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ABSTRACT
A practical real frequency technique for broadband impedance
matching is based on bilinear reflection behavior versus lumped
and distributed element variables.  An efficient grid search
locates a likely-global solution so that a precise constrained
gradient optimization can eliminate unnecessary elements in
candidate networks.

1. INTRODUCTION

Broadband matching requires a lossless two-port matching
network (equalizer) to minimize the maximum loss at passband
frequencies. Usually the load and/or source are not pure
resistances. See Figure 1; the maximum available source power is
Pas= ES 2/4RS, where ZS≡RS+jXS.  The relative power delivered
to the load, ZL, at a given frequency is
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Reflectance is reflection magnitude at a given frequency and is
constant at all two-port interfaces because of conservation of
power.  The minimax objective in broadband matching is
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n is the number of degrees of freedom in the equalizer, i.e., the
element values, and m passband frequencies are selected.

Two broadband matching techniques are classical insertion loss
theory and real frequency techniques (RFT) [1].  The former is
applicable to very few practical matching problems.  The RFT is

a numerical optimization method that is applicable to a wide
range of practical problems, and utilizes frequency-sampled load
and/or source impedance data.  Numerical optimization adjusts
free parameters (variables) to minimize an objective function,
e.g. least squares [2] or random search [3].  A well-known RFT
employs one or more approximation and optimization stages and
ends with polynomial synthesis [1].  The variables are
polynomial coefficients or s-plane root coordinates, so parts of
that process are extremely ill-conditioned [6].

This paper describes a well-conditioned RFT with an
optimization objective that depends on variables in simple ways,
leading to likely-global optimal results. The variables are values
of equalizer elements, which may be mixed lumped and
distributed.  This new technique avoids linear, nonlinear, or
rational approximations and polynomial synthesis.  An optimal
equalizer topology is not known in advance; otherwise, some
common optimization algorithms might find optimal solutions.
Here a useful candidate equalizer topology is selected, and the
grid approach to broadband impedance matching (GRABIM)
automatically eliminates all unnecessary elements.  The theory is
discussed, the two optimization stages are described, a well
known example is solved, and references are provided.

2. REFLECTION CHARACTERISTICS

The GRABIM technique utilizes a candidate equalizer topology
with vector x=[xj] containing all the variable element values and
operates on the reflectance at each passband frequency versus
each element value, xj, j=1…n.  Choose m≈2n passband
frequencies, ωi, i=1…m, each associated with data constants for
RS, XS, RL, and XL.  The generalized Smith chart in Figure 2
illustrates how reflectance at a frequency varies with a series
reactance through all positive and negative values, typical of the
intrinsic bilinear behavior of each series (parallel) branch
reactance (susceptance).

Figure 3 shows Thevenin interfaces for each kind of equalizer
element, noting that reflectance is constant throughout the
equalizer at a given frequency. Subnetworks N1 and N2 might be
an L, C, LC pair (trap) or transmission-line open- or short-circuit
stub.  Subnetworks N1, N2, and N3 each produce at most a
unimodal (single minimum) reflectance skewed by the nonlinear
dependence of angle φ on L, C,  t, or stub Z0 and θ variables, the
last potentially periodic. Cascade transmission line (CASTL)
length, θ, produces a circular locus strictly within the interior of
a generalized Smith chart, and the CASTL characteristic
impedance, Z0, produces a reflectance that is at most bimodal
(two minima).  These slight variations from unimodality are
easily avoided by the grid search described in Section 3.
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Figure 1. Broadband matching network terminations.
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Typical reflectance cross sections versus a series inductance are
shown in Figure 4.  The curves at each frequency are similar to
segments of the φ curve in Figure 2 except for the skewing in the
abscissa. The envelope is defined to be the worst-case reflectance
and is composed of piecewise arcs; the derivative of the envelope
is discontinuous where the arc segments join.  Broadband
matching problem (3) is solved by finding the element values in
vector x for the common minima on their respective envelopes
and varying that x to obtain the lowest-possible minimum
reflectance.  Further consideration of Figure 4 shows that
additional passband frequency samples would interpolate
between reflectance curves at adjacent frequencies and only more
precisely define the envelope, so choice of samples is not critical.

It is important to observe the reflectance curves for ω = 0.4, 0.5,
and 0.6 rad/s in Figure 4.  They are still just segments of the φ
curve in Figure 2, and it is not unusual for all sample frequencies
to produce a monotonic (no minimum) envelope as opposed to a
unimodal envelope for certain element variables.  If only those
three particular frequencies in Figure 4 are considered, the series
branch would be unnecessary and would be removed (L=0)
under the condition that no other elements were changed.

3. DIRECT SEARCH

The precise search described in Section 4 removes all
unnecessary elements but must be started from an approximate
solution to (3).  Also, there may be many local minima of (3),
especially when unnecessary elements are present.  Classical
insertion loss theory and other broadband techniques indicate
that each element in vector x will be in the range 1/25≤xj≤25 for
sampled data and equalizers normalized to one ohm and one
rad/s.  Normalized L, C, t, and Z0 values are explored within that
range; only one L or C is varied in traps, the other C or L being
dependent on a fixed null frequency.  Well-scaled mapping
functions are used to relate transmission line lengths to the xj

range, which is in turn mapped to log space; see Figure 4.

A typical nonsmooth surface at one frequency for two of many
variables is shown in Figure 5; all sections resemble Figure 4.
An efficient direct search technique for locating the global

minimum is to evaluate the envelope surface at a pattern of
points in variable log space.  Figure 6 shows such a pattern,
which can be considered an archeological grid over the terrain in
Figure 5.  During a search iteration, each grid point defines a set
of element values, and the worst reflectance over all frequency
samples determines the envelope surface value.  Some point in
the pattern will have the least worst-case reflectance, so the
pattern is recentered on that point for another iteration.

When a better point cannot be found, the pattern granularity
(point spacing) is reduced by factor 4, and the search is restarted.
A noncritical choice is to center the initial grid on unity; then
only three reductions in granularity are required, a total factor of
1/64.  The number of pattern trial points is decreased as the
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Figure 2. Origin of reflectance curves versus variable.
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Figure 3. Interfaces for lossless subnetworks.
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number of equalizer elements increases from 2 to 10 so that
about 1000 envelope surface evaluations are required for each
iteration.  Also, there are many programming strategies for
improving search efficiency.

It has been shown that this grid search converges unfailingly to a
point where the surface is nondifferentiable or the gradient is
zero [4].  This grid search in log space also avoids local minima
that sometimes occur in coordinate sections related to
transmission-line variables and avoids the local minima that are
usually observed on the principal diagonals of the pattern
hypercube in n space.  Examination of cross sections and
diagonals for many realistic matching data sets and topologies
has shown it reasonable to expect the reflectance envelope
minimum found to be global.

4. CONSTRAINED GRADIENT
OPTIMIZATION

The broadband matching objective in (3) is nonsmooth with
discontinuous derivatives.  Generally, direct searches do not
require derivatives to exist, but are known to have very slow final
convergence.  However, gradient search based on first partial
derivatives usually converges rapidly to a nearby minimum.
Therefore, (3) is converted to an equivalent differentiable
optimization problem by adding one more variable, xn+1, to the x
vector:

( )x
Min xn x i xn i msubject to+ ≤ + =1 1 1ρ ω, , .3 (4)

This objective function is linear, and the m inequality reflectance
constraints are differentiable functions.

The envelope minimum in Figure 4 is enlarged in Figure 7.  It is
seen that xn+1 has been reduced to 0.50 with the variable for the
inductance having the value 0.72.  Also, this solution is
determined by binding constraints at 0.3, 0.4, 0.5, 0.8, and 1.0
rad/s; the remaining three constraints are not binding.  The
standard constrained optimization problem in (4) can be solved
by several methods.  The Lagrange multiplier method is a precise
and rapidly convergent gradient algorithm that is reliable when
started near a minimum [2]; it replaces (4) with

( )[ ]x
Min xn sii

m
x i xn ui+ +

=
∑ − + +1 1 1 0

2
max , , .ρ ω     (5)

The formulation in (5) introduces m pairs of weights, si, and
offsets, ui.  The ui offset the origins of the constraints so that the
si weights need not become infinite as with ordinary penalty
function optimizers [2].

A particularly simple Lagrange multiplier algorithm [5] starts
with the x vector from the grid search and xn+1 set to the
maximum reflectance, all si=1, and all ui=0.  There are two loops:
The outer loop adjusts the si and ui based on how the worst-case
binding constraint increased or decreased.  The inner loop
obtains the minimum in (5) with fixed values of si and ui; first
derivatives are continuous. The inner loop is an unconstrained
minimization except for element bounds or holds, requires first
partial derivatives, and converges at a quadratic rate.  The outer
loop is an approximate minimizer that converges at a linear rate
[2].  The minimum reflectance is obtained subject to the binding
constraints within a few iterations; see Figure 7.  Significantly,
the m si×ui products at the constrained minimum are equal to the
Lagrange multipliers associated with (4); that is one basis for
adjusting the si and ui values in the outer loop. The gradient
search is also conducted in variable log space, which guarantees
positive element values and normalizes the derivatives for
optimal scaling.

The grid search requires several thousand evaluations of
reflectance, and the Lagrange multiplier method requires
reflectances and their first partial derivatives with respect to each
component of x.  Fortunately, these values can be obtained
exactly with great efficiency using the element ABCD parameters
in Figure 3 [6].  A special advantage of GRABIM is that the
overall equalizer ABCD parameters at each frequency need be
computed only once.  Therefore, sets of ZL and ZS data defining
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neighborhoods of uncertain impedance at each frequency also
can be broadband matched efficiently.

5.  EXAMPLE

There is a double-match example that cannot be solved by the
classical insertion loss method [7].  The source and load models
shown in Figure 8 are seldom known; however, their impedance
data in the desired passband from 0.3 to 1.0 rad/s in 0.1 intervals
are assumed given. The source resistance being zero at 1.29 rad/s
is particularly difficult.  The RFT method in [7] utilizes several
arbitrary approximations, optimizations, and synthesis steps to
yield a six-element equalizer with passband loss 0.85 to 1.42 dB.

The GRABIM technique used the same data and a six- element
equalizer topology consisting of a Pi of L’s at the source
followed by a Pi of C’s at the load. (The source is capacitive and
the load is inductive; Pi networks implicitly contain ideal
transformers.)  The grid search required 7026 network analyses
performed in 2 seconds by a 200 MHz PC; the worst-case
insertion loss was reduced to 2.6 dB.  A few Lagrange multiplier
loops reduced the loss to 1.24 dB while automatically removing
one L and one C.  See Figure 9(a); two other solutions started
from other topologies also are shown in Figures 9(b) and 9(c).

6. SUMMARY

The GRABIM RFT is a pure numerical optimization algorithm
that is fast, simple, and reliable. It solves double-match problems
as easily as single-match problems. GRABIM locates a likely-
global optimal solution for a given topology and eliminates
unnecessary branches during a two-stage process of optimizing
equalizer elements.  Mixed lumped and distributed elements are
allowed, based on clearly defined behavior of reflection
magnitude versus element variables. Inexpensive, documented
software is available from the author.

GRABIM features:

• Measured single- or double-match source and load
impedance data at sampled passband frequencies,

• Noncritical choice of frequency samples,
• Mixed lumped/distributed equalizer elements,
• Bandpass or lowpass equalizers,
• Arbitrary or stored candidate topologies of varying degree,
• Automatic elimination of unnecessary elements,
• No element initial values required,
• Bounds or holds on element values,
• Efficient broadband matching of impedance neighborhoods,
• Likely-global optimal solutions, and
• Proven, well-conditioned numerical techniques.
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