any moment in time.

The MPX gystem alse provides for unlimited
queueing of 1/0 operations ag well as the ability to
achieve maximum overlap of I/0Q and goroputing. In
addition, interrupt programs may be handled on a
queneing bagis, and executed on interrupt levels
within a hierarehy of priority levels chosen by the
uger. Queueing and 1/0 overlap ag used in the MPX
gystem provide the ability to gain the full advantage
of 9 cycle~stealing data channels, 24 interrupt levels,
and, in general, the real potential of the IBM 1800
Data Acqguisition and Control System.

MPX will divide core storage into several areas
as follows:

& An area of permanent core storage for the regident
MPX System Executive,

A special core load area {(SPAR) which enableg the
uger 1o modify hig high-priority interrupt sub-
routines on-line,

¢ Up to 28 partitioned core load areas which are
trangient in nature, and provide for uger-written
process core loadg, Programs executed in thege
areas are executed on an interrupt level,

e A variable area of core storage in which mainline
level and interrupt level programs are executed.

INTRODUCTION

This could contain a process or bateh processing
monitor program oxr an out-of-core interrupt pro-
gram, The variable core area is time-shared
between mainline process core loads and the
Batch Processing Monltor. An interrupt will
cause the mainline program to he saved on disk
before out-of~core interrupt program is loaded.

Bome of the many advantages of the MPX system are:

1. High throughput

2, Fast response

3. Optimum use of ayvailable processor-controller
time

4. Automatic program scheduling -- low scheduling
htrdens

5, Ability to modify system on-line

6. Ability {o execute user-written on-line hardwars
diagnosiics

7. Time-sharing of foreground and background
(Batch Processing Monitor) operations

MINIMUM SYSTEM REQUIREMENTS

To obtain the full capabilities of the IBM 1800 Multi~
programming Executive System, the machine config-
uration shall be at least:

1 IBM 1801/1802 Processor-Controller with a
minimum of 24K words of core storage

1 IBM 1053 Printer or IBM 1816 Printer-Keyboard

IBM 1442 Card Read Punch

1 IBM 2310 Disk Storage Unit, Model A2 (stand-
ard — two digk drives) or C2 (fast access —
two disk drives)

L

Machine Features Supporied

In addition to the above, the following optional maeh-
ine units and features are gupporied by the MPX
system:

Introduction 1

T T T T T T TR S S S T T T T s MPX SYSTEM 5

REAL-TIME PROCESS SYSTEM MNON REAL-TIME BATCH
(WITH TIME-SHARING) PROCESSING SYSTEM
BASIC
EXECUTIVE OFERATING
AGNITOR
USER PROCESS
CORE LOADS 3 BATCH | b CARD
AND i M UTILITIES

SUBRDUTINES UPERV?

—
—

X~ PloHer
—
Card -1~",
agretic
\mmm......v._..m,l Tape

Custamer

Process

[evices
LISER BATCH v
PROCESSING et
CORE LDADS

4 | 4 4 1 1
MANAGEMENT ASSEMBLER FLRIRAN BUILDER SUBROUTINE
PROGRAM COMPHLER LIBRARY
i 1
1 i ¥ ¥
STORE/MOBIFY DUmPp
DEF{INE SYSTEM CORE EXECUTIVE
DATA AND DATA AND
DISK PROIGRAMS PROGGRAMS MAINTENAMCE LOAD BUILD BUILEG
| i s s o e . e S e e . i S e e i S e S o S o e o . o o e e s e A e e . i s v e 0 . e -

Figure L. The IBM 1800 Multiprogramming Executive System

[t

» Additional core storage (up to 2 maximum of
32,768 words)

Additional disk drive for IBM 2310 Disk Storage

Unit {up to a maxirmum of three disk drives)

» Additicnal IBM 1442 Card Read Punch Unit {up to
& total of 2)

» Additional IBM 1816 Printer-Keyhoard {up to a
total of 2)

¢ Additional IBM 1053 Printer Units (up to a total of
eight 1053s and 1816s)

o Additional Data Channels {up to a total of 9)

Additional Interrupt Levels {up to a maximum of
24)

¢ Multiplexer Unitl {Solid-state or Relay)

e Analog-Digital Converter (up to a total of 2)

& Digital-Analog Output

¢ Digital Input

¢ Comparator

o IBM 1443 Printer Unit

e IBM 2401 Magnetic Tape Units {maximum of 2)
» IBM 1627 Plotter Unit

+ IBM 1054 Paper Tape Reader

e IBM 1055 Paper Tape Punch

OPERATING ENVIRONMENTS

The IBM 1800 Multiprogramming Executive System
ig composed, essentially, of two main parts: (1} A

System Executive and {2} a Batch Processiog Monifor.

It is through the System Executive that process con-
trol and data acquisition applications are serviced in

g real-time process mode, with the Batch Processing
Monitor operative in the time-ghared mods; or the
Batch Processing Monitor can act as an independent
programming system to provide data processing
functions in a gtandard batch processing mode, Each
of these two modes is brought into play by an appro-
priate and corresponding system geperation procedure.
The user elects the option of constructing a real-time
process or batch processing system tailored to indi-
vidual specifications,

Real-time Process Mode. In real-time processing,
inputs arrive randomly from a process being moni-
tored to the proceggor-controllier. The computer
rapidly responds to each input, usually by conveving
an output back to the process. This is in contrast
with conventional bateh procesging where groups of
input data are processed by passes through the com-~
puter, The notion of real-time usuaily implies that
a processor-controller is responding to inputs as
they occur in the phygical world.

MPX operates in this mode under the control of
the System Executive, In a real-iime environment,
user-written programs are continnously moniforing
or controlling a process, The machine is alse per-
mitted to be time-shared by process and batch pro-
cess work: thut is, batch processing jobs can be
interleaved gimultanesously with the real-time process
being monitored. Whenever variable core is not re-
quired for & process program, the Batch Processing
Monitor may be brought into service. All programs
executed are fetched from the gystem resident disk
cartridgeis).

Batch Processing Mode, The batch processing MPX
system operates in thig nonreal-time mode under the
control of the Basic Operating Monitor (BOM) as &
dedicated Batch Procesgsing Monitor System. Typical
batch processing operations are assemblies, compil-
ationg, disk management functions and the execution
of batch procesging programs.

A batch processing system can be used to test
problem programs before they are permanently cata~
logued on the gystem regldent dick cartridge; to ex~
ecute problem programs that require the full capacity
of available disk drives for data files, or to process
problem programs that are used so infrequently that
their real-time storage is not justified, It is also in-
itially used to construct a real-time process disk
resldent system.

Introduction 3

SYSTEM CONCEPT

MU LTIPROGRAMMING

In most ourrent computer ingtallations, process and
data processing functions are performed sequentially;
that is, & new function ig not begun until the current
function is completed, The average function per-
formed by a computing sysiem requives at any given
moment only 2 fraction of the total available resources
of the system, Many parts of the gvetem are, there-
fore, often idle for significant perieds of time., For
example, & data conversion and printing function re-
¢uires only a fraction of the gtorage space and input-
output devices available in the system, and intermit-
tent use of the processor-controller,

To increase throughpnt, the IBM 1800 Multipro-
gramming Executive Sysftem enables programs, core
gtorage space, input-output facilities and control of
the processor-coniroller to be sllocated and concur-
rently shared among several process funetions.

These facilities permit multiprogramming; that ig,
they permit several process functions to be performed
concurrently and to share the basie resources of the
computing system. The MPX operating syvstem helps
to engure that as much of the total gystem as possible
is kept busy performing productive work as much of
the time as possible. This is accomplished by effi-
ciently allocating the available resources of the system
to more than one function, and switching control from
one fupction fo another as a delay is encountered
while awaiting an event, such ag the completion of an
input-putput operation, or the end of a timing interval.
Among the services provided by MPX to allow concur-
rent operation are:

s Loading programs and routines into main storage

e Scheduling the use of programsg and routines in
main storage

Switching control of the procegsor-controller from
one function fo another, based on I/0 operation

» Controlling the execution of the various functions
in aceordance with a defined hierarchy of priority

Method of Operation

MPX provides the overall capahility of multiprogram-
ming with a fixed number of jobs, ‘This means that a
maximum of twenty-four programs can be run con~
currently within a gingle computing system havipg
only one processor-controller,

The sysiem permits from one to twenty-four
separately scheduled programs to reside in their
own predefined sectiong of core storage. A program
ooccupies a discrete and contiguous area of eore gltor-
age; the number of core areas used as well as the
size of each area is determined when the system is
generated.,

Two types of programs are used in multiprogram~
ming: foreground and background. DBackground pro-
gramg are normally initiated by the Batch Processing
Monitor from the batched-job input giream, Fore-
ground programs do not execute from a stack; they
are brought into operation by the oeourrence of
random or periodic real-time events. Background
and foreground programs lnitiate and terminate in-
dependenily of obe another. The background joh is
time-shared with the lowest priority foreground job;
thet is, whben there is no foreground job available to
be run in the lowest priority foreground area (variable
core), the background job is brought into core and
executed, If a foreground job later requires that
area, the background job is saved on bulk storage,

MPX is capable of conourrently operating one
background and one or more {(up to twenty-four) fore~
ground programs. Priority for processor-controller
processing is based on 4 multi-level interrupt level
hierarchy counfrolled by the Executive Director, with
foreground programs having priority over background
programs. All programs operate with interruptions
enabled. When an interrupt occurs, the Director
gaing control, procegses the interrupt and gives con-
trol to the highest priority program linked {o 8 spe-
gific diserete area or partition of core storage in
which if is to reside at execution time. Control is
taken away from a high priority program when that
program encounters a condition that prevenis contin-
uation of processing until a specified event has oc-

p——
A

carred. For example, this condition would ocour
when a READ operation is issued to a disk storage
unit. Conirol is taken away from a lower priority
program when an event on which a higher priority
program wag walting has been completed. In the
shove example, control would return to the high pri-
ority program when the READ I/0 operation has been
completed.

Multiple Core Load Areas

By dividing core storage Into ag many as twenty-three
partitioned eore load areas (in addition to a fixed area
for the resident executive, a SPAR area and a vari-
able area}, twenty-four separate programs can be ex-
ecuted concurrently., This permits 1/0 overlap during
program loading, and improved throughput, since
core exchanges would not be reguired, except in vari-
able vore. The concept of core load aregs provides
for efficient use of the equipment, while allowing the
gystem to handle multiple iobs in rapld succession.

Program execution in 4 core load area can be based
on interval timer rundown, process interrupts, pro—
grammed interrupts, or the queueing of 4 program by
apother program. During the loading and execution
phase of a program assgigned io a particular interrupt
level, programs linked to that level and competing for
proceggor-controller time will be queued. There is
one queue table for each interrupt level; programs
placed in the queue can be assigned with a priority
within a level.

Execution of process programs will be initially
triggered by a programmed interrupt which is activa-
ted when 2 disk 1/0 operation is completed. Linking
facilities between core loads within each core load
area are available. Each core load area will bave its
own COMMON area and LOCAL {lead-on-call}
capability.

Figure 2 illustrates the position of core load
areag within a general core organization layout of an
MPX gyatem,

LOW ADDRESS

SYSHEM
EXECUTIVE

SPECIAL CORE LOAD AREA
(5PAR}

CORE LOAD AREA |

CORE LOAD AREA 2

L B B BN

CORE LOAD AREA 22

CORE LOAD ARZA 1

YARIABLE AREA

HiGH ADDRESS

Figure 2. General Core Organization of MPX System

TIME-BHARING

In many industrial control installations, the real-time
computer control system will have spare capacity to
perform background jobs. Time-sharing techniques
can thus be employed whenever idle or free processor-
controller time is available in a given system environ-
ment to offer the user the kind of service he requires.

System Concept 5

The notion of time-sharing alsc implies the gharing of
computer resources, since not only time but primary
and secondary storage as well ag Input-output facili-
ties are also shared,

When idle fime iz available in the IBM 1800 Multi-
programming Executive Systern, control is automati-
cally transferred to an independent Baich Proceasing
Monitor System which is identical to any stack-job
monitor gystem, All agsembling, compiling and sys-
fem activities can now be executed under the control
of the Batch Processing Monitor, Performing such
jobs "time-ghared” hag a distinet advantage in that
any time not required for process control functions
can be used for batch processing functions. Also,
sinee process control problem programs and strate-
gies often tend to change, the {ime-sharing mode
makes it possible to modify these programs and sira-
tegies at the process on-line installation without
taking the computer off-line, Time-gharing is an-
other feature of the MPX syvstem which helps to op-
timize the utilization of the IBM 1800 Data Acquisition
antd Control Bystem.

ROLE OF THE SYSTEM EXECUTIVE

The System Executive constitutes the main framework
of a process real-time MPX system, and mugt be
regident in permanent core gtorage before any contin-
uoug and coordinated real-time processing can take
place. Other portions of the system are brought into
core from bulk storage as they are required to per~
form speocific functions.

The Executive is extremely flexible. By the sys-
tem generation process, a user can build his own
unigne system tailored to individual reguirements.

In this way, core will not be wasted for the user whe
does not desirs certain optional features. Each oper~
ating system congists of a choice of control routines
and programming facilities that are closely integrated
with a selection of processing, storage, and input-
output options {0 form a balanced system for a parti-~
cular range of applications. The process real-time
systern is generated using standard language and
editing facilities.

The user may include frequently-called subrou-
tines, high-priority interrupt servicing routines and
other uger-written programs in the System Executive
1o make the most effective use of his control system,

A typical Executive may consist of the following
constifuent paris as llustrated in Figure 3. The
funetion of each Individual part will now be described.

Exzecutive /0. This iz & set of input-output sub-
routines and tables which provides a rapid and easy
method for the user to reference the various data
processing I/0 devices for input and outpui of data.
It includes:

¢ BULEN (Bulk Storage Subroutine: performs all
reading from and writing {o the IBM 2810 Digk
Storage Unit)

5
EXECUTIVE /O
EXECLITIVE DIECTOR X Eézéé%’?\ff
UISER PROGRAMS
INSKEL COMMON J

SPAR

CORE LOAD AREA 1

CORE LOAD AREA 2

CORE LOAD AREA 23

VARIABLE CORE

Figure 3. Apn MPX Real-time System ~ IHustrating the Four
Component Parts of the Systern Executive

S

~

s TYPEN/WRTYN {Printer-Keyboard Subroutine:
transfers data to and from the IBM 1053 and IBM
1816 Printer-Keyboard}

¢ PRENTHN (Printer Subroutine: handles all print and
carriage control functions relative {o the IBM 1443
Printfer)

® I/0 Common Routines

& Error Alert Control (EAC) program package:
provides gtandard error detection and recovery
procedures

These and other bagic system routines make up the
Executive I/Q package which corresponds fo an iden-
tical set of inpuf-output subroutines used by BOM,

Executive Director, The Director is the control
center of the multiprogramming operating system.
Iiz primary function is to perform a variety of serv-
icez for other parts of the system, including problem
programs. It coordinates and controls the perform-
ance of these services in such a way as to ensure
efficient and coordinated use of the physical and
programming facilities or resources of the system.

To perform its functions, the Director receives
control of the processor-controller by way of an inter-
ruption or a eall, The interrupt may result from a
gpecific reguest for services from another part of the
operating system; from a problem program; an auto-
mati¢ interrupt that occurs at the completion of an
input-output operation; or from a random or periodic
event that occurs outside the gystem, Automatic
interruptions agsociated with a hierarchy of priori-
ties, in general, enable the Direector fo coordinate
ity control over the physical and programming re-
sources of the system.

A& gervice performed by the Director may be spe-
cifically reguested by a program, such as g request
to load another program, or it may be & service that
is automatically provided when a contingency ocours,
guch ag attempting to recover from an error condition.
Among the services that may be provided by the Fx-
ecutive director are the following:

o Loading programs into main storage

Sharing areas of main storage among routines that
need not be in main storage af the same time

o Controlling the concurrent execution of programs
and routineg

& Providing the time of day and other timing serv-
ices, such as keeping track of the time gt which
& pariicular operation i{s fo be performed

» DMaking the system available to the Batch Proceess-
ing Monitor

User-written Programs. The user has the option to
include as many programs and subroutines ag possi~
ble in the System Executive for reasong of frequent
usage, rapid response and optimum ntilization of
bulk storage., These may be:

e Interrupt Servicing Subroutines

¢ Time-related Subroutines

¢ Special trace subroutine

o IBM-zupplied arithmetic, L/O and other subroutines
Other user-written subreoutines

Such routines are first assembled/compiled in re-
locatable format and stored. At Executive build time,
they are bodily incorporated into the System Exsentive.

INSKEL COMMON. A unigue labelled common area
can be set agide for communications between the
varioug types of core loads used in the gystem, It
can be referenced by any process or data processing
program. The slze of INSKEL COMMOY is user~
defined when the system is bailt.

On-line Modification of In-core Interrupt Subroutines

A special core load area called BPAR is provided,

at the user'’s option, which ean be considered as an
extension to the Sygiem Executive. This darea can
contain frequently~employed interrupt servicing
routings or other routines that may be subject o
change in a process conirol environment, By load-
ing these routines inio SPAR (rather than having them
assembled with the System Executive), the user gains
the ability to change or switch any high priority sub-
routine there to meet the demands of the system being

System Concept 7

controlled. This important feature of MPX facili-
tates modification of in-core interrupt subroutines
without the necessity of a gysiem regeneration,

8PAR is fixed in size by the user when the system
is inifially generated. A core losd containing any
user-selected servicing subroutines and routines
referenced by these subroutines is loaded during the
cold start procedure.

It will henceforth always remain in core, unless
a speeific call is made to the Executive Director to
load a new SPAR core load. Subroutines loaded into
the special core load area will not be used by any
other aresz eore load.

PROGRAM BEGMENTATION-~CORE LOADS

When the core storage size of a multiprogramming
system is not sufficient fo hold all the necessary
process control programs at pne time, some form

of program read-in scheme is normally employed
whereby programs, upon demand, are brought in
from bulk storage. Very often, such a gcheme will
reserve part of core storage for program read-in,
and divide it into fixed-length partitioned core storage
areas which form a repository for programs of a lim-
ited size, This forces the multiprograminer to make
a segmentation of his program into one or more parts
which will fit into the fixed-gize core areag st execu-
tion time. The program segments can be of any size
as long ag they do not exceed the core storage area
gize,

This technique is employed in the MPX system
where programs are formed into smaller units termed
core loads, A core load is, by definition, an execut-
able program or portion of a program which performs
some user function, It is not necessarily a program
in its entirety because the program may be too large
to fit into a core load area in one piece for execution.
The core load is unigue in that it is stored on digk in
core image format to facilitate rapid loading for
execution,

Figure 4 illustrates a typical type of core load
commonly used in MPX, A core load may contain
other subroutines that are not associated with the
main program-~~that is, subroutines not otherwise
availshle in core (either included in the System Execu~
tive or employed in the form of LOCAL subprograms).
A typiesl core load may consist of a mainline or inter-
rupt program, and required subroutines that dare not
included with the System Executive,

SYSTEM
COMMUNICATIONS
TABLES

MATNLINE
PROGRAM

SUBRDIUTINES
AND
SUBPROGRAMS

COMMON

Figure 4. A Typical Core Load Jsed in MPX

Core loads are important in real-time gystems for
the following reasons:

o They are permanently built and stored on bulk
storage

s It is poegible 1o reference the program by name

& No compiling/assembling Is needed at execution
time

¢ Rapid execution

REENTRANT CODING

One of the bagic problemg that arises in multi-level
programming is that different levels of operation
require the uge of the same subroutine, Suppose a
block of coding, servicing inferrupt level 3, calls
subroutine ALPHA, Before completing subroutine
ALPHA, a bigher priority inferrupt at level 1 occurs,
which also calls the same subroutine ALPHA, If

—~

ALPRA ig coded in the conventional manner, the
argument pointers, temporary core storage locations,
computed ingtructions, and the retura point for the
first call tv ALPHA are destroyed by the second eall
or reentry of ALPHA,. Reeniry, then, is defined as
the use of a subroutine before completion of a previous
call to that subroutine. A aimilar situation oceurs
when a program callg itself, which is known as
recursion,

A sophisticated method of reentrant coding using
level work areas ig deviged for MPX to allow one sub-
routine to be entered at mny time and from any inter-
rupt level without loss of results. All systern sub~
routines that are required on multiple levels in MPX
are fully reentrant, That is, they can be called re-
peatedly by different interrupt subroutines at different
levels; they are automatically reenterable, and suto-
matically keep guard of the partial resulis aequired
at the time they were interrupted. Within the MPX
philosophy, 2 single subroutine can be used simulta-
neously at all 26 levels, while if is servicing any
other level., The sutomatic accounting of the partial
results of subroutines is a very significant step for-
ward which is made pogsible by the programming
structure of MPX,

Many of the gubroutines in the MPX Subroutine
Library are gupplied In both reentrant and non-
reentrant form. 'The non-reentrant versions have
been added to give the user greater flexibility in the
choice of execution speeds.

The choice of selecting a reentrant or non-reentrant
subroutine for use with a specific program should be
sccomplished with care. In general, the reentrant
version of a subroutine ghould be used if the subroutine
is to he called from differant levels, included in the
System Executive, or included in the Bpecial Core
Load Area {(8PAR). Any type of subroutine can be
inchided within a core load.

MPX algo provides the uger with the capability to
iailor each core load to the specific uses of that core
load. For example, non-reentrant subroutines may
be specified for inclusion in core loads where speed
is more significant than cove size, even though cor-
resporndding reentrant subroutices may be resident in
the System Exeocutive,

Some of the advantages of MPX reentrant coding
may be summarized as follows:

¢ All levels of operation may execute any given
subroutine

s The gize of the overall system in core and on
hulk storage is reduced

& All subroutines can shure the same temporary
data siorage area on a given intertupt level

& ‘The system overhead may be reduced

The ability to cope with program reentrance is one
of the most important attributes of the MPX gystem,

LOCAL (LOAD-ON-CALL) SUBPROGRAMS

MPX supplies o facility for loading subroutines at
the time they are called for in the execution of a
program, Such a subroitine is known as a LOCAL
{load-on-call}. All LOCALs associated with the
same program use the game area of core siorage by
overlaying one another as they are called. A copy of
each LOCAL subprogram used with a core load is
kept on digk in core-image format together with that
core load,

IOCALs allow the user to have, effectively, a
larger program execufed in core by having certain
individual or groups of subroutines specified as load-
on~gallg, There is no theoretical limit to the mumber
of LOCALs which the user can implement. This
means & virtoal extengion of a core load area. Other
advantages of this feature are (a) the ability to read
in subroutines, (b} the breakdown of core loads to the
gubroutine level.

COMMON AREAS

Four unigue areas of core storage are used for
FORTRAN COMMON storage within MPX. These
are

1. INSKEL COMMON

2, Normsl COMMON

3. Interrupt COMMON

4, Core Load Area COMMON

INSKEL COMMON has already been defined (see Hole
of the System Executive}. To assign a varizble to
thig area, a special FORTRAN statement, COMMON/
INSKEL/, must be used, All other attributes of the
COMMON gtatement remain the same,

The normal COMMON area at the high-address
end of variable core can be referenced only by main-~
line or bateh processing core loads executable in that
area, The normal COMMON statement in a mainline,
special or batch processing core load is used to refer

System Concept ¥

to this area., This COMMON may be used to communi-
cate between LINKed mainline and bateh processing
core loads. Communications befween mainline core
loads which call other mainline core loads via a

CALL SPECL or a CALL EXIT must take pluce
through INSKEL COMMON,

The third COMMON area {Interrupt COMMON) is
used only for inter-program communication for pro-
grama that form an interrupt core lead. The normal
COMMON statement in an interrupt core load i used
to refer to this area. The highest addressed location
of this area must be assigned by the user when the
gystem lg assembled, This specified location is the
high-address boundary of the variable core storage
area that is saved when an interrupt core load is
loaded for execution, Thus, it is nesessary to save
only the area specified by the user for interrupt core
loads (not the entire variable area}.

The fourth type of COMMON (Core Load Area
COMMON) will reside at the end of each core load
area, It will be used to communicate between pro-
grams that are linked or queued to that area,

FLEXIBILITY IN SYSTEM CONFIGURATION
A modern real-time gperating gystem must be geared
te change and diversity. The MPX gystem itself can

exist In an almost unlimited variety of machine con~
figurations: different ingtallations will typically have

10

different configurations as well as different applica~
tions. Moreover, the configuration and control stra-
tegy at a given ingtallation may frequently change. If
we look at application and configuration of ap operat-
ing system, we gsee that the operating system must
cope with an unprecedented number of environments.
All of thig puts a premium on system modularity and
flexibility.

MPX gives the uger the sbility to define his conflg-
uration aecording to his needs: he is therefore never
bound to a fixed system, Furthermore, affer having
gpecified and generated a particular gygtem, he iz
still free to move process and/or dats processing
portions of that aystem from one disk eariridge to
another.

In general, the input-oufput capability of the IBM
1800 Data Acquigition and Contirol System can be
backed-up, For example, under program control,

a 1083 printer can have its messages antomatically
switched to a back-up 1053 printer; disk storage
drives can be logically swifched or removed from

the system; and any device may be removed from
service if it continues to fail, This dual capacity
indicates that an installation may suffer from the
failure of one or more input-cutput deviceg and re-
mafn Yon the air' under the most stringent usage
conditions. Hand-in-hund with this back-up capability,
a history of hardware device failures can be examined
at any time for maintenance purposes.

~

¥

MPX components can be considered under two sepa~
rate group~headings: 1) control programs and 2)
processing programs, In general, control programs
govern the order in which the procegging programs
are executed, and provide services that are required
in common by the processing programs during their
execution. A key control program is the Executive
Director which is loaded into maln sgtorage (as part
of the resident System Executive) and remains there
indefinitely fo ensure continuons coordinated opera~
tion of the system. Other parts of the system are
brought into main storage from secondary storage

as they are required to perform speeific functions,
Processing programs consist of language tranglators
and service programas that are provided by IBM to
agaigt the user, a8 well ag problem programs that
are user-written and incorporated as part of the MPX
gystem. Doth IBM and user programs have the same
functional relationship fo the control programs.

CONTROL PROGRAMS

There are four control programs within the MPX sys-
tem, a8 follows:

» Executive Director
s Basic Operating Monitor {(BOM)
¢ Batoh Processing Supervigor (8UP)

Inpui~Quiput Control

»

The Executive Director

Thig forms the heart of the MPX system and controls
all facets of process monitoring, It resides in core
storage at all times as part of the executive in a real-
time MPX gystem where permanent areas are storage-
protected to engure that they are not inadverfently
violated or altered.

The Executive Director directs the bandling of
process and data processing input-output interrupts
in a priority fashion determined by the user; provides
timer control over the process; supervises the execu~
tion of any number of mainline core loads or programs

SYSTEM COMPONENTS

dictated by the process; and makes the system avail-
able to the Batch Processing Monitor. Basically, it
is made up of four control routines whose functions
can be summarized as follows:

Program Sequence Control (PSC) -~ Sequences and
inttiates the loading and execution of uger-
gpecified core loads.

Magter Interrupt Conirol (MIC) -~ Automatically
determines the type of each Interrupt as it is
recognized, and transfers control io the appropri-
ate servicing routine.

Interval Timer Control (ITC) -~ Bervices all inter-
rupts involving three machine interval iimers,
nine programmed timers, and a programmed
real-time clock., Provigion is also made for a
real-time diagnostic timer,

Time~Sharing Control (TSC) ~~ Controls the time
allocation of variable eore between real-fime and
bateh processing core loads such that batch
processing programs may be executed when vari-
able core is not required by the process,

Primary entry to the Executive Director is from (1)
internal and external bardware interrupts, and {(2)
MPX calls in user's programs. The control program
is read from disk only during a cold start or reload
provedure.

Bagic Operating Monitor {BOM)

BOM ig 2 stand-alone digk-oriented monitor program
from which a real-time or batch processing MPX
gystem i congtructed. It performg three distinet
functions:

1. Superviges the generation of a digk-resident
MPY operating system sccording o user
specifications,
2. Supports a full monitor capability so that MPX
can be used as a bateh precessing monitor aystem,
3. Allows the user to load abgolute programs into
core for execution or to store them on digk,

Systermn Components 1l

Since real-time process control installation require-
ments vary from ingtallation to installation, it follows
that each jnstallation must be defined or tailored to
the specific system function requirements and input-
output configuration of that ingtallation. The failoring
function, defined as system generation, is carried
out by BOM, which provides the facilities for the cre-
ation snd maintenance of a monifor system compoged
of IBM and user-written programs. In a real-time
MPX system, BOM control ceases at cold start
time when the System Executive has been loaded into
core storage. In a batch processing MPX system,
BOM Heelf functions in much the same fashion as a
System Executive with permanent time-sharing.
Figure 5 illugtrates BOM organization in simpli-~
fied form.

,1
EXECUTIVE I/O
> BOM
BOM PROGRAM
SET
YCORE = “
VARIABLE
CORE

Figure 5. Bagic Operating Monitor {BOM]) Organhzation

12

The Executive 1/0 is a collection of input-output

and general supporting subroutines that the MPX
system requires to be in core at all times, It is
that portion of a user-configurated BOM which cor-
regponds exactly to the Executive 1/C in & real-time
system, The BOM Program Set iz that integral part
of the Basic Operating Monitor which functions in an
analogous manner to the Executive Director,

Like the Executive Direcior, BOM can be assem-
bled (at system generation time} with extreme flexi-
bility so that no core is wasted by selecting only
these options desired. For example, if the user
elects to include the complete trace and utility pack~
age, BOM will assist him in debugging his programs
before he loads them into the Syiem Executive.
Furthermore, portions of the BOM gystem can be
deleted. The user thus selects a configuration that
best matches the functions required.

Batch Processing Supervisor

The Batch Processing Supervisor (8UP) directs the
execution of all bateh processing core loads which
may be either user-written or IBM~supplied as part
of the MPX package, and provides continuoug inter-
job linkage within the Batch Processing Monitor, H
normally operates in the time-gharing mode under
the control of the Executive Director, but it may also
be run as 8 dedicated nonreal-time monlior system
under BOM,

¥ts main function is to recognize certain system
control records and transfer control to the processing
program specified. I also initinlizes the batch pro-
censing system when g JOB control record is
identified.

Input-Qutput Control

The 1800 Processor-Controller communicates with
1/0 devices by means of direct program control or
through a data channel and by the multi-level inter-
rupt facility. Data channel or direct program control
allows the user to initiate I/O operations, or makes
it posgible for him to check on a gpecific davice
status by analyzing the 16-hit device status word for
that device, while the completion of an I/0 operation
causges an interrupt to occur on a particular level

{specified at system generation time} which ean be rupt functions; they are also eapable of controlling

recognized through programming, multiple input-output devices simaltaneousgly and
In the MPX system, I/0 gubroutines are designed asynchronously., To provide thig coniroel, each input-
to accompligh the above by handling all of the details output subroutine is written in three distinct parts
peculiar to each device, including the complex inter- (see Figure 6).
USER'S PROGRAM 170 SUBROUTIMNE
CALL 1OCR - - CALL PART 1
DC LT
o I]
I
MASTER INTERRUPT CONTROL Dol R
’ ‘
W NTERRUPT RESPONSE FART 2 l
* ° » |
“ '|v J.ﬁ =
L it .” o —— ""'"""“""I
- |
R et E
. by
b
- EXiT START 1/O -t
|
| |
otk 1
PART 3
* = INTERRUPT

Figme 6. MPX 1/O Control

System Componpents 13

Part 1, Call Routine (analyzes the I/0 call for
validity and queues the list for execution).

Part 2, Interrupt Response Routine (services the
operation-complete interrupt).

Part 3. Start I/0 Routine (initiates the function
specified by a list when instructed to do so by
Part 1 or Part 2).

The Call Routine is entered when a user's calling
sequence is executed; the Interrupt Response Routine
is entered as a result of an I/0 interrupt; the Start
I/0 Routine is entered from either the Call Routine
or the Interrupt Response Routine whenever it is
time to initiate a new I/0 operation,

All the reguests received by I/0 Control are in-
serted into a queue and threaded in priority sequence
according to the priority of the calls that request the
use of a device. Requests of the same priority will
be serviced in the order received. The queue thus
represents at any moment in time the complete picture
of the input-output operations requested.

The user initiates an 1/0 operation by calling
Part 1 of a subroutine written for a gpecific type of
device; the subroutine may be resident in the System
Executive or contained in a mainline core load from
which the call is issued. The 1/0 parameters in the
call's associated list are now analyzed for correct-
ness, and an entry placed in the queue. If this is the
only list in the queue, and the device is idle at the
time, Part 3 of the subroutine is entered and initial-
izes the particular I/0 function. No immediate action
will occur if the device should be busy at the time,
while incorrect parameters cause anh error indication.
The uger's program may then resume operation fol-
lowing the I/O calling sequence (see Exit from I/0
Calls).

Upon completion of an 1/0 transfer (which may be
one character/word in the case of direct program
control or multiple words in the case of data channel
operation) an operation-complete interrupt will cause
a branch to Part 2 of the subroutine which will check
for errors, initiate retry operations and manipulate
data, If there are any lists in the queue at this time,
Part 3 is reentered to start a new operation, such as
for the next block of data to be read/written in the
case of the disk routine, or for another character to
be typed in the case of the 1053 printer routine. The
Interrupt Response Routine will reset the device busy
status and return to the user program where it had
been interrupted.

14

Figure 6 illustrates the general flow of command
used by MPX I/0 subroutines. A call to JOCR enters
the I/0 request into the queue, and may then return
to the sequence of statements following the calling
sequence. Dotted lines show entry to and exit from
the Start I/O Routine in the two situations discussed
above, The Interrupt Response Routine (Part 2) itself
is entered by a hardware interrupt. The MPX Master
Interrupt Control (MIC) program is responsible for
routing the interrupt through a branch table to the
required entry point, In order to reset the interrupt
priority and to restore the machine status, it is nec-
essary to pass through the exit portion of MIC. Part
1 of the 1/0 subroutine is always executed on the
same priority level as the program from which the
call ig given, while Part 2 ig executed on the device
priority level (which must be higher).

Exit from I/0Q Calls

MPX provides three types of exits in FORTRAN and
Assembler language for all I/0 devices that are ini-
tiated from a CALL statement.

Type 1—Thig is the normal exit agsociated with MPX
which ig uged either in the variable area of core,
in SPAR, or in the resident Executive. The call-
ing section will trangfer control to the 1/0 servic-
ing routine and return to the first statement follow-
ing the call as soon as the call's list has been
entered into the I/0 queue, At operation-complete
time, the 1/0 servicing routine will return control
at the point of interruption. It is the user's respon-
sibility to determine when the I/0 operation has
been completed by testing when the list has been
removed from the 1/0 queue.

Type 2—Thig exit is assumed to specify an operation-
complete parameter which points to a subroutine.
The I/0 call proceeds in the manner explained
under Type 1 except that at operation-complete
time, control will be transferred to a subroutine
referenced in the CALL statement. The uger may
code his operation-complete subroutine in
FORTRAN or Assembler language. One example
of the use of this type of exit is to free an area for
the execution of other programs, If the user has
placed the operation-complete subroutine outside
of the executing core load area (in the System Ex-

~~

ecutive) and the 1/0 buffer and I/0 List in INSKEL System Loader
COMMON, he may call EXIT from the mainline

' core load, This will free the current core load The Systermr Loader is the means by which the initial
area, so that the next program in the queue may be 1IBM MPX system is loaded onto the disk, an interrupt-
loaded, The operation-complete subroutine could, asgignment table is built from user-supplied contrel
in turn, gueue another program for the area. records, and the disk layout prepared for gystem
Type 3—The Type 8§ exit will be uged only in the core generation. System assignment cards are specified
load areas. After the call has been initiated, the by the user to define the interrupt structure; that is,
core load area will be placed in a suspended state, to inform the loader of individual interrupt level
* and the execution of a program on a lower priority assignments of digitul, anzlog and data processing
level continued until the I/0 operation is completed, input-output devices, interval timers and external
At thig time the calling core load will be reactiva— (process) interrupts. As each program is loaded to
ted and program execution continued at the first disk, an entry iz made in a directory salled the
statement following the 1/0 call. Location Equivalence Table {LET) for sach component

part of the MPX gource gystem. LET thus serves as
a digk map of all system programs, gubroutines and

PROCESSING PROGRAMS relocatable programs.

Processing programs consist of gervice ;sragrams'

and language translators broken down as follows: The MPX Builder

This is a disk-resident composite program which
Service Programa periorms two distinet funetiona:
s Byetem Loader e Core Load Build
» MPX Builder s Exegutive Build
™ s Cold Start ' it operates under the control of the Batch Processing

Monitor Supervisor.

¢ IBM MPX Bubreoutine Library
Core Load Build., The Core Load Build function ig

s Disk Management Program (DMP} provided for use in combining program segments that
were individually comypiled or assembled info a
single execuiable core load that is ready to be loaded

Language Translators into main storage for execution. It also enables
changes t0 be made in a program without recompiling

¢ Assembler or reassembling the complete program; only those
gections that are modified need be recompiled.

s FORTHAN Compiler Input to the MPX Builder is supplied by the user

in the form of contirol records which contain the
pare of the relocatable mainline, restart mainline

Bervice Programs name, data files uged, interrupt routines included as
part of the core load and LOCAL (load-on-call) sub-
Service Programs include a group of loaders and programs. This information will enable the builder
builders which serve ag system generation aids, to distinguish between real-time and baich processing
as well as 2 disk management program and & com~ programs, and to taKe the appropriate action for
. prehensive IBM MFPX Subroutine Package. these two types of programs.

System Components 15

Using the information supplied by the System
Loader {and the Executive Build function) as well as
information from programs and subroutines, the
builder establishes all gubroutine linkages, hardware
interrupt servicing connections and the creation of
certain communications areas which are integrated
with instruetionsg fo make up an independent core load,
Core loads may be of geveral types: process main-
line, interTupt, batch processing or special. Core
loade are stored on bulk gtorage in core-image
format to [acilitate rapid loading whenever the core
load is called for execoution, The storing function is
carried out by the Digk Management Program, By
definition, all process core loads must be built and
stored on disk prier to execution under control of an
on-line MPX system.

Executive Build, To complete an on-line gystem,

the System Executive and user programs for execu-
tion with that executive must be built. The Executive
Build function operates under Batch Processing
Monitor control to congtruct thig in~core executive
core lead and store it on disk for MPX system opera-
tion within the limits prescribed by the user.

Input to the builder ig obtained from user-assigned
control records, programgs, subroutines and informa-
tion from the System Loader. The executive can be
considered as the permanent portion of all executable
core loads, It is read into core for execution by a
cold start operation.

Cold Start

Thig program loads the System Executive into main
storage, storage protects it, etarts the real-time
clock and calls the user's initial process core load
from disk for execution. The degign of the initial
core load by the user will greatly determine the
manner of execution of existing core loads, The
cald start procedure places the executive in direct
contrel of the real-time gystem,

IBM MPX Subroutine Library
This comprises a comprebengive set of reenirant
subroutines us well as a selected set of non-reentrant

sgubroutines designed fo aid the user in msking effi-
clent use of the IBM 1800 Data Acquisition and Control

6

System., The library consiste of the following groups
of subroutines:

1. Data Processing and Process input-oulput
gubroutines

2. Converslon subroutines

3. Arithmetic and Functional subroutines

4, FORTRAN input-output subroutines

5. Miscellaneonus subroutines

Data Processing and Process I/0 SBubroutines. Data
procesging (printers, punches, etc.) and process
input-output (P I/0) subroutines provide a quick and
direct method for the programmer to reference the
various data processing, digital and apalog 1/0
devices for input or output of data, All I/0 routines
may be called directly from FORTRAN; D P 1/0
subroutines may be called indirectly by the use of
FORTRAN I/0C.

Conversgion Subroutineg. The design and operation

of the mumerous input-output devices is such that
many of them impose a unique correspondence
between character representations in the external
medium and the associated bit configurations within
the computer, Conversion subroutines convert inputs
from these devices into a form on which the computer
can operate and prepare computed results for output.

Arithmetic and Functional Subroutines. The arith-
metic and functional group of subroutines includes a
selection of twenty-seven basic routines which are
most frequently required bacauge of their general
applicability, The arithmetic library contains both
the routines that are visible to the FORTRAN program-
mer, as well as the many routines that are used by
the FORTRAN compiler-generated object code, which
may also be used by the Assermbler programmer, A
uzefnl feature permits ihe testing of error indicators
get by the functional routines through a FORTRAN
call,

FORTRAN 1/0 Subroutines. FORTRAN I/O sub-
routines provide a link between the FORTRAN object
program and the I/0 devices, They support both
standard and extended precision.

Miscellaneous Subroutines, The miscellapeous group
provides the user with the ability fo perform certain
marchine operations using the FORTRAN language.

These include real-time, selective dump, trace and
overlay routines.

Real-iime subroutines are operational control
reutines which service the System Executive in a
real-time environment, Examples are DEFER
(specify one of two hardware interval timers or one
of nine programmed interval timers for some periodic
activity), LEVEL (set one of twenty~four levels for
programmed interrupt use}, QAREA (place a core
load Into the mainline core load queue tuble according
to name, execution priority, level number, and core
load area), and MASK {inhibit selectively one or more
levels of interrupt).

Selective dump subroutines allow the uger to print
chosen areas of core gtorage during the execution of
an objeect program. For example, DUMP will ontput
on the list printer, in hexadecimal or decimal form,
a certain portion of core storage; DUMPS will print
the statue of the 1800 (that is, status indicators,
contents of registers, and work areas).

The user can exercise the option of writing his
own mainline trace Interrupt routine which can be
included In a core load o process a trace interrupt.
He might, for example, design such a routine fo
monitor a number of conditions. The TRPRT sub-
routine is available for use in tracing routines which
print a specified number of characters on the 1053/
1816 keyboard printer or 1443 printer,

(‘\ The MPX Subroutine Library alse containg an

Jverlay routine called FLIP which serves to call
LOCAL {load-on~call) subprograms into core storage.
All LOCALSs in a given core load are executed from
the same core storage locations; each LOCAL group
overlays the previous group. In order to permit
entry from multiple programs and interrapt levels
before completing computations from a previoug eall,
the arithmetic and functional subroutines, and most
of the I/0 subroutines are designed to be reentrant.
That is, they ean be entered from g different lovel

of machine cpersation despite the fact that they may
not bave completed operation on a previous level,
Non-reentrant versions of the arithmetic, functional,
and conversion subroutines are also supplied.

Disk Management Program

The Disk Management Program (DMP) is & compre-
hensive group of generalized utility and maintenance
routines designed to aid the user in the day~to-day
operation of the MPX gystem., By this meansg, the
most frequently required services of disk and data
maintenance can be performed with a minimum of

~

effort. The MPX DMP philosophy is to provide as
much agsistance as possible to the user, DMP ig

a component part of the Batch Processing Monitor,
DMP is called into service by the Batch Processing
Monitor Supervisor {SUP) whehiever if recognizes a
DMP monitor eontrol card. If is also auwlomatically
summoned after the successful completion of an
agssembly or FORTRAN compilation. DMP functions
can be summarized as follows.

1. Permits the user to store, modify and refer to
programs and data using the compact and econom-
ieal direct-access digk storage facilities of the
system without regard o specific input-output
confignrations,

2, Allows the free interchange and uge of programs
and data among programmers.

3. Provides a systematic method for identifying
and locating programs and data, and systematic
methods to reference data after it is located,

All of these functions can be carried out while the
MPX asystem is in real-time, as well as in the baich
provessing mode. Examples of DMP facilities in-
clude the following,

Define the digk system configuration for a real-
time or batch processing MPX system.

e Pack a digk file fo eliminate unused areas, thus
minimizing disk storage requiremenis.

s Remove one or more system programs from the
disk-resident gystem,

e Update a master disk cartridge.

» Reserve a datz file area on disk without actually
moving any data,

¢ Copy one disk to another disk on-line.
e Dump an entire disk to cards on-line.
» Segment available core storage into a number of

partitioned core load areas during system genera-
tion.

s Build up o four types of cove loads, in conjunction
with the Core Load Bullder.

e Modify core loads on line.

» Change the seguence of execution of a geries of

System Components {7

core loads.

» Print out a map of all interrupt core loads con~-
tained in the System Executive.

e Delete a program, core load or data file from the
disk.

» Dump data/programs {rom one medium to another,

Language Translators

Language translators assist a programmer by en-
abling him to define a problem or an application in

a language form that can be readily learned and under-
gtood. In the MPX system, the user may define his
problem golution or application

o In a flexible easy-to-uge symbolic language
{Assembler language) and/or

e In a form of mathematical notation (FORTRAN)

Aszsembler

The Asgembler program ig a one-for-one disk orien-
ted symbolic-fype translator which assembles object

programs in machine language from source programs
written in symbolie language, It normally resides

on digk, The Asgembler accepts control records

and sourge programs in card form only., Upon a

i8

successful assembly, the object program in relocat-
able format is moved to digk where it is permanentily
stored or, alternatively, where it can be called for
execution, The Assembler langnage ig fully des-
eribed in the publication IBM 1800 Assembler Lan-
guage (Form C26-5882),

FORTRAN Compiler

The PFORTRAN language is a widely accepted and

used langnage that clogely resembles the language

of mathematics and enables engineers and scieniists to
to define problem solutions in a familiar, easy-to-

use notation.

The MPX FORTRAN Compiler is a digk-resident
version of the 1800 Card Compiler which accepts
gource program statements written in the IBM 1800
FORTRAN language as input from cards, and pro-
duces, as output, an executable machine language
program. At object time, the system utilizes ad-
vanced technigues, such as relocatable subroutines,
highly compressed formats, and flexible input and
output command structures which facilifate data
conversion operations. The FORTRAN lasguage
optimizes redundant subscript ealculations to produce
an efficient object program.

The MPX FORTRAN Compiler permits the user
to make the most of the digital and analog 1/0 features ™
uging a higher level langnage~-while at the same time
allowing background jobs to be executed. The
FORTRAN langnage is described in the publication
IBM 1130/1800 Basic FORTRAN IV Language
{Form C26-3715).

T T —

APPENDIX A.

SUMMARY OF MPX CALLING STATEMENTS

- MPX calling statements can be conveniently classi~
fied, according to the type of function performed,
into five groups ag follows:

—~

Sequencing or Linking Statements

CALL LINK

CALL SPECL

CALL BACK

Queteing Statements

CALL S4med
QLadL.

CALL DEQUE

CALL EXIT

Timing Statements

CALL DEFER

CALL DELAY

CALL REPET

Specify the next program to be
executed.

Sugpend current program, save
it in bulk storage, and execute
another program.

Return to a program that wag
only partly executed.

Place a program into the queve
table according to program
name, execution priority, level
number and core load area.
Delete a program from the
queue table according to
program name, execution pri-
ority and level number.
Terminate the current program
and execute the highest priority
program named in the gusue
table on present level. If the
gueue ig empty, time-share,

Specify one of eleven hardware
or propgrammed interval timers
for some periodic activity.
Specify a program by level
number and bit positicn for ox-
ecuiion on one of eleven bard-
ware or programmed inferval

timers.
Cause a aubroutine to be ex~

ecuted repeatedly, afier each
user-gpecified interval of
time.

CALL CYCLE

CALL SUSPN

CALL CANCL

CALL SETCL

CALL CLOCK

CALL TIME

Set-up a programmed in-
terrupt by level and bit
position repeatedly,

after each user-sgpecified
interval of time.

Suspend a program execution,
but allow lower priority
interrupts to oceur.

Terminste a specified hardware
or pregrammed interval timer,
Set-up the programmed real-
time clock to some desired
value,

Read the programmed real-
time clock in hours and thou-
gandths of hours,

Read the programmed real~-
time clock in hours, minutes,
and seconds.

Masking/Unmasking Statements

CALL MABK
CALL UKMSK

CALL SAVMK
CALL RESMK

inhibit selectively one or more
levels of interrupt,

Enable selectively one or more
levels of interrupt,

Save ¢urrent magked status.
Restore masked status.

Miscellanecus Statements

CALL LEVEL

{CALL OPMON
CALL LSPAR

CALL DUMP

Program an interrupt oh &
specified level and hit.

Reset Operationsg Monitor,
Change the program in SPAR
(special core load areq).

Print out on the list printer a
selected portion of core storage.

Appendix A. 19

APPERINK B, MPX EECOMMENDED INTERRUPT LEVEL ASSIGNMENTS

Priority assignmenis are necegsary so that an

order of precedence (that is, a level) can be estab~
lished smong the several interrupt copditions. In
configurating a multi-level interrupt system, the user
ghould remember that certain I/0 devices such as

the disk, magnetic tape and timers require high res-
ponse capabilities, Other 170 devices such as the
list printer, typewriter and card read punch do not
demand guch a critfical response.

In general, process interrupts (PISWg) are as-
signed lower priority levels than data processing
and process 1/0 devices, except for process inter-
rupts that do not require 1/0 and demand immediate
response, or initiate extended operationg at lower
levels through the programmed interrupt feature.

The reasen process interrupts are asgsigned lower
priorities than I/0 devices Is because user-written
subroutines for the servicing of these process inter-
rupts can then utilize all I/0 devices. I/0 devices
must, however, receive an operations-complete inter-
rupt which cannot occur if it is located on a lower
priority level than the level from which the I/0 device
is called,

The amount of computer time required to service a
particular interrupt can influence itg priority assign-
ment. If, for example, its servicing is relatively
short, an interrupt can be accorded higher priority
than ope which entails more elaborate servicing pro-
cedures. Those bagic I/0 devices that demand fast
response include the disk, magnetic tape, and timers.
Beesuge the 1053 Printer uses the digk when if bulfers
megsages, the analog interrupts should be at a higher
level than the assignment of the 1053 Printers, due to
a possible loss of comparator interrapts, It should
be pointed out that, although fast response is not

20

normally required by the 1053 Printer, this device
should be assigned to 2 high enough interrupt level
to allow it to run continupusly at 2 maximum rate.
Thug, typewriter megsages will be serviced without
cverleoading of the message huffer,

It is recommended that the Analog Input Compara-
tor feature be agsigned to a higher priority level than
the Analog Input. The remaining 1/0 devices do not
possess any special characteristics for assignment
at 2 high level, except that they should be at a level
higher than the highest level from which they are
called, and at a higher level than any assigned core
load.

Figure 7 illustrates how a muiti-level interrupt
system configuration might look in the IBM 1800 Data
Acquisition and Control S8ystem for a typieal process
control application, The example serves to convey
some of the principles noted above: it should not be
tnken ag a model, The machine configuration chogen
for thig example includes:

1 IBM 1802 Processor-Controller

32K words of core storage

1 IBM 2310 Disk Storage Unit with three disk
drives

1 IBM 2401 Magnetic Tape Unit

4 IBM 1053 Printer Unifg

1 IBM 1443 Printer Unit

1 IBM 1442 Card Read Punch

1 IBM 1627 Plotter Unit

1 Analog Input Bagic with Comparator

1 Analog Inmput Extended with Comparator

1 Digital Input

1 Digital and Analog Cuiput

12 Interrupt Levels

+g xipuaddy

12

INTERRUPT LEVEL STATUS WORD

4

7

8

9 10 i 12 i3 14 15
PISW 1 | TIMERS
Q A RC
{1} 3
PISW 2
1 0 21071 | 21072 | 23103
AW 3
2 e v
1}
Pisw 4
3 AlBC AEC
{1 .
PISW §
4 AlR AIE] DAC
{1}
PISW 6 | 1053/1 W53/2 | 108353 | 15344
3 1443
(1} {4) {4) {4} 4
PiSw 7
& 1442 C.h 1627
{1}
PESW 8
7
INTERRUPT {2
LEVEL Pisw ¢
) o
PIEW 10
%
@
PISW 1%
13
2}
PISW 12 NOTE
N {ir= Frocess interrupts which are serviced by routines
{2} ;
thot do not perform 1/ operations. Bt
A {2) = Process Interrupts which are serviced by routines
- Hwst con pedform 170 operations.
0 {3y Interva! Timars min? be on o higher leval than o
2310, 181671053, 1442 ond 1443 devices,
21 {(43= The 1816/1053s must ke on o lower feval thus
the 2310s. r—
% |
23 {_

Figure 7, Example of Interrupt Level Assignment

